Etudes issues de travaux menés, ou de données obtenues, au Col de Porte.

Listes en cours de mise à jour

  Descriptions du site et des données.

  1. Morin, S., L’observatoire nivo-météorologique du col de Porte, Neige et Avalanche, 141, 26-27, 2013 .
  2. Lesaffre B., Y. Lejeune, S. Morin, J.-M. Panel et D. Poncet, Impact du changement climatique sur l’enneigement de moyenne montagne : l’exemple du site du col de Porte en Chartreuse, Actes du 25ème Colloque de l’Association Internationale de Climatologie, Grenoble 2012, 475-480, 2012 .
  3. Morin, S., Lejeune, Y., Lesaffre, B., Panel, J.-M., Poncet, D., David, P., and Sudul, M. : An 18-yr long (1993–2011) snow and meteorological dataset from a mid-altitude mountain site (Col de Porte, France, 1325 m alt.) for driving and evaluating snowpack models, Earth Syst. Sci. Data, 4, 13-21, doi :10.5194/essd-4-13-2012, 2012.

  Développements et évaluations de modèles utilisant les données nivo-météorologiques du Col de Porte.

  1. Tuzet, F., Dumont, M., Lafaysse, M., Picard, G., Arnaud, L., Voisin, D., Lejeune, Y., Charrois, L., Nabat, P., and Morin, S. : A multilayer physically based snowpack model simulating direct and indirect radiative impacts of light-absorbing impurities in snow, The Cryosphere, 11, 2633-2653, https://doi.org/10.5194/tc-11-2633-2017, 2017.
  2. Ayzel G.V. Use of machine learning techniques for modeling of snow depth. Ice and Snow. 57(1):34-44. doi :10.15356/2076-6734-2017-1-34-44, 2017.
  3. Würzer, S., Wever, N., Juras, R., Lehning, M., and Jonas, T. : Modelling liquid water transport in snow under rain-on-snow conditions – considering preferential flow, Hydrol. Earth Syst. Sci., 21, 1741-1756, https://doi.org/10.5194/hess-21-1741-2017, 2017.
  4. Magnusson, J., A. Winstral, A. S. Stordal, R. Essery, and T. Jonas, Improving physically based snow simulations by assimilating snow depths using the particle filter, Water Resour. Res., 53, 1125–1143, doi :10.1002/2016WR019092, 2017.
  5. Lafaysse, M., Cluzet, B., Dumont, M., Lejeune, Y., Vionnet, V., and Morin, S. : A multiphysical ensemble system of numerical snow modelling, The Cryosphere, 11, 1173-1198, doi :10.5194/tc-11-1173-2017, 2017.
  6. Decharme, B., Brun, E., Boone, A., Delire, C., Le Moigne, P., and Morin, S. : Impacts of snow and organic soils parameterization on northern Eurasian soil temperature profiles simulated by the ISBA land surface model, The Cryosphere, 10, 853-877, doi :10.5194/tc-10-853-2016, 2016.
  7. Raleigh, M.S., B. Livneh, K. Lapo, and J.D. Lundquist, How Does Availability of Meteorological Forcing Data Impact Physically Based Snowpack Simulations ?, J. Hydrometeorol., 17:1, 99-120, https://doi.org/10.1175/JHM-D-14-0235.1, 2016
  8. Avanzi, F., De Michele, C., Morin, S., Carmagnola, C. M., Ghezzi, A., and Lejeune, Y., Model complexity and data requirements in snow hydrology : seeking a balance in practical applications. Hydrol. Process., doi :10.1002/hyp.10782, 2016.
  9. Magnusson, J., N. Wever, R. Essery, N. Helbig, A. Winstral, and T. Jonas, Evaluating snow models with varying process representations for hydrological applications, Water Resour. Res., 51, doi :10.1002/2014WR016498, 2015.
  10. Wayand, N. E., J. D. Lundquist, and M. P. Clark, Modeling the influence of hypsometry, vegetation, and storm energy on snowmelt contributions to basins during rain-on-snow floods, Water Resour. Res., 51, 8551–8569, doi :10.1002/2014WR016576, 2015.
  11. Essery, R. : A factorial snowpack model (FSM 1.0), Geosci. Model Dev., 8, 3867-3876, doi :10.5194/gmd-8-3867-2015, 2015.
  12. Raleigh, M. S., Lundquist, J. D., and Clark, M. P. : Exploring the impact of forcing error characteristics on physically based snow simulations within a global sensitivity analysis framework, Hydrol. Earth Syst. Sci., 19, 3153-3179, doi :10.5194/hess-19-3153-2015, 2015.
  13. Endrizzi, S., Gruber, S., Dall’Amico, M., and Rigon, R. : GEOtop 2.0 : simulating the combined energy and water balance at and below the land surface accounting for soil freezing, snow cover and terrain effects, Geosci. Model Dev., 7, 2831-2857, doi :10.5194/gmd-7-2831-2014, 2014.
  14. Malik, M. J., R. van der Velde, Z. Vekerdy, and Z. Su, Improving modeled snow albedo estimates during the spring melt season, J. Geophys. Res. Atmos., 119, 7311–7331, doi :10.1002/2013JD021344, 2014.
  15. Carmagnola, C. M., Morin, S., Lafaysse, M., Domine, F., Lesaffre, B., Lejeune, Y., Picard, G., and Arnaud, L. : Implementation and evaluation of prognostic representations of the optical diameter of snow in the SURFEX/ISBA-Crocus detailed snowpack model, The Cryosphere, 8, 417-437, doi :10.5194/tc-8-417-2014, 2014.
  16. Wever, N., Fierz, C., Mitterer, C., Hirashima, H., and Lehning, M. : Solving Richards Equation for snow improves snowpack meltwater runoff estimations in detailed multi-layer snowpack model, The Cryosphere, 8, 257-274, doi :10.5194/tc-8-257-2014, 2014.
  17. Raleigh, M. S., C. C. Landry, M. Hayashi, W. L. Quinton and J. D Lundquist, Approximating snow surface temperature from standard temperature and humidity data : New possibilities for snow model and remote sensing evaluation, Water Resour. Res., 49, 8053–8069, doi :10.1002/2013WR013958, 2013.
  18. Roy, A., Royer, A., Montpetit, B., Bartlett, P. A., and Langlois, A. : Snow specific surface area simulation using the one-layer snow model in the Canadian LAnd Surface Scheme (CLASS), The Cryosphere, 7, 961-975, doi :10.5194/tc-7-961-2013, 2013.
  19. Wang, T., C. Ottlé, A. Boone, P. Ciais, E. Brun, S. Morin, G. Krinner, S. Piao and S. Peng, Evaluation of an improved intermediate complexity snow scheme in the ORCHIDEE land surface model, J. Geophys. Res., 118, 6064–6079, doi :10.1002/jgrd.50395, 2013.
  20. Lejeune, Y., J.-M. Bertrand, P. Wagnon and S. Morin, A physically-based model for the year-round surface energy and mass balance of debris-covered glaciers, J. Glaciol., 59(214), doi :10.3189/2013JoG12J149, 2013.
  21. Essery, R., S. Morin, Y. Lejeune, C. B. Ménard. A comparison of 1701 snow models using observations from an alpine site, Adv. Water Resour., 55, 131–148, doi :10.1016/j.advwatres.2012.07.013, 2013.
  22. Morin, S., F. Domine, A. Dufour, Y. Lejeune, B. Lesaffre, J.-M. Willemet, C. M. Carmagnola and H.-W. Jacobi, Measurements and modeling of the vertical profile of specific surface area of an alpine snowpack, Adv. Water Resour., 55, 111–120, doi :10.1016/j.advwatres.2012.01.010, 2013.
  23. Vionnet, V., Brun, E., Morin, S., Boone, A., Faroux, S., Le Moigne, P., Martin, E., and Willemet, J.-M. : The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2, Geosci. Model Dev., 5, 773-791, doi :10.5194/gmd-5-773-2012, 2012.
  24. Dumont, M., Durand, Y., Arnaud, Y. and Six, D., Variational assimilation of albedo in a snowpack model and reconstruction of the spatial mass-balance distribution of an alpine glacier, J. Glaciol. , 58, 207, 151–164, doi :10.3189/2012JoG11J163, 2012.
  25. Shrestha, M., Wang, L., Koike, T., Xue, Y., and Hirabayashi, Y. : Improving the snow physics of WEB-DHM and its point evaluation at the SnowMIP sites, Hydrol. Earth Syst. Sci., 14, 2577-2594, doi :10.5194/hess-14-2577-2010, 2010.
  26. Li, W. P., Sun, S. F., Wang, B., and Liu, X. : Numerical simulation of sensitivities of snow melting to spectral composition of the incoming solar radiation, Adv. Atmos. Sci., 26(3), 403–412, doi :10.1007/s00376-009-0403-7, 2009.
  27. Brown, R., Bartlett, P., Mackay, M., and Verseghy, D. : Evaluation of snow cover in CLASS for SnowMIP, Atmosphere-Ocean, 44, 223–238, doi :10.3137/ao.440302, 2006.
  28. Pedersen, C. A., and J.-G. Winther, Intercomparison and validation of snow albedo parameterization schemes in climate models, Clim. Dyn., 25, 351–362, doi :10.1007/s00382-005-0037-0, 2005.
  29. Essery, R., and P. Etchevers, Parameter sensitivity in simulations of snowmelt, J. Geophys. Res., 109(D20111) doi :10.1029/2004JD005036, 2004.
  30. Etchevers P., E. Martin, R. Brown, C. Fierz, Y. Lejeune, E. Bazile, A. Boone, Y.-J. Dai, R. Essery, A. Fernandez, Y. Gusev, R. Jordan, V. Koren, E. Kowalczyk, N. O. Nasonova, R. D. Pyles, A. Schlosser, A. B. Shmakin, T. G. Smirnova, U. Strasser, D. Verseghy, T. Yamazaki and Z.-L. Yang : Intercomparison of the surface energy budget simulated by several snow models (SNOWMIP project), Ann. Glaciol., 38, 150-158, doi :10.3189/172756404781814825, 2004.
  31. Belair, S., R. Brown, J. Mailhot, B. Bilodeau, and L. P. Crevier, Operational implementation of the ISBA land surface scheme in the Canadian regional weather forecast model. Part II : Cold season results, J. Hydrometeorol., 4, 371–386, doi :10.1175/1525-7541(2003)4<371:OIOTIL>2.0.CO ;2, 2003.
  32. Xue, Y., S. Sun, D. S. Kahan, and Y. Jiao, Impact of parameterizations in snow physics and interface processes on the simulation of snow cover and runoff at several cold region sites, J. Geophys. Res., 108(D22), 8859, doi :10.1029/2002JD003174, 2003.
  33. Strasser, U., P. Etchevers and Y. Lejeune, Inter-comparison of two snow models with different complexity using data from an alpine site. Nordic Hydrol., 33, 15-26, doi :10.2166/nh.2002.002, 2002.
  34. Gallée, H., G. Guyomarc’h and E. Brun, Impact of snow drift on the Antarctic ice sheet surface mass balance : Possible sensitivity to snow-surface properties, Boundary-Layer Meteorology, 99(1), 1-19, doi :10.1023/A:1018776422809, 2001.
  35. Sun, S. and Xue, Y. : Implementing a new snow scheme in Simplified
    Simple Biosphere Model, Adv. Atmos. Sci., 18, 335–354, doi :10.1007/BF02919314, 2001.
  36. Boone, A., and P. Etchevers : An intercomparison of three snow schemes of varying complexity coupled to the same land surface model : local scale evaluation at an Alpine site. J. Hydrometeor., 2, 374-394, doi :10.1175/1525-7541(2001)002<0374%3AAIOTSS>2.0.CO%3B2, 2001.
  37. Sun, S., J. Jin, and Y. Xue, A simple snow-atmosphere-soil transfer
    model, J. Geophys. Res., 104, 19,587– 19,597, doi :10.1029/1999JD900305, 1999.
  38. Jin, J., G. Xiaogang, S. Sorooshian, Z.-L. Yang, R. Bales, R. E. Dickinson, S.-F. Sun and G.-X. Wu, One-dimensional snow water and energy balance model for vegetated surfaces, Hydrol. Process., 13, 2467–2482. doi : 10.1002/(SICI)1099-1085(199910)13:14/15<2467::AID-HYP861>3.0.CO ;2-J, 1999.
  39. Essery, R., Martin E., Douville H., Fernandez A., Brun E., A comparison of four snow models using observations from an alpine site. Clim. Dyn., 15(8), 583-593, doi :10.1007/s003820050302, 1999.
  40. Durod, K., Modélisation hydrologique distribuée du bassin versant nivo-pluvial de Sarennes. Validation des données d’entrée et développement d’un module de fonte nivale sous forêt , Thèse de l’Institut national polytechnique de Grenoble, Grenoble, France , 334 pp., 1999.
  41. Loth, B., and H. F. Graf, Modeling the snow cover in climate studies : 2. Sensitivity to internal snow parameters and interface processes, J. Geophys. Res., 103, 1329– 1340, doi :10.1029/97JD01412, 1998.
  42. Fernández, A., An energy balance model of seasonal snow evolution, Physics and Chemistry of the Earth, 23 (5–6), 661-666, doi :10.1016/S0079-1946(98)00107-4, 1998.
  43. Douville, H., J.-F. Royer, and J.-F. Mahfouf , A new snow parameterization for the Météo-France climate model. I. Validation in standalone experiments, Clim. Dyn., 12, 21–35, doi :10.1007/BF00208760, 1995.
  44. Brun E., P. David, M. Sudul and G. Brunot, A numerical model to simulate snowcover stratigraphy for operational avalanche forecasting, J. Glaciol., 38(128), 13-22, 1992. (pdf)
  45. Brun E., E. Martin, V. Simon, C. Gendre C. and C. Coléou, An energy and mass model of snow cover suitable for operational avalanche forecasting, J. Glaciol., 35(121), 333-342, 1989. (pdf)

  Processus du manteau neigeux

  1. Dumont, M., Arnaud, L., Picard, G., Libois, Q., Lejeune, Y., Nabat, P., Voisin, D., and Morin, S. : In situ continuous visible and near-infrared spectroscopy of an alpine snowpack, The Cryosphere, 11, 1091-1110, doi :10.5194/tc-11-1091-2017, 2017.
  2. Pomeroy, J.W., R.L. Essery, and W.D. Helgason, Aerodynamic and Radiative Controls on the Snow Surface Temperature, J. Hydrometeorol., 17:8, 2175-2189, https://doi.org/10.1175/JHM-D-15-0226.1, 2016.
  3. Chen, A., W. Li, W. Li and X Liu, An observational study of snow aging and the seasonal variation of snow albedo by using data from Col de Porte, France, Chinese Science Bulletin, doi :10.1007/s11434-014-0429-9, 2014.
  4. Libois, Q., Picard, G., France, J. L., Arnaud, L., Dumont, M., Carmagnola, C. M., and King, M. D. : Influence of grain shape on light penetration in snow, The Cryosphere, 7, 1803-1818, doi :10.5194/tc-7-1803-2013, 2013.
  5. Carmagnola, C. M., Domine, F., Dumont, M., Wright, P., Strellis, B., Bergin, M., Dibb, J., Picard, G., Libois, Q., Arnaud, L., and Morin, S. : Snow spectral albedo at Summit, Greenland : measurements and numerical simulations based on physical and chemical properties of the snowpack, The Cryosphere, 7, 1139-1160, doi :10.5194/tc-7-1139-2013, 2013.
  6. Calonne, N., Geindreau, C., Flin, F., Morin, S., Lesaffre, B., Rolland du Roscoat, S., and Charrier, P. : 3-D image-based numerical computations of snow permeability : links to specific surface area, density, and microstructural anisotropy, The Cryosphere, 6, 939-951, doi :10.5194/tc-6-939-2012, 2012.
  7. Calonne, N., F. Flin, S. Morin, B. Lesaffre, S. Rolland du Roscoat, C. Geindreau, Numerical and experimental investigations of the effective thermal conductivity of snow, Geophys. Res. Lett., 38, L23501, doi :10.1029/2011GL049234, 2011.
  8. Morin, S. Conductivité thermique de la neige : enjeux et mesures au sein du manteau neigeux. Neige et Avalanches, 129, 24-25, 2010.
  9. Domine, F., Taillandier, A.-S., Cabanes, A., Douglas, T. A., and Sturm, M. : Three examples where the specific surface area of snow increased over time, The Cryosphere, 3, 31-39, doi :10.5194/tc-3-31-2009, 2009.
  10. Faïn, X., S. Grangeon, E. Bahlmann, J. Fritsche, D. Obrist, A. Dommergue, C. P. Ferrari, W. Cairns, R. Ebinghaus, C. Barbante, P. Cescon, and C. Boutron, Diurnal production of gaseous mercury in the alpine snowpack before snowmelt, J. Geophys. Res., 112, D21311, doi :10.1029/2007JD008520, 2007.
  11. Legagneux, L., A.-S. Taillandier and F. Domine, Grain growth theories and the isothermal evolution of the specific surface area of snow. J. Appl. Phys., 95, 6175-6184, 2004.
  12. Legagneux, L., T. Lauzier, F. Domine, W.F. Kuhs, T. Heinrichs, K. Techmer, Rate of decay of the specific surface area of snow during isothermal experiments and morphological changes studied by scanning electron microscopy. Canadian Journal of Physics. 81, 459-468, 2003.
  13. Cabanes, A., L. Legagneux, F. Domine, Rate of evolution of the specific surface area of surface snow layers. Environ. Sci. Technol., 37, 661-666, 2003.
  14. Legagneux, L., A. Cabanes, and F. Domine, Measurement of the specific surface area of 176 snow samples using methane adsorption at 77 K, J Geophys. Res., 107(D17), 4335, doi : 10.1029/2001JD001016, 2002.
  15. Leroux, C., J.-L. Deuzé, P. Goloub, C. Sergent, and M. Fily, Ground measurements of the polarized bidirectional reflectance of snow in the near-infrared spectral domain : Comparisons with model results, J. Geophys. Res., 103(D16), 19721–19731, doi :10.1029/98JD01146, 1998.
  16. Brun, E., and L. Rey, Field study ons snow mechanical properties with special regard to liquid water content, IAHS Publ. 162, Proc. of the Davos Symposium, 1986, on Avalanches formation, movement and effects, 183 - 193, 1987.

  Echanges physiques air/neige

  1. Litt M., Caractérisation de la couche limite atmosphérique au Col de Porte et estimation des flux turbulents. Rapport de stage de M2 , Université Joseph-Fourier, Grenoble, 2009.
  2. Martin, E. and Y. Lejeune, Turbulent fluxes above the snow surface, Ann. Glaciol., 26, 179-183, 1998 (pdf)

  Interactions neige/sol

  1. Bouilloud, L. and E. Martin, A coupled model to simulate snow behavior on roads, J. Appl. Met., 45(3), 500-516, 2006.
  2. Bouilloud, L., E. Martin, M. Marchetti et J. Livet, Vers une prévision de l’état des routes. Revue Neige de l’Association Québécoise des Transports et des Routes, 6(2), 5-7, 2006.
  3. Bouilloud, L., Modélisation des caractéristiques de surface d’une chaussée en condition hivernale en fonction des conditions météorologiques, Thèse de l’Université Paul Sabatier, Toulouse III, 2006.
  4. Borel, S., Etude du comportement de la neige déposée sur une chaussée : caractérisation de l’interface neige/chaussée. Thèse de l’Université Joseph Fourier, Grenoble I, 2000.

  Développements & tests instrumentaux

  1. Ayhan, Serdhal, Mario Pauli, Steffen Scherr, Benjamin Gottel, Akanksha Bhutani, et al.. Millimeter-Wave Radar Sensor for Snow Height Measurements. IEEE Transactions on Geoscience and Remote Sensing, Institute of Electrical and Electronics Engineers, 2017, 55 (2), pp.854 – 861. doi :10.1109/TGRS.2016.2616441
  2. Picard, G., Arnaud, L., Panel, J.-M., and Morin, S. : Design of a scanning laser meter for monitoring the spatio-temporal evolution of snow depth and its application in the Alps and in Antarctica, The Cryosphere, 10, 1495-1511, doi :10.5194/tc-10-1495-2016, 2016.
  3. Willemet, J.M., D. Goetz, B. Lesaffre, P. Etchevers, J.M. Panel, Y. Lejeune et J.P. Navarre, Deux méthodes indépendantes de détermination de l’équivalent en eau de la neige au Col de Porte. Note de centre du CEN, n°27, 2009.
  4. Schneebeli, M., C. Coléou, F. Touvier, B. Lesaffre, Measurement of density and wetness in snow using time-domain reflectometry, Ann. Glaciol., 26, 69 - 72, 1998.

  Météorologie et climat

  1. Nicolet, G., N. Eckert, S. Morin and J. Blanchet, A multi-criteria leave-two-out cross-validation procedure for max-stable process selection, Spatial Statistics, 22, 107 - 128, https://doi.org/10.1016/j.spasta.2017.09.004, 2017.
  2. Nicolet, G., N. Eckert, S. Morin, and J. Blanchet, Decreasing spatial dependence in extreme snowfall in the French Alps since 1958 under climate change, J. Geophys. Res. Atmos., 121, 8297–8310, doi :10.1002/2016JD025427, 2016.
  3. Vionnet V., Dombrowski-Etchevers I., Lafaysse M., Quéno L., Seity Y., and Bazile, E. : Numerical weather forecasts at kilometer scale in the French Alps : evaluation and applications for snowpack modelling, J. Hydrometeor., 10.1175/JHM-D-15-0241.1, 2016
  4. Jabot, E., Zin, I., Lebel, T., Gautheron, A. and Obled, C., Spatial interpolation of sub-daily air temperatures for snow and hydrologic applications in mesoscale Alpine catchments. Hydrol. Process., 26 : 2618–2630. doi : 10.1002/hyp.9423, 2012.
  5. Dumas, D., Changes in temperature and temperature gradients in the French Northern Alps during the last century, Theor. Appl. Climatol., doi :10.1007/s00704-012-0659-1, 2012.
  6. Quintana-Seguí, P., P. Le Moigne, Y. Durand, E. Martin, F. Habets, M. Baillon, C. Canellas, L. Franchisteguy and S. Morel, Analysis of Near-Surface Atmospheric Variables : Validation of the SAFRAN Analysis over France. J. Appl. Meteor. Climatol., 47, 92–107, doi :10.1175/2007JAMC1636.1, 2008.

  Applications socio-économiques

  1. Falk, M., The Demand for Winter Sports : Empirical Evidence for the Largest French Ski-lift Operator, Tourism Economics, doi :10.5367/te.2013.0366, 2014.