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Abstract:
This documentation can be seen as a long introduction to modeling. The general purpose of this documentation

is to describe the set of equations used, and also the way to integrate the dynamics of the model. Two points
will be examined in detail in this documentation: the Eulerian dynamics and the discretisations used. For
some other aspects (semi-Lagrangian dynamics, physics, spectral transforms, horizontal diffusion, semi-implicit
scheme), this documentation will not provide any detailed description, since there are other documentations
describing these topics. The following points will be described: model geometry, different set of equations (non
hydrostatic, primitive, shallow-water), their Eulerian formulation and there Eulerian discretisation, calculation
and discretisation of some intermediate diagnosed quantities (like the geopotential height). An organigramme is
provided. An introduction to tangent linear and adjoint code is provided. There is a specific chapter for the flux
form of the Eulerian equation, which is the basis of the DDH diagnostics. An example of namelist is provided.

Résumé:
On peut voir cette documentation comme une longue introduction à la modélisation. Le but général de cette

documentation est de décrire les jeux d’équations utilisés, et aussi la manière d’intégrer ces équations. On examine
plus particulièrement les deux points suivants: la dynamique eulérienne et les discrétisations utilisées. Sur d’autres
aspects (semi-lagrangien, physique, transformées spectrales, diffusion horizontale, schéma semi-implicite), cette
documentation ne fournit aucune description détaillée, car il y a d’autres documentations décrivant ces sujets.
Les points suivants sont abordés: géométrie, différents jeux d’équations (non hydrostatique, équations primitives,
modèle shallow-water), leur discrétisation avec un schéma d’advection eulérien, le calcul et la discrétisation de
certaines quantités diagnostiquées (comme la hauteur géopotentielle). On fournit un organigramme et un exemple
de namelist. Une introduction au code tangent linéaire et adjoint est également proposée. Il y a un chapitre
spécifique consacré à la forme flux des équations, qui sert de base aux diagnostics DDH.

1



Contents

1 Introduction. 6
1.1 Content of this documentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Global models (ARPEGE/IFS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Limited area models (LAM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Eulerian advection scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Semi-Lagrangian scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Organisation of a timestep. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Systems of horizontal coordinates. 8
2.1 Systems of horizontal spherical coordinates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Systems of horizontal coordinates in plane geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Definitions of horizontal mesh-sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 The different types of horizontal derivatives used. 10
3.1 Horizontal gradient for spherical geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Horizontal laplacian for spherical geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Horizontal vorticity and divergence for spherical geometry. . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Wind components for spherical geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5 Specific features for plane geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.6 Additional remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 The 2D equations. 14
4.1 Denotations for the 2D equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 The 2D shallow-water system of equations in spherical geometry. . . . . . . . . . . . . . . . . . . . 14
4.3 The 2D “vorticity” system of equations in spherical geometry. . . . . . . . . . . . . . . . . . . . . . 14
4.4 The 2D equations in plane geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 The 3D equations in spherical geometry (ARPEGE/IFS). 15
5.1 Denotations for the 3D equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 The thin layer 3D primitive equation model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.2.1 Momentum equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2.2 Thermodynamic equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2.3 Continuity equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2.4 Advectable GFL prognostic fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2.5 Relationship between geopotential height gz and pressure depth. . . . . . . . . . . . . . . . 17
5.2.6 Relationship between total geopotential Φ and pressure depth. . . . . . . . . . . . . . . . . 18
5.2.7 Diagnostic expression of some vertical velocities. . . . . . . . . . . . . . . . . . . . . . . . . 18

5.3 The deep layer 3D primitive equation model according to (WB1995). . . . . . . . . . . . . . . . . . 18
5.3.1 Basics deep layer equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3.2 Momentum equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3.3 Thermodynamic equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.3.4 Continuity equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.3.5 Advectable GFL prognostic fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3.6 Relationship between geopotential height gz and pressure depth. . . . . . . . . . . . . . . . 22
5.3.7 Relationship between total geopotential Φ and pressure depth. . . . . . . . . . . . . . . . . 22
5.3.8 Diagnostic expression of some vertical velocities. . . . . . . . . . . . . . . . . . . . . . . . . 23

5.4 The thin layer 3D NH-PDVD fully compressible non-hydrostatic model. . . . . . . . . . . . . . . . 24
5.4.1 Momentum equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.4.2 Thermodynamic equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.4.3 Continuity equation and diagnostic expression of some vertical velocities. . . . . . . . . . . 25
5.4.4 Advectable GFL prognostic fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.4.5 Relationship for geopotential height gz and pressure depth. . . . . . . . . . . . . . . . . . . 25
5.4.6 Relationship between total geopotential Φ and pressure depth. . . . . . . . . . . . . . . . . 25
5.4.7 Pressure departure equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.4.8 Vertical velocity w and vertical divergence d equations. . . . . . . . . . . . . . . . . . . . . 26
5.4.9 Geopotential equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.5 The deep layer 3D fully compressible non-hydrostatic model according to (WS2003). . . . . . . . . 27
5.5.1 Basics deep layer equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.5.2 Momentum equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.5.3 Thermodynamic equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.5.4 Continuity equation and diagnostic expression of some vertical velocities. . . . . . . . . . . 29
5.5.5 Advectable GFL prognostic fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.5.6 Pressure departure equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.5.7 Vertical velocity w and vertical divergence d equations. . . . . . . . . . . . . . . . . . . . . 30

2



6 The 3D equations: specific features for plane geometry. 31
6.1 General considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2 Momentum equation for (WB1995) formulation of deep-layer atmosphere equations. . . . . . . . . 31

6.2.1 Computation of horizontal curvature terms in LAM models. . . . . . . . . . . . . . . . . . . 31
6.2.2 Horizontal Coriolis term in LAM models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.2.3 Additional inertial terms containing W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.2.4 Pressure gradient term. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2.5 Reformulation of the wind meridian derivatives, using the divergence and vorticity. . . . . . 34
6.2.6 Final formulation of momentum equation in the plane. . . . . . . . . . . . . . . . . . . . . . 34

6.3 Momentum equation for (WS2003) formulation of deep-layer atmosphere equations. . . . . . . . . 34

7 Some other diagnosed quantities. 35
7.1 cp, R and κ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7.2
[
r
a
∇
]

(RT ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.3 Potential temperature PT and its horizontal gradient. . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.4 Virtual potential temperature PTV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.5 Equivalent potential temperature PTE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.6 Absolute vorticity ζabs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.7 Potential vorticity PV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.8 Shearing deformation SHD and stretching deformation STD. . . . . . . . . . . . . . . . . . . . . . 36
7.9 Hydrostatic vertical divergence dhyd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.10 Hydrostatic height coordinate vertical velocity whyd. . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.11 Moisture convergence CV GQ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.12 Montgomery potential Φmg and some other energetic quantities. . . . . . . . . . . . . . . . . . . . 37
7.13 Angular momentum of components MMA, MMB and MMC. . . . . . . . . . . . . . . . . . . . . 38
7.14 Entropy S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

8 Discretisation of the equations: general aspects. 39
8.1 Denotations and preliminary remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8.2 Discretisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.3 Vertical discretisation in a 3D model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

9 The hydrostatic pressure based η vertical coordinate. 42
9.1 Definition and calculation of the hydrostatic pressure at half levels. . . . . . . . . . . . . . . . . . . 42
9.2 Calculation of the hydrostatic pressure at full levels. . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9.3 Calculation of η at half levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.4 Calculation of η at full levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.5 Calculation of the horizontal gradient of the hydrostatic pressure at half levels. . . . . . . . . . . . 43
9.6 Calculation of the horizontal gradient of the hydrostatic pressure at full levels. . . . . . . . . . . . 43
9.7 Computation of a good set of A and B at half levels. . . . . . . . . . . . . . . . . . . . . . . . . . . 44

10 The quantities α and δ linked to pressure depth layers. 45

11 Treatment of the advection (2D and 3D models). 47
11.1 Treatment of the horizontal advection (2D and 3D models). . . . . . . . . . . . . . . . . . . . . . . 47
11.2 Treatment of the vertical advection (3D model). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

12 Physics and physics-dynamics interface (3D model). 48
12.1 Time of evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
12.2 Physical tendencies, flux divergences, and flux in the thin layer equations. . . . . . . . . . . . . . . 48
12.3 Physical tendencies, flux divergences, and flux in the deep layer equations. . . . . . . . . . . . . . . 48
12.4 Remark for VFE vertical discretisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
12.5 Levels of physics-dynamics interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
12.6 The “delta m = 1” barycentric formulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

13 The Eulerian discretisation of the 2D shallow-water system of equations (spherical
geometry). 51
13.1 Momentum equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
13.2 Continuity equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
13.3 Application to the 2D “vorticity” system of equations. . . . . . . . . . . . . . . . . . . . . . . . . . 51

14 The Eulerian discretisation of the 3D primitive equation model. 52
14.1 Thin layer formulation of the momentum equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
14.2 (WB1995) deep layer formulation of the momentum equation. . . . . . . . . . . . . . . . . . . . . . 53
14.3 Thermodynamic equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
14.4 Thin layer formulation of the continuity equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
14.5 (WB1995) deep layer formulation of the continuity equation. . . . . . . . . . . . . . . . . . . . . . 57
14.6 Moisture equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
14.7 Other GFL variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
14.8 Relationship between geopotential height gz and pressure depth. . . . . . . . . . . . . . . . . . . . 58

3



14.9 Total geopotential Φ in the (WB1995) system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
14.10Diagnostic expression of some vertical velocities: thin layer formulation. . . . . . . . . . . . . . . . 60
14.11Diagnostic expression of some vertical velocities: (WB1995) deep layer formulation. . . . . . . . . . 62
14.12Specific features for plane geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

14.12.1 Momentum equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
14.12.2 Other equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

15 The Eulerian discretisation of the 3D fully compressible non-hydrostatic model (NH-PDVD). 66
15.1 Discretisation of some intermediate quantities for the thin layer equations. . . . . . . . . . . . . . . 66
15.2 Discretisation of some intermediate quantities for the (WS2003) deep layer equations. . . . . . . . 69
15.3 Thin layer formulation of the momentum equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
15.4 Deep layer formulation of the momentum equation according to (WS2003). . . . . . . . . . . . . . 73
15.5 Thermodynamic equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
15.6 Continuity equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
15.7 Moisture and other GFL equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
15.8 Relationship between geopotential height gz and pressure depth (thin layer formulation). . . . . . 74
15.9 Relationship between geopotential quantities gz and Φ, and pressure depth in (WS2003) system. . 74
15.10Diagnostic expression of some vertical velocities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
15.11Thin layer formulation of the pressure departure equation. . . . . . . . . . . . . . . . . . . . . . . . 75
15.12Deep layer formulation of the pressure departure equation in (WS2003) system. . . . . . . . . . . . 75
15.13Thin layer formulation of the gw and vertical divergence equation. . . . . . . . . . . . . . . . . . . 75
15.14(WS2003) deep layer formulation of the gw and vertical divergence equation. . . . . . . . . . . . . 78
15.15Specific features for plane geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

16 Discretisation of some other diagnosed quantities. 79
16.1 cp, R and κ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

16.2
[
r
a
∇
]

(RT ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
16.3 Potential temperature PT and its horizontal gradient. . . . . . . . . . . . . . . . . . . . . . . . . . 79
16.4 Virtual potential temperature PTV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
16.5 Equivalent potential temperature PTE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
16.6 Absolute vorticity ζabs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
16.7 Potential vorticity PV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
16.8 Shearing deformation SHD and stretching deformation STD. . . . . . . . . . . . . . . . . . . . . . 81
16.9 Hydrostatic vertical divergence dhyd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
16.10Hydrostatic height coordinate vertical velocity whyd. . . . . . . . . . . . . . . . . . . . . . . . . . . 82
16.11Moisture convergence CV GQ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
16.12Montgomery potential Φmg and some other energetic quantities. . . . . . . . . . . . . . . . . . . . 83
16.13Angular momentum of components MMA, MMB and MMC. . . . . . . . . . . . . . . . . . . . . 83
16.14Entropy S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

17 Treatment of the linear terms. 84

18 The Asselin filter. 84

19 Lateral boundary coupling and upper boundary coupling. 84

20 The flux form of an equation and its discretisation. 85
20.1 The flux form of the equation of a variable X. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

20.1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
20.1.2 The flux form of the equation of X. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
20.1.3 Specific features for plane geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

20.2 Use of the discretisation of the flux form of equations. . . . . . . . . . . . . . . . . . . . . . . . . . 87
20.3 The discretisation of the “thin layer” flux form of the equation of a variable X. . . . . . . . . . . . 87

20.3.1 Left hand side. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
20.3.2 Term containing the horizontal divergence in the RHS. . . . . . . . . . . . . . . . . . . . . . 87
20.3.3 Term containing the vertical divergence in the RHS. . . . . . . . . . . . . . . . . . . . . . . 87
20.3.4 Term containing

[
dX
dt

]
ad

in the RHS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

20.3.5 Physical term containing FX in the RHS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

20.3.6 Physical term containing
∂Fp

∂η
in the RHS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

20.4 The discretisation of the flux form of the equation of a variable X in the (WB1995) system. . . . . 89
20.4.1 Left hand side. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
20.4.2 Term containing the horizontal divergence in the RHS. . . . . . . . . . . . . . . . . . . . . . 89
20.4.3 Term containing the vertical divergence in the RHS. . . . . . . . . . . . . . . . . . . . . . . 89
20.4.4 Term containing

[
dX
dt

]
ad

in the RHS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

20.4.5 Physical term containing FX in the RHS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

20.4.6 Physical term containing
∂Fp

∂η
in the RHS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

20.4.7 Term −X ∂Π
∂t

∂
[
r2

a2

]
∂η

in the RHS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4



20.4.8 Term X ∂Π
∂η

∂
[
r2

a2

]
∂t

in the RHS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

20.4.9 Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
20.5 The discretisation of the “(WS2003) deep layer” flux form of the equation of a variable X. . . . . . 93

20.5.1 Term containing the horizontal divergence in the RHS. . . . . . . . . . . . . . . . . . . . . . 93
20.5.2 Other terms, and additional remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

21 Organigramme for the setup and control routines (direct code). 94

22 Organigramme under STEPO for the direct Eulerian 2D model. 95

23 Organigramme under STEPO for the direct Eulerian 3D model. 96

24 Basic description of the data flow under routine STEPO. 98
24.1 Introduction about OOPS-oriented structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
24.2 The GMV structure data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
24.3 The GMVS structure data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
24.4 The GFL structure data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
24.5 The 2D surface variables used in the physics structure data. . . . . . . . . . . . . . . . . . . . . . . 102
24.6 Treatment of the data flow under routine STEPO. . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
24.7 Restriction to a dry model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

25 List of GP... and GNH... routines computing intermediate dynamical quantities (direct
code). 108

26 Tangent linear code. 110
26.1 Basics about TL code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
26.2 Tangent linear code for the 2D model: organigramme under STEPOTL for the Eulerian 2D model. 110
26.3 Tangent linear code for the 3D model: organigramme under STEPOTL for the Eulerian 3D model. 111
26.4 Testing the tangent linear code: configurations 501, 521 and 522. . . . . . . . . . . . . . . . . . . . 112

27 Adjoint code. 113
27.1 Basics about AD code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
27.2 Adjoint code for the 2D model: organigramme under STEPOAD for the Eulerian 2D model. . . . 113
27.3 Adjoint code for the 3D model: organigramme under STEPOAD for the Eulerian 3D model. . . . 113
27.4 Testing the adjoint code: configurations 401, 421 and 422. . . . . . . . . . . . . . . . . . . . . . . . 114

28 Some distributed memory features. 116
28.1 Message passing division into processors, structure of grid-point data. . . . . . . . . . . . . . . . . 116
28.2 Transmission of data used in several “JKGLO” blocks in the grid-point computations. . . . . . . . 116
28.3 Case LEQ REGIONS=T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

29 Specific Eulerian model variables in modules and namelists. 117

30 An example of namelist. 120

31 Bibliography. 128
31.1 Publications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
31.2 Some internal notes and other ARPEGE notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5



1 Introduction.

1.1 Content of this documentation.

The general purpose of this documentation is to describe the set of equations used, and also the way to integrate
the dynamics of the model. Two points will be examined in detail in this documentation: the Eulerian dynamics
and the discretisations used. For some other aspects (semi-Lagrangian dynamics, physics, spectral transforms,
horizontal diffusion, semi-implicit scheme), this documentation will not provide any detailed description, since
there are other documentations describing these topics.

This documentation can be seen as an updated version of some parts of documentations previously written
(Courtier et al., 1991; Joly, 1992; Bénard, 1998; Bénard, 2004). Additional features introduced in this
documentation are:

• the (White and Bromley, 1995) deep layer formulation of the primitive equations, abbreviated into
(WB1995).

• the (Wood and Staniforth, 2003) deep layer formulation of the NH model, abbreviated into (WS2003).

• alternate formulations of NH model.

The following sets of equations will be described in this documentation:

• The primitive equations hydrostatic model (configuration 1): thin layer and deep layer (White and Bromley,
1995) formulations.

• The fully compressible non-hydrostatic equations model with Q̂ and d or d4 as prognostic variables, denoted
as NH-PDVD (configuration 1): thin layer and deep layer (Wood and Staniforth, 2003) formulations.

• The 2D shallow-water equations model (configuration 201).

• The 2D vorticity equation model (configuration 202).

1.2 Global models (ARPEGE/IFS).

ARPEGE/IFS is a spectral variable-mesh model. Geometry uses a conformal transformation defined by a high
resolution pole (which can be different from the true Northern pole in a tilted geometry) and a stretching
coefficient. That introduces a mapping factor M in the discretised form of the equations. M varies between
“c” at the high resolution pole and “1/c” at the low resolution pole; “c” is the stretching coefficient. Expression
of M is given by equation (7). For more details about this conformal transformation, see (Courtier and Geleyn,
1988). For more details about the spectral technique, see (Rochas and Courtier, 1992).

1.3 Limited area models (LAM).

ALADIN and AROME are limited area spectral models. The domain is obtained after a projection of a part
of the sphere on a plane, according to a stereo-Lambert projection or a Mercator projection. For the Mercator
projection, additionally to the conventional projection, there is now a tilted-rotated Mercator projection. That
still defines a mapping factor M . For most applications, the limited area is not too large and M generally remains
close to 1.

Fields are bi-periodic in a “bi-periodic” domain defined by three zones:

• an inner “conservation” zone C.

• an intermediate zone I.

• an extension zone E.

Transforms between grid-point space and spectral space are done by double-Fourier transforms. For more details
about LAM models geometry, see parts 2 and 5 of (Joly, 1992). The projection on a plane has been modified and
simplified so that the limited area domain is now defined by its centre and its dimensions. For more details see
(Janous̃ek, 2001).

6



1.4 Eulerian advection scheme.

In Eulerian form of equations, the time dependency equation of a variable X writes:

∂X

∂t
= −U.∇3X + Ẋ (1)

where U is the 3D wind, ∇3 is the 3D gradient operator, Ẋ is the sum of the dynamical and physical contributions.
X(t+ ∆t) is computed knowing X(t−∆t) at the same grid-point. Eulerian technique obliges to use a time-step
that matches the CFL (Courant Friedrich Levy) condition everywhere.

• For the variable-mesh spectral global model ARPEGE, the horizontal CFL condition writes:

M
| V |
r

Dt

2

√
N(N + 1) < 1 (2)

where M is the mapping factor, Dt is the time-step at the first integration step and twice the time-step
otherwise (leap-frog scheme), | V | is the horizontal wind modulus, N is the truncation, r is the distance
between the point and the centre of the Earth.

• For spectral LAM models, the horizontal CFL condition writes:

M
| V |
r

Dt

2
(2π)

√
1

L2
x

a2N2
m

+
L2

y

a2N2
n

< 1 (3)

For denotations M , Dt, | V |, a and r, see above. Nm is the zonal truncation, Nn is the meridian truncation,
Lx (resp. Ly) is the zonal (resp. meridian) length of the LAM domain taken on a surface iso r = a.

The vertical CFL condition writes:
0.5 | η̇ | Dt∆η < 1 (4)

1.5 Semi-Lagrangian scheme.

In semi-Lagrangian form of equations, the time dependency equation of a variable X writes:

dX

dt
= Ẋ (5)

In a three-time level semi-Lagrangian scheme X(t + ∆t) is computed at a grid-point F knowing X(t − ∆t) at
the point O (not necessary a grid-point) where the same particle is at the instant t − ∆t. In a two-time level
semi-Lagrangian scheme X(t+ ∆t) is computed at a grid-point F knowing X(t) at the point O (not necessary a
grid-point) where the same particle is at the instant t. The semi-Lagrangian technique is more expensive for one
time-step than the Eulerian technique because it is necessary to compute the locations of the origin point O (and
in some options the medium point M) along the trajectory and to interpolate some quantities at these points.
But it allows to use larger time-steps: the stability condition is now the Lipschitz criterion (trajectories do not
cross each other) and is less severe than the CFL condition. For more details about the semi-Lagrangian scheme
and the Lipschitz criterion, see the corresponding documentation (IDSL).

1.6 Organisation of a timestep.

In equations (1) and (5), term Ẋ includes the effects of dynamics (for example the pressure gradient term and
Coriolis term in the momentum equation), physics (for example convection, rainfall, radiation, vertical diffusion,
soil interface, gravity wave drag), horizontal diffusion. One timestep has the different steps:

• inverse transforms from spectral to grid-point space: the horizontal derivatives necessary to compute the
horizontal advection term are computed during these transforms.

• grid-point calculations to compute the explicit part of the RHS of equation (1): dynamics, physics. The
temporal filter is done in the grid-point space.

• grid-point coupling for limited area models (LAM).

• direct transforms from grid-point to spectral space.

• spectral calculations: resolution of the Helmholtz equation to compute the semi-implicit correction for
linear terms, horizontal diffusion in spectral space, spectral nudging for LAM models.

This paper has for aim to describe the grid-point calculations to compute the dynamics in the RHS. The other
points are described in some other documentations. Description of tangent linear and adjoint codes have been
introduced for a subset of options.
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2 Systems of horizontal coordinates.

2.1 Systems of horizontal spherical coordinates.

In the equations, and in particular in the momentum equation, three different coordinate systems are used:

• The geographical coordinate system (λ, θ) (which appears for example in the Coriolis term).

• In a tilted geometry, the coordinate system on a tilted unstretched sphere (λbne, θbne).

• The coordinate system on the computational (tilted and stretched) sphere (Λ,Θ).

Some relationships between these different systems of coordinates can be listed here:

• Relationship between λbne and Λ:
λbne = Λ (6)

• Expression of the mapping factor M :

M =
c2 + 1

2c
+
c2 − 1

2c
sin Θ (7)

At the equator of the computational sphere, Θ = 0, so MΘ=0 = (c2 + 1)/(2c) = 1 + ((c − 1)2)/(2c). One
can see that, for c > 1, this quantity is always > 1. That means that, in a stretched geometry, the equator
of the computational sphere is always in the high resolution part and is never identical to the iso-M = 1
which separates the high resolution domain from the low resolution domain.
M can also be computed from c and sin θbne:

M = 0.5
(
c+

1

c

)
− 0.5

(
c− 1

c

)[
(c2 − 1)− (c2 + 1) sin θbne

(c2 + 1)− (c2 − 1) sin θbne

]
(8)

Inverting this expression yields:

sin θbne =
c2 + 1

c2 − 1
− 2c

(c2 − 1)M
(9)

At the iso-M = 1 latitude, [sin θbne]M=1 = (c − 1)/(c + 1). For c > 1, [sin θbne]M=1 is always > 0: that
means that the geographical extension of the high resolution zone (M > 1) is smaller than the geographical
extension of the low resolution zone. The geographical extension of the high resolution zone diminishes
when c increases, and converges towards zero when c converges towards ∞.

• Relationships between θbne and Θ (the content of array RATATH in spherical geometry is 2 tan θbne/a):

cos θbne =
cos Θ

M
(10)

sin θbne =
(c2 − 1) + (c2 + 1) sin Θ

(c2 + 1) + (c2 − 1) sin Θ
(11)

tan θbne =
(c2 − 1) + (c2 + 1) sin Θ

2c cos Θ
(12)

M
∂X

∂Θ
=

∂X

∂θbne
(13)

Equation (11) can be inverted to provide sin Θ knowing sin θbne:

sin Θ = − (c2 − 1)− (c2 + 1) sin θbne

(c2 + 1)− (c2 − 1) sin θbne
(14)

• Relationships giving (λbne; θbne) knowing (λ; θ):

cos θbne cosλbne = cos θpe sin θ − sin θpe cos θ cos (λ− λpe) (15)

cos θbne sinλbne = − cos θ sin (λ− λpe) (16)

sin θbne = sin θpe sin θ + cos θpe cos θ cos (λ− λpe) (17)

• Relationships giving (λ; θ) knowing (λbne; θbne):

cos θ cos (λ− λpe) = cos θpe sin θbne − sin θpe cos θbne cosλbne (18)

cos θ sin (λ− λpe) = − cos θbne sinλbne (19)

sin θ = sin θpe sin θbne + cos θpe cos θbne cosλbne (20)
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The distance between two points of geographical coordinates (λ1; θ1) and (λ2; θ2) is:

dist = a arccos [sin (θ1) sin (θ2) + cos (θ1) cos (θ2) cos (λ2 − λ1)] (21)

It is also useful to know the coordinates of vector (Gnordl,Gnordm) (which is the unit vector directed towards the
true North pole) in a local reference system of coordinates linked to the tilted stretched sphere.

Gnordl = −cos θpe sin Λ

cos θ
(22)

Gnordm =
2c sin θpe cos Θ− ((c2 − 1) + (c2 + 1) sin Θ) cos θpe cos Λ

((c2 + 1) + (c2 − 1) sin Θ) cos θ
(23)

For a horizontal vector, apparent coordinates (Xapp, Yapp) on the computational sphere and coordinates
(Xgeo, Ygeo) on the geographical sphere match the following relationships:

Xapp = GnordmXgeo + GnordlYgeo (24)

Yapp = −GnordlXgeo + GnordmYgeo (25)

2.2 Systems of horizontal coordinates in plane geometry.

In the equations, and in particular in the momentum equation, two different coordinate systems are used:

• The geographical system of coordinates (λ; θ).

• The coordinate systems on the plane: geographical distances (x; y); apparent distances (Mx;My).

Some new quantities have to be defined:

• KL is the projection constant (0 if Mercator projection, between 0 and 1 excluded if Lambert projection,
1 if polar stereographic projection).

• λ0 is the reference geographical longitude that defines the projection.

• γ is the rotation angle between the local system of coordinates on the sphere and the local system of
coordinates on the plane projection. Its expression is: γ = KL(λ− λ0)

• One denotes C = cos γ and S = sin γ. Vector (−S,C) is the compass (unit vector directed towards the
true North pole) and plays the same role as the vector (Gnordl,Gnordm) in spherical geometry. For a non
tilted-rotated Mercator projection, C = 1 and S = 0.

• M is the mapping factor of the projection; it remains close to 1 if the limited area domain is not too large.

• Horizontal wind V has components (U, V ) on the sphere and reduced components (U
′
, V
′
) on the plane.

Matricial relationship between these different components writes:(
U
V

)
= M

(
C S
−S C

)(
U
′

V
′

)
(26)

• The geographical horizontal gradient operator ∇ has the horizontal components ∇u and ∇v on the sphere.
For a variable X: ∇uX = [1/r cos θ][∂X/∂λ] and ∇vX = [1/r][∂X/∂θ].

• ∂
′
xX and ∂

′
yX are the reduced horizontal derivatives on the plane; relationship between (∇uX; ∇vX) and

(∂
′
xX; ∂

′
yX) is: ( ∇uX

∇vX

)
=
a

r
M
(

C S
−S C

)(
∂
′
xX

∂
′
yX

)
(27)

• Relationships giving the horizontal derivatives of the mapping factor M :

∂M cos θ

∂θ
= −KLM (28)

∂M cos γ

∂λ
= −KLM sin γ (29)

∂M sin γ

∂λ
= KLM cos γ (30)

For more details, see part 2.3 of (Joly, 1992).
For the tilted-rotated Mercator projection, most of what is written above remains valid (but (C, S) is generally
different from (1,0)). We first define a rotation with tilting on the sphere, then we apply a Mercator projection
on this transformed sphere. For more details about this type of projection, see (IDPRLAM).

2.3 Definitions of horizontal mesh-sizes.

There are several ways to define the horizontal mesh-size in spectral models. This topic was the object of a small
paper of Laprise (1992), who listed several possible definitions for the horizontal mesh-size in spectral models.
Other definitions have appeared, for example in documentations about the resolution of ARPEGE or in some
parts of the code. See internal paper (IDMES) for more details. The most usual definition which is used is the
horizontal mesh-size of the colocation grid-point.
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3 The different types of horizontal derivatives used.

3.1 Horizontal gradient for spherical geometry.

Introduction of a stretched geometry in ARPEGE, and also of a deep layer formulation, leads to define different
notions of horizontal gradients. r is the radius: in the (WB1995) formulation of deep-layer equations, r is
approximated by a pseudo-radius which depends only on the hydrostatic pressure.

• For a variable X, the geographical horizontal gradient operator on surfaces iso-η writes:

∇X =
(

M

r cos Θ

∂X

∂Λ
;
M

r

∂X

∂Θ

)
=
(

1

r cos θbne

∂X

∂λbne
;

1

r

∂X

∂θbne

)
(31)

The following notations will sometimes be used for the components of this vector:

∇zoX =
M

r cos Θ

∂X

∂Λ

∇meX =
M

r

∂X

∂Θ

• The reduced horizontal gradient operator on surfaces iso-η (which is used in spectral space) writes:

∇
′
X =

(
1

a cos Θ

∂X

∂Λ
;

1

a

∂X

∂Θ

)
(32)

The following notations will sometimes be used for the components of this vector:

∇
′
zoX =

1

a cos Θ

∂X

∂Λ

∇
′
meX =

1

a

∂X

∂Θ

• Relationship between geographical and reduced horizontal gradient operator writes:

∇X =
(
a

r
M
)
∇
′
X (33)

or: [
r

a
∇
]
X = M∇

′
X (34)

Remark: in the deep layer equations,
[
r
a
∇
]
X is directly available in the code (but not ∇X which needs

an additional multiplication); operators
[
r
a
∇
]

and ∂
∂η

commute (but not ∇ and ∂
∂η

):[
r

a
∇
](

∂X

∂η

)
=
∂
[
r
a
∇
]
X

∂η
(35)

[
r
a
∇
]

is a 2D operator (but not ∇).
[
r
a
∇
]

will be called from now on “semi-reduced” gradient.

• ∇Π: the geographical horizontal gradient operator on surfaces iso-hydrostatic pressure.

• More generally when partial derivatives (horizontal or temporal ones) are provided without index, they are
derivatives on surfaces iso-η.

• For a 2D variable X2D, in the deep layer equations, one has to use
[
r
a
∇
]
X2D which is always a 2D

quantity, and avoid to use ∇X2D which is a 3D quantity. For example, for a surface quantity Xsurf , the
semi-reduced gradient of Xsurf is

[
r
a
∇
]
Xsurf (this is a 2D quantity) and the geographical gradient of Xsurf

is a
[r]η=1

[
r
a
∇
]
Xsurf (which is still a 2D quantity). In this case, denotation ∇Xsurf is ambiguous and should

be avoided.

For some non-hydrostatic applications it is interesting to provide also information about the second-order
horizontal derivatives; we use the underscript “zo” for zonal derivatives and “me” for meridian derivatives.

• Double zonal reduced derivative:

∇
′2
zo zoX =

1

a cos Θ

∂
[

1
a cos Θ

∂X
∂Λ

]
∂Λ

(36)
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• Double meridian reduced derivative:

∇
′2
me meX =

1

a2

∂2X

∂Θ2
(37)

• Double mixed reduced derivative:

∇
′2
zo meX =

1

a2 cos Θ

∂2X

∂Λ∂Θ
(38)

The relationship between geographical and reduced derivatives are:

• Double zonal derivative:

∇2
zo zoX =

(
a2

r2
M2

)
∇
′2
zo zoX (39)

• Double meridian derivative:

∇2
me meX =

(
a2

r2
M2

)
∇
′2
me meX (40)

• Double mixed derivative:

∇2
zo meX =

(
a2

r2
M2

)
∇
′2
zo meX (41)

3.2 Horizontal laplacian for spherical geometry.

Equations are written for the deep layer system of equations and in this case the product
(
a
r
M
)

is treated like was
M with the thin layer equations. Relationships (2.3) of (Courtier and Geleyn, 1988), applied to the horizontal
laplacian, write:

∇2X =
(
a

r
M
)2

∇
′2X (42)

where∇
′2 is the reduced laplacian, computed in spectral space (diagonal operator in spectral space). Its expression

is:

∇
′2X =

1

(a cos Θ)2

∂2X

∂Λ2
+

1

a2 cos Θ

∂
(
cos Θ ∂X

∂Θ

)
∂Θ

(43)

That yields, for the geographical laplacian operator:

∇2X =
M2

(r cos Θ)2

∂2X

∂Λ2
+

M2

r2 cos Θ

∂
(
cos Θ ∂X

∂Θ

)
∂Θ

(44)

The same considerations are also valid for the scalar product and vectorial product of two gradients. Relationships
(2.3) of (Courtier and Geleyn, 1988) write:

(∇X).(∇Y ) =
(
a

r
M
)2

(∇
′
X).(∇

′
Y ) (45)

(∇X) ∧ (∇Y ) =
(
a

r
M
)2

(∇
′
X) ∧ (∇

′
Y ) (46)

3.3 Horizontal vorticity and divergence for spherical geometry.

The geographical divergence Dang of (a
r
)V (angular velocity multiplied by the mean Earth radius a) writes as the

geographical Laplacian of the velocity potential χ:

Dang = ∇2χ (47)

The geographical vorticity ζang of (a
r
)V writes as the geographical Laplacian of the stream function ψ:

ζang = ∇2ψ (48)

Relationship (42) between geographical laplacian and reduced laplacian yields:

Dang =
(
a

r
M
)2

∇
′2χ (49)

ζang =
(
a

r
M
)2

∇
′2ψ (50)
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Model equations involve the geographical divergence of the wind D and the geographical vorticity of the wind ζ,
which yields:

D =
r

a
Dang =

a

r
M2∇

′2χ (51)

ζ =
r

a
ζang =

a

r
M2∇

′2ψ (52)

Spectral computations provide the reduced divergence and vorticity:

D
′

= ∇
′2χ (53)

ζ
′

= ∇
′2ψ (54)

Hence come the relationships between geographical divergence/vorticity and reduced divergence/vorticity:

D =
a

r
M2D

′
(55)

ζ =
a

r
M2ζ

′
(56)

In continuity equation the notation ∇V is used for D. In this equation it is convenient to isolate quantities(
r
a
∇
)

V (i.e. M2D
′
) and

(
r
a
∇
)
∧V (i.e. M2ζ

′
) which are the quantities easily available in the grid point part

of the model, just after the multiplications by M2.
Reduced divergence D

′
and reduced vorticity ζ

′
of the wind are linked to the reduced components of the wind by

the following relationships:

D
′

=
1

a cos Θ

∂U
′

∂Λ
+

1

a cos Θ

∂(V
′
cos Θ)

∂Θ
(57)

ζ
′

=
1

a cos Θ

∂V
′

∂Λ
− 1

a cos Θ

∂(U
′
cos Θ)

∂Θ
(58)

3.4 Wind components for spherical geometry.

Reduced wind components are linked to the velocity potential χ and the stream function ψ by the following
relationships:

(U
′
a cos Θ) =

∂χ

∂Λ
− cos Θ

∂ψ

∂Θ
(59)

(V
′
a cos Θ) =

∂ψ

∂Λ
+ cos Θ

∂χ

∂Θ
(60)

3.5 Specific features for plane geometry.

∗ Horizontal gradient:

• For a variable X, the geographical horizontal gradient operator on surfaces iso-η writes:

∇X = (∇uX;∇vX) =
(

1

r cos θ

∂X

∂λ
;

1

r

∂X

∂θ

)
(61)

• The reduced horizontal gradient operator on surfaces iso-η (which is used in spectral space) has components

∇
′
X = (∂

′
xX; ∂

′
yX) and we have the following identities: ∇

′
zo = ∂

′
x and ∇

′
me = ∂

′
y.

• Relationship between geographical horizontal gradient operator and reduced horizontal gradient operator
is given by equation (27); this equation can be rewritten[

r

a
∇
]
X = M

(
C S
−S C

)
∇
′
X (62)

or: (
∂
′
xX

∂
′
yX

)
=
r

a

1

M

(
C −S
S C

)(
∇uX
∇vX

)
=

1

M

(
C −S
S C

)(
1

a cos θ
∂X
∂λ

1
a
∂X
∂θ

)
=

(
1
M

∂X
∂x

1
M

∂X
∂y

)
(63)

The code easily provides ∇
′
X and M∇

′
X. Operators

[
r
a
∇
]
, ∇
′
, M∇

′
are 2D operators; for a 2D variable

X2D,
[
r
a
∇
]
X2D, ∇

′
X2D and M∇

′
X2D are still 2D quantities.

• Equation (35) is still valid.
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• Like for the spherical geometry, we can give the expressions of second-order horizontal derivatives:

Double zonal reduced derivative:

∇
′2
zo zoX =

1

M2

∂2X

∂x2
(64)

Double meridian reduced derivative:

∇
′2
me meX =

1

M2

∂2X

∂y2
(65)

Double mixed reduced derivative:

∇
′2
zo meX =

1

M2

∂2X

∂x∂y
(66)

∗ Horizontal laplacian:
Equation (42) is still valid, where:

∇
′2X =

∂2X

M2∂x2
+

∂2X

M2∂y2
(67)

That yields, for the geographical laplacian operator:

∇2X =
∂2X

∂x2
+
∂2X

∂y2
=

1

(r cos θ)2

∂2X

∂λ2
+

1

r2 cos θ

∂
(
cos θ ∂X

∂θ

)
∂θ

(68)

∗ Horizontal vorticity and divergence:
Equations (47), (48), (49), (50), (51), (52), (53), (54), (55) and (56) remain valid.

Reduced divergence D
′

and reduced vorticity ζ
′

of the wind are linked to the reduced components of the wind by
the following relationships:

D
′

=
1

M

∂U
′

∂x
+

1

M

∂V
′

∂y
(69)

ζ
′

=
1

M

∂V
′

∂x
− 1

M

∂U
′

∂y
(70)

∗ Wind components:
Reduced wind components are linked to the velocity potential χ and the stream function ψ by the following
relationships:

U
′

=
1

M

∂χ

∂x
− 1

M

∂ψ

∂y
(71)

V
′

=
1

M

∂ψ

∂x
+

1

M

∂χ

∂y
(72)

3.6 Additional remarks.

Horizontal derivatives are computed in the code during the spectral transforms from spectral space to grid-point
space. When entering the grid-point space, reduced horizontal derivatives are computed. The multiplication by
the mapping factor M (or a power of M) and by a

r
is done during the grid-point calculations.
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4 The 2D equations.

4.1 Denotations for the 2D equations.

• V is the horizontal wind. Its zonal component (on the Gaussian grid) is denoted by U . Its meridian
component (on the Gaussian grid) is denoted by V .

• D is the horizontal wind divergence.

• ζ is the horizontal wind vorticity.

• Φ is the equivalent height. Φs is the surface geopotential height (i.e. the orography). Φ∗ is a reference
equivalent height which is only used in the semi-implicit scheme and the linear model.

• Ω is the Earth rotation angular velocity.

• ∇ is the first order horizontal gradient on η-surfaces.

• a is the Earth radius.

• (λbne, θbne) are the longitude-latitude coordinates on a tilted and not stretched geometry, the tilting being
the same as the one of the computational sphere.

• k is the unit vertical vector. One can write:

k =
r

| r | =
r

a

4.2 The 2D shallow-water system of equations in spherical geometry.

Momentum equation.

Lagrangian tendency: Coriolis force can be treated explicitly (δV=0) or implicitly (δV=1).

d (V + δV(2Ω ∧ r))

dt
= −2(1− δV)(Ω ∧V)−∇Φ (73)

Eulerian tendency: the Eulerian equation writes:

∂V

∂t
= −2(Ω ∧V)−∇Φ−V∇V −

(
U

a
tan θbne

)
k ∧V (74)

Advection (−V∇V) and curvature (−
(
U
a

tan θbne

)
k∧V) terms can be rearranged, in order to show the divergence

and vorticity in the equation and to eliminate the meridian derivatives of U and V :

∂V

∂t
= −2(Ω ∧V)−∇Φ + DV (75)

where DV is the vector of coordinates:(
V ζ − 1

a cos θbne
U ∂U
∂λbne

− 1
a cos θbne

V ∂V
∂λbne

−V D − 1
a cos θbne

U ∂V
∂λbne

+ 1
a cos θbne

V ∂U
∂λbne

− U2+V 2

a
tan θbne

)
Continuity equation.

Lagrangian tendency:

• Conventional formulation.

d(Φ− (1− δTR)Φs)

dt
= −(Φ− Φs)D + δTRV∇(Φs) (76)

• Lagrangian formulation.
d((Φ− Φs)J)

dt
= 0 (77)

J is a “Jacobian” quantity which matches dJ/dt = −JD.

Eulerian tendency: the Eulerian equation writes:

∂Φ

∂t
= −(Φ− Φs)D −V∇(Φ− Φs) (78)

4.3 The 2D “vorticity” system of equations in spherical geometry.

The system of equations starts from the shallow-water one, but Φ and Φs have to be replaced by zero. So
continuity equation becomes Φ = 0.
Momentum equation and definition of DV given in part 4.2 remain valid, replacing Φ by zero.

4.4 The 2D equations in plane geometry.

The equations are not significantly different from the spherical geometry ones, except for the curvature terms.
They are not detailed in this documentation. The 2D model is not coded in plane geometry.

14



5 The 3D equations in spherical geometry (ARPEGE/IFS).

5.1 Denotations for the 3D equations.

• V is the horizontal wind. Its zonal component (on the Gaussian grid) is denoted by U . Its meridian
component (on the Gaussian grid) is denoted by V .

• D is the horizontal wind divergence.

• ζ is the horizontal wind vorticity.

• T is the temperature.

• q is the humidity, ql the liquid water, qi the ice and qa the cloudiness.

• O3 is the ozone.

• Π is the hydrostatic pressure.

• Πs is the hydrostatic surface pressure.

• Ω is the Earth rotation angular velocity.

• (λbne, θbne) are the longitude-latitude coordinates on a tilted and not stretched geometry, the tilting being
the same as the one of the computational sphere.

• (λ, θ) are the geographical longitude-latitude coordinates.

• (Λ,Θ) are the computational sphere longitude-latitude coordinates.

• w is the z-coordinate vertical velocity: w = dz
dt

.

• ω = dΠ
dt

is the total temporal derivative of the hydrostatic pressure.

• gz is the geopotential height.

• Φ is the total geopotential. Φ = gz in the thin layer equations, but not in the (WB1995) deep layer
equations.

• Φs = gzs is the surface geopotential (i.e. the orography).

• r is the vector directed upwards, the length of which is the Earth radius. The length of this vector is r.
In the (WB1995) deep layer equations, one uses an approximation of this radius, only depending on the
hydrostatic pressure (“pseudo-radius”).

• a is the average Earth radius near the surface.

• i (resp. j) is the unit zonal (resp. meridian) vector on the Gaussian grid.

• k is the unit vertical vector. One can write:
k =

r

r
• g is the gravity acceleration constant.

• In the case where vertical variations of g are taken into account, we denote by G the reference value of g
at r = a.

• R is the gas constant for air, Rd the gas constant for dry air and Rv the gas constant for water vapour.

• cp is the specific heat at constant pressure for air and cpd is the specific heat at constant pressure for dry
air.

• cv is the specific heat at constant volume for air and cvd is the specific heat at constant volume for dry air.

• ∇ is the first order horizontal gradient on η-surfaces.

• αT is a vertical-dependent coefficient used to define a thermodynamic variable T + δTR
αTΦs
RdTst

less sensitive

to orography than temperature T . Expression of αT is:

αT = B

(
−Rd

g

[
dT

dz

]
st

)
Tst

(
Πst

Πsst

)(−Rd
g [ dTdz ]

st
−1
)

(79)

where B defines the vertical hybrid coordinate (see part (9.2)). Subscript “st” stands for “standard
atmosphere”.

• ρ is the mass per volume unit of air.

• M is the mapping factor.

• M is a reference mapping factor for the semi-implicit scheme.

• τ , γ, ν are linear operators used in the semi-implicit scheme (for more details, see documentation (IDSI)
about semi-implicit scheme).

For non-hydrostatic and deep-layer models aspects:

• p is the pressure, ps is the surface pressure.

• W = dr
dt

is the pseudo-vertical velocity used in some Coriolis and curvature terms in the (WB1995) deep
layer equations. W = 0 in the thin layer equations.

• L∗ is a linear operator used in the NH semi-implicit scheme (for more details, see documentation (IDSI)
about semi-implicit scheme).
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5.2 The thin layer 3D primitive equation model.

5.2.1 Momentum equation.

Lagrangian tendency: Coriolis force can be treated explicitly (δV=0) or implicitly (δV=1) in the Lagrangian
equation.

d (V + δV(2Ω ∧ r))

dt
= −2(1− δV)(Ω ∧V)−∇Φ−RT∇(log Π) + FV (80)

FV is the physical contribution on horizontal wind.
Eulerian tendency: the Eulerian equation writes:

∂V

∂t
= −2Ω ∧V −∇Φ−RT∇(log Π)−V∇V − η̇ ∂V

∂η
−
(
U

a
tan θbne

)
k ∧V + FV (81)

Advection (−V∇V) and curvature (−
(
U
a

tan θbne

)
k∧V) terms can be rearranged, in order to show the divergence

and vorticity in the equation and to eliminate the meridian derivatives of U and V :

∂V

∂t
= −2Ω ∧V −∇Φ−RT∇(log Π) + DV − η̇

∂V

∂η
+ FV (82)

where DV is the vector of coordinates:(
V ζ − 1

a cos θbne
U ∂U
∂λbne

− 1
a cos θbne

V ∂V
∂λbne

−V D − 1
a cos θbne

U ∂V
∂λbne

+ 1
a cos θbne

V ∂U
∂λbne

− U2+V 2

a
tan θbne

)
5.2.2 Thermodynamic equation.

Lagrangian tendency:

d
(
T + δTR

αTΦs
RdTst

)
dt

=
d
(
δTR

αTΦs
RdTst

)
dt

+
RT

cp

ω

Π
+ FT (83)

FT is the physical contribution on temperature. When δTR = 1 the Eulerian treatment of orography is applied
and the prognostic variable is replaced by one variable less sensitive to the surface orography. This modification

has been proposed by Ritchie and Tanguay (1996). See equation (79) for definition of αT. Term
d
(
δTR

αTΦs
RdTst

)
dt

only contains advection terms linked to horizontal variations of orography and vertical variations of the coefficient
αT.
Eulerian tendency: the Eulerian equation writes:

∂T

∂t
= −V∇T − η̇ ∂T

∂η
+
RT

cp

ω

Π
+ FT (84)

5.2.3 Continuity equation.

∗ 3D formulation of continuity equation: Continuity equation in the η vertical coordinate writes:

d
(
∂Π
∂η

)
dt

= −∂Π

∂η

(
D +

∂η̇

∂η

)
+ F

′
m (85)

or:
∂
(
∂Π
∂η

)
∂t

=
∂
(
∂Π
∂t

)
∂η

= −∇
(

V
∂Π

∂η

)
−
∂
(
η̇ ∂Π
∂η

)
∂η

+ F
′
m (86)

F
′
m is the physical contribution on ∂Π

∂η
, and can be rewritten F

′
m = −g ∂Fm

∂η
, where Fm is the diabatic flux applied

to continuity equation.
Equation (85) is not convenient to use directly, one rather uses an equation for the 2D variable log Πs. For a
2D variable X2D which does not depend on η, vertical advection is zero, so the relationship between Lagrangian
temporal derivative and Eulerian temporal derivative writes:

dX2D

dt
=
∂X2D

∂t
+ V∇X2D (87)

This formula is valid in particular for the following variables:

• X2D = log Πs.

• X2D = log Πs + δTR
Φs

RdTst
.

Tst is the surface standard temperature (288.15 K), Πsst is the surface standard hydrostatic pressure (101325 Pa),
Φs is the surface orography. δTR is 0 or 1; when δTR = 1 the new variable is less sensitive to the orography (new
variable proposed by Ritchie and Tanguay (1996) to reduce orographic resonance).
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∗ Eulerian formulation of continuity equation: Calculations are not detailed, but when using the
properties of the hybrid coordinate the evolution equation of ∂Π

∂η
can be transformed into an evolution equation

of log Πs.

∂ log(Πs)

∂t
= − 1

Πs

∫ η=1

η=0

∇
(

V
∂Π

∂η

)
dη − 1

Πs

[
η̇
∂Π

∂η

]
η=1

+
1

Πs

[
η̇
∂Π

∂η

]
η=0

− 1

Πs
g [Fm]η=1 (88)

Fm is the diabatic flux applied to continuity equation. Fm is assumed to be zero at the top of the atmosphere.[
η̇ ∂Π
∂η

]
η=0

is non-zero only when there is an upper radiative boundary condition (LRUBC=.TRUE.).[
η̇ ∂Π
∂η

]
η=1

is non-zero only when the option “δm = 1” is activated (NDPSFI=1).

∗ Lagrangian tendency of orographic term: Term Φs
RdTst

has no vertical variation and no local

temporal variation, so:

d
[

Φs
RdTst

]
dt

= V∇
[

Φs

RdTst

]
(89)

∗ Lagrangian formulation of continuity equation: Combining equations (87), (88) and (89) one
obtains the following Lagrangian equation:

d
[
log Πs + δTR

Φs
RdTst

]
dt

= −
1

Πs

∫ η=1

η=0

∇
(
V
∂Π

∂η

)
dη + V∇

(
log Πs + δTR

Φs

RdTst

)
−

1

Πs

[
η̇
∂Π

∂η

]
η=1

+
1

Πs

[
η̇
∂Π

∂η

]
η=0

−
1

Πs
g [Fm]η=1

(90)

∗ Vertically integrated Lagrangian formulation of continuity equation: Since equation
(90) mixes 3D terms (advective terms) and 2D terms (the other terms), and the LHS is a 2D term, one actually
discretizes a vertical integrated formulation of this equation, with a weight ∂B

∂η
; equation can be rewritten:

∫ η=1

η=0
∂B
∂η

d
[
log Πs+δTR

Φs
RdTst

]
dt

dη =∫ η=1

η=0
∂B
∂η

[
− 1

Πs

∫ η=1

η=0
∇
(
V ∂Π
∂η

)
dη + V∇

(
log Πs + δTR

Φs
RdTst

)
− 1

Πs

[
η̇ ∂Π
∂η

]
η=1

+ 1
Πs

[
η̇ ∂Π
∂η

]
η=0
− 1

Πs
g [Fm]η=1

]
dη(91)

5.2.4 Advectable GFL prognostic fields.

Equation is written for moisture q, and is the same for the other advectable GFL variables.
Lagrangian tendency:

dq

dt
= Fq (92)

Fq is the physical contribution on moisture.
Eulerian tendency: the Eulerian equation writes:

∂q

∂t
= −V∇q − η̇ ∂q

∂η
+ Fq (93)

5.2.5 Relationship between geopotential height gz and pressure depth.

Hydrostatic relationship writes:
∂Π

∂z
= −ρg (94)

The perfect gas formula writes:
Π = ρRT (95)

The combination of equations (94) and (95) provides the relationship between gz and pressure depth:

∂(gz)

∂Π
= −RT

Π
(96)

The vertical integrated formulation of equation (96) writes:

gz = gzs −
∫ Π

′
=Π

Π
′
=Πs

RT

Π′
dΠ
′

(97)
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5.2.6 Relationship between total geopotential Φ and pressure depth.

In the thin layer equations, Φ = gz. See part (5.2.5) for more details.

5.2.7 Diagnostic expression of some vertical velocities.

∗ Term η̇ ∂Π
∂η : Continuity equation is vertically integrated on dη from η = 0 to η = ηl. Equation (86) becomes:[
∂Π

∂t

]
ηl

−
[
∂Π

∂t

]
η=0

+

∫ η=ηl

η=0

∇
(

V
∂Π

∂η

)
dη +

[
η̇
∂Π

∂η

]
ηl

−
[
η̇
∂Π

∂η

]
η=0

= −
∫ η=ηl

η=0

g
∂Fm

∂η
dη (98)

The following property is used:
[
∂Π
∂t

]
η=0

= 0. Equation (98) can be rewritten:[
∂Π

∂t

]
ηl

+

∫ η=ηl

η=0

∇
(

V
∂Π

∂η

)
dη +

[
η̇
∂Π

∂η

]
ηl

−
[
η̇
∂Π

∂η

]
η=0

= −
∫ η=ηl

η=0

g
∂Fm

∂η
dη (99)

which can be rewritten, taking in account that Fm at the top is zero:[
η̇
∂Π

∂η

]
ηl

=

[
η̇
∂Π

∂η

]
η=0

−
[
∂Π

∂t

]
ηl

−
∫ η=ηl

η=0

∇
(

V
∂Π

∂η

)
dη − g [Fm]ηl (100)

One uses equation (241) and one replaces ∂Πs
∂t

by its expression provided by equation (88). That yields expression

of η̇ ∂Π
∂η

: [
η̇ ∂Π
∂η

]
ηl

= Bηl
∫ η=1

η=0
∇
(
V ∂Π

∂η

)
dη −

∫ η=ηl

η=0
∇
(
V ∂Π

∂η

)
dη

+Bηl
[
η̇ ∂Π
∂η

]
η=1
−Bηl

[
η̇ ∂Π
∂η

]
η=0

+Bηlg [Fm]η=1 − g [Fm]ηl (101)

This equation can be rewritten in its “barycentric” formulation:[
η̇ ∂Π
∂η

]
ηl
−Bηlg [Fm]η=1 + g [Fm]ηl = Bηl

∫ η=1

η=0
∇
(
V ∂Π

∂η

)
dη −

∫ η=ηl

η=0
∇
(
V ∂Π

∂η

)
dη

+Bηl
[
η̇ ∂Π
∂η

]
η=1
−Bηl

[
η̇ ∂Π
∂η

]
η=0

(102)

∗ Pressure coordinate vertical velocity ω: Equation (99) can be rewritten:[
dΠ

dt

]
ηl

= [V∇Π]ηl −
∫ η=ηl

η=0

∇
(

V
∂Π

∂η

)
dη +

[
η̇
∂Π

∂η

]
η=0

− g [Fm]ηl (103)

This equation can be rewritten in its “barycentric” formulation:[
dΠ

dt

]
ηl

+ g [Fm]ηl = [V∇Π]ηl −
∫ η=ηl

η=0

∇
(

V
∂Π

∂η

)
dη +

[
η̇
∂Π

∂η

]
η=0

(104)

i.e.: [
ω

Π

]
ηl

=
[

1

Π

dΠ

dt
+

1

Π
gFm

]
ηl

=
[
V
∇Π

Π

]
ηl

− 1

Πηl

∫ η=ηl

η=0

∇
(

V
∂Π

∂η

)
dη +

1

Πηl

[
η̇
∂Π

∂η

]
η=0

(105)

5.3 The deep layer 3D primitive equation model according to (WB1995).

5.3.1 Basics deep layer equations.

∗ New features brought in the deep layer equations: In the hydrostatic model, introduction
of the deep layer equations has been done according to (WB1995). The following modifications are done:

• One takes account to the fact, that the distance to the Earth centre is no longer a but a radius varying
with the vertical. For convenience (with the η vertical coordinate), as it has been done in (WB1995),
one approximates the radius by a pseudo-radius which depends only on the hydrostatic pressure Π. Two
vertical lines are no longer parallel, so the section of a vertical column varies with the hydrostatic pressure.

• The vertical velocity is now taken in account in the Coriolis term through a pseudo-vertical velocity W
defined by W = dr

dt
. W also appears in some new curvature terms.

• The total geopotential Φ, which appears in the RHS of the wind equation, is no longer equal to the
geopotential height gz.
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Remarks:

• The vertical variations of g are still neglected.

• The WB1995 approximation implicitly assumes that the Earth is spherical because it assumes that the
reference pressure where r = a has a spherical shape (of radius a); the consequence is that the non-
sphericity of the Earth (20 km between the poles and the equator) cannot be taken in account with such
an approximation.

∗ Pseudo-radius r and reference temperature profile Tr: Formula (4.11) of (White and
Bromley, 1995) gives the following expression for the pseudo-radius r:

r(Π) = a+

∫ Π1

Π

RdTr(Π
′
)

gΠ′
dΠ
′

(106)

where a is the mean Earth radius. The difference with the true geopotential height is the fact that the temperature
T is replaced by an idealised profile of temperature Tr which only depends on the hydrostatic pressure, R is replaced
by the dry air constant Rd. The consequence is that r only depends on the hydrostatic pressure, that makes
calculations simpler.
For Tr we have chosen an analytical profile, with a tuning coefficient αK which allows for example to take a
constant profile or a dry adiabatic profile. Tr is given by formula:

log
(
Tr

T1

)
= αK

Rd

cpd

log
(

Π

Π1

)
(107)

where αK is a tuning coefficient; for αK one can take for example:

• αK = 0: constant profile, Tr = T1 everywhere.

• αK = 1: dry adiabatic profile.

T1 is a reference temperature: temperature profile gives a temperature T1 at the hydrostatic pressure level Π1.
For the couple (T1, Π1) it is desirable to take values consistent with the definition of a standard atmosphere:

log
(
T1

Tst

)
= αK

Rd

cpd

log
(

Π1

Πsst

)
(108)

In the thin layer equations the reference profile Tr is replaced by zero.
The horizontal gradient of Tr is given by the following formula:[

r

a
∇
]
Tr = αK

RdTr

cpd

[
r
a
∇
]

Π

Π
(109)

The expression of
[ ra∇]Π

Π
is given in parts (9.5) and (9.6).

For r we have also chosen an analytical formulation. If the profile of Tr is constant (αK = 0), the reference
pressure Π1 is taken equal to the standard mean sea level pressure Πsst, the pseudo-radius r is assumed to be
equal to a at the pressure level Π = Πsst, and the analytical expression of r is given by formula:

r(Π) = a− RdT1

g
log
(

Π

Πsst

)
(110)

The horizontal gradient of r is also given by an analytical formula:[
r

a
∇
]
r = −RdT1

g

[
r
a
∇
]

Π

Π
(111)

If the profile of Tr is not constant (αK > 0), the reference pressure Π1 is also taken equal to the standard mean
sea level pressure Πsst, the pseudo-radius r is assumed to be equal to a at the pressure level Π = Πsst, and the
analytical expression of r is given by formula:

r(Π) = a+
cpdT1

gαK

(
1−

(
Π

Πsst

)αK
Rd
cpd

)
(112)

The horizontal gradient of r is also given by an analytical formula:[
r

a
∇
]
r = −RdT1

g

(
1

Πsst

)αK
Rd
cpd Π

(αK
Rd
cpd
−1)
[
r

a
∇
]

Π (113)

For some options it is necessary to define a value of r at the top of the atmosphere. The following one has been
retained:

[r]η=0 = [r]
l=1

(114)
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∗ Pseudo-vertical velocity W : it is defined by W = dr
dt

and its analytical expression is:

W = −RdTrω

gΠ
(115)

This is this pseudo-vertical velocity that must be used in the momentum equation. W is zero in the thin layer
equations.

∗ “Verticality” notions: It is important to well define what is “horizontal” and what is “vertical” in the
deep layer equations. Of course we are in this case using some different systems of coordinates, each having its
own its “horizontality” and “verticality”: the true height z, the pseudo-radius r, and the hybrid coordinate η. All
the iso-r surfaces are spheres, the centre of which is the point C which defines the Earth centre. On a point F
located on an iso-r, vector r(F ) is the vector CF. This vector is normal to the surface iso-r, and the “vertical”
unit vector k of the local system of coordinates linked to the point F is defined by:

k =
r

r
(116)

One defines the “horizontal” vector j as a tangent vector to the iso-r directed towards the apparent north pole
of the computational sphere, and the “horizontal” vector i as a tangent vector to the iso-r directed towards the
apparent east direction of the computational sphere. Iso-r are slightly tilted compared to iso-z, but this slope is
generally weak (lower than 0.1 %). The consequence is that in first approximation one can assume that:

• Iso-z are nearly centred on the Earth centre C.

• The horizontal component of the wind, which is horizontal in an “altitude” sense, can be considered as
a first approximation as horizontal on a iso-r. If V3 is the 3D-wind, its components are (U, V,W ) in the
system of coordinates defined by (i, j,k).

Normal vectors to iso-η surfaces can have an important “verticality default” on mountains, this one increasing when
the resolution increases (orography better described). The horizontal gradient operator ∇ contains derivatives at
constant η, but its components are in fact projected on a plane surface defined by (i, j) and not on a plane surface
which is tangent to the iso-η.

5.3.2 Momentum equation.

Lagrangian tendency: Coriolis force can be treated explicitly (δV=0) or implicitly (δV=1) in the Lagrangian
equation.

d (V + δV(2Ω ∧ r))

dt
= (1− δV)(−2Ω ∧V − 2Ω ∧Wk)− W

r
V −∇Φ− (RT + µsRdTr)∇(log Π) + FV (117)

FV is the physical contribution on horizontal wind.
Eulerian tendency: the Eulerian equation writes:

∂V

∂t
= −2Ω∧V−2Ω∧Wk−W

r
V−∇Φ−(RT+µsRdTr)∇(log Π)−V∇V−η̇ ∂V

∂η
−
(
U

r
tan θbne

)
k∧V+FV (118)

Advection (−V∇V) and curvature (−
(
U
r

tan θbne

)
k∧V) terms can be rearranged, in order to show the divergence

and vorticity in the equation and to eliminate the meridian derivatives of U and V :

∂V

∂t
= −2Ω ∧V − 2Ω ∧Wk− W

r
V −∇Φ− (RT + µsRdTr)∇(log Π) + DV − η̇

∂V

∂η
+ FV (119)

where DV is the vector of coordinates:(
V ζ − 1

r cos θbne
U ∂U
∂λbne

− 1
r cos θbne

V ∂V
∂λbne

−V D − 1
r cos θbne

U ∂V
∂λbne

+ 1
r cos θbne

V ∂U
∂λbne

− U2+V 2

r
tan θbne

)
This vector can be rewritten:

a

r

(
VM2ζ

′
− 1

a cos θbne
U ∂U
∂λbne

− 1
a cos θbne

V ∂V
∂λbne

−VM2D
′
− 1

a cos θbne
U ∂V
∂λbne

+ 1
a cos θbne

V ∂U
∂λbne

− U2+V 2

a
tan θbne

)
The way of obtaining all the inertial Coriolis/centrifugal terms, and the way of combining them with the horizontal
advection terms, is described in detail in the appendix 4.
New features introduced in the WB1995 deep layer equations:

• The µs term (for more details see part (5.3.7)).

• The total geopotential Φ is no longer equal to the geopotential height gz. This is Φ which is present in the
RHS of the momentum equation (for more details see part (5.3.7)).

• There are new inertial terms containing W .
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5.3.3 Thermodynamic equation.

Lagrangian tendency:

d
(
T + δTR

αTΦs
RdTst

)
dt

=
d
(
δTR

αTΦs
RdTst

)
dt

+
RT

cp

ω

Π
+ FT (120)

FT is the physical contribution on temperature. When δTR = 1 the Eulerian treatment of orography is applied
and the prognostic variable is replaced by one variable less sensitive to the surface orography. This modification
has been proposed by Ritchie and Tanguay (1996).
Eulerian tendency: the Eulerian equation writes:

∂T

∂t
= −V∇T − η̇ ∂T

∂η
+
RT

cp

ω

Π
+ FT (121)

This equation is unchanged compared to its “thin layer” expression. The only change is the diagnostic expression
of ω.

5.3.4 Continuity equation.

∗ 3D formulation of continuity equation: Continuity equation in the η vertical coordinate now
writes:

∂
(
r2

a2
∂Π
∂t

)
∂η

= −
[
r

a
∇
](

r

a
V
∂Π

∂η

)
−
∂
(
r2

a2 η̇
∂Π
∂η

)
∂η

+
r2

a2
F
′
m (122)

F
′
m is the physical contribution on ∂Π

∂η
. F

′
m can be rewritten: F

′
m = −g a

2

r2
∂Fm
∂η

(Fm is the diabatic flux applied to

continuity equation).
Equation (122) is not convenient to use directly, one rather uses an equation for the 2D variable log Πs. Equation

(87) can be still used but it is better to rewrite it in order to show operator
[
r
a
∇
]

and only purely 2D quantities.

dX2D

dt
=
∂X2D

∂t
+
a

r
V
[
r

a
∇
]
X2D (123)

∗ Eulerian formulation of continuity equation: Detail of calculations is done in appendix 2.
When using the properties of the hybrid coordinate the evolution equation of ∂Π

∂η
can be transformed into an

evolution equation of log Πs.

∂ log(Πs)
∂t

= −
[
a2

r2

]
η=1

1
Πs

∫ η=1

η=0

[
r
a
∇
] (

r
a
V ∂Π

∂η

)
dη

− 1
Πs

[
η̇ ∂Π
∂η

]
η=1

+ 1
Πs

[
a2

r2

]
η=1

[
r2

a2

]
η=0

[
η̇ ∂Π
∂η

]
η=0
− 1

Πs
g [Fm]η=1

[
a2

r2

]
η=1

(124)

Compared to the “thin layer” formulation of these equations, there are the following differences:

• Term containing [Fm]η=1: it becomes different from zero only with option “δm = 1” and is multiplied by[
a2

r2

]
η=1

.

• Term containing
[
η̇ ∂Π
∂η

]
η=1

: it is unchanged in the deep layer equations. It becomes different from zero

only with option “δm = 1”.

• Term containing
[
η̇ ∂Π
∂η

]
η=0

: it has to be multiplied by the factor
[
a2

r2

]
η=1

[
r2

a2

]
η=0

. It is different from zero

only if LRUBC=.T. .

• For convenience, definition of fluxes in the deep layer equations is: additive quantity divided by a surface
taken on an iso r = a.

∗ Lagrangian tendency of orographic term: Formula (89) is still valid, but it is more convenient

to rewrite it with the operator
[
r
a
∇
]
:

d
[

Φs
RdTst

]
dt

=
a

r
V
[
r

a
∇
] [

Φs

RdTst

]
(125)
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∗ Vertical integrated Lagrangian formulation of continuity equation: Equation now
writes: ∫ η=1

η=0
r2

a2
∂B
∂η

d
[
log Πs+δTR

Φs
RdTst

]
dt

dη =∫ η=1

η=0
r2

a2
∂B
∂η

∂ log(Πs)
∂t

dη +
∫ η=1

η=0
r2

a2
∂B
∂η

a
r
V
[
r
a
∇
] [

log Πs + δTR
Φs

RdTst

]
dη (126)

where ∂ log(Πs)
∂t

is given by equation (124).

5.3.5 Advectable GFL prognostic fields.

Equation is written for moisture q, and is the same for the other advectable GFL variables.
Lagrangian tendency:

dq

dt
= Fq (127)

Fq is the physical contribution on moisture.
Eulerian tendency: the Eulerian equation writes:

∂q

∂t
= −V∇q − η̇ ∂q

∂η
+ Fq (128)

These equations are unchanged in the deep layer formulation.

5.3.6 Relationship between geopotential height gz and pressure depth.

The formulae (96) and (97) provided in part (5.2.5) are still valid.

5.3.7 Relationship between total geopotential Φ and pressure depth.

Φ is different from gz and the aim is to retrieve the equation provided by (White and Bromley, 1995). One has
first to define an hydrostatic pseudo-pressure ΠΦ verifying:

∂ΠΦ

∂Φ
= −ρ (129)

The difference ΠΦ − Π physically represents the partial pressure provided by some air which is affected by the
W -contribution of Coriolis term. One has to consider the total pressure p (including non-hydrostatic effects) and
the height vertical coordinate velocity w. The temporal evolution equation of w writes, if one assumes that the
RHS is purely adiabatic:

dw

dt
= g

(
−µs +

∂p

∂Π
− 1
)

(130)

where µs is defined by:

µs = −2rΩ cos θ(GnordmU − GnordlV ) + U2 + V 2

rg
(131)

One makes appear the quantities RdTr and ΠΦ in equation (130), which can be rewritten as follows:(
dw

dt
+ g

RT −RdTr

RT
µs + g

∂(ΠΦ − p)
∂Π

)
= g

(
−RdTr

RT
µs +

∂ΠΦ

∂Π
− 1
)

(132)

Removal of the non-hydrostatic effects can be done by zeroing the LHS of equation (132):(
dw

dt
+ g

RT −RdTr

RT
µs + g

∂(ΠΦ − p)
∂Π

)
There is here not only an hydrostatic approximation, but also the fact that one approximates z by r in the
computation of the Coriolis W -term (one neglects the residual term containing w −W ). Equation becomes:

∂ΠΦ

∂Π
= g

(
RdTr

RT
µs + 1

)
Using equations (95) and (129) one finally obtains the following formulation for Φ:

∂Φ

∂Π
= −RT

Π

(
1 +

RdTr

RT
µs

)
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which can be rewritten:
∂Φ

∂Π
= −RT

Π
− RdTr

Π
µs (133)

This is exactly the equation provided by (White and Bromley, 1995).
The vertically integrated formulation of equation (133) writes:

Φ = Φs −
∫ Π

′
=Π

Π
′
=Πs

RT

Π′
dΠ
′
−
∫ Π

′
=Π

Π
′
=Πs

µs
RdTr

Π′
dΠ
′

(134)

5.3.8 Diagnostic expression of some vertical velocities.

∗ Term η̇ ∂Π
∂η : Continuity equation is vertically integrated on dη from η = 0 to η = ηl. The following property

is used:
[
∂Π
∂t

]
η=0

= 0. Equation (122) becomes:[
r2

a2

∂Π

∂t

]
ηl

+

∫ η=ηl

η=0

[
r

a
∇
](

r

a
V
∂Π

∂η

)
dη +

[
r2

a2
η̇
∂Π

∂η

]
ηl

−
[
r2

a2
η̇
∂Π

∂η

]
η=0

= −
∫ η=ηl

η=0

g
∂Fm

∂η
dη (135)

which can be rewritten, taking in account that the precipitation flux at the top is zero:[
η̇ ∂Π
∂η

]
ηl

=
(
a2

r2

)
ηl

(
r2

a2

)
η=0

[
η̇ ∂Π
∂η

]
η=0

−
[
∂Π
∂t

]
ηl
−
(
a2

r2

)
ηl

∫ η=ηl

η=0

[
r
a
∇
] (

r
a
V ∂Π

∂η

)
dη −

(
a2

r2

)
ηl

g [Fm]ηl (136)

One uses equation (241) and one replaces ∂Πs
∂t

by its expression provided by equation (124). That yields expression

of η̇ ∂Π
∂η

: [
η̇ ∂Π
∂η

]
ηl

= Bηl

(
a2

r2

)
η=1

∫ η=1

η=0

[
r
a
∇
] (

r
a
V ∂Π

∂η

)
dη −

(
a2

r2

)
ηl

∫ η=ηl

η=0

[
r
a
∇
] (

r
a
V ∂Π

∂η

)
dη

+Bηl
[
η̇ ∂Π
∂η

]
η=1

+

[(
a2

r2

)
ηl

−Bηl
(
a2

r2

)
η=1

](
r2

a2

)
η=0

[
η̇ ∂Π
∂η

]
η=0

+Bηl

(
a2

r2

)
η=1

g [Fm]η=1 −
(
a2

r2

)
ηl

g [Fm]ηl (137)

This equation can be rewritten in its “barycentric” formulation:[
η̇ ∂Π
∂η

]
ηl
−Bηl

(
a2

r2

)
η=1

g [Fm]η=1 +
(
a2

r2

)
ηl

g [Fm]ηl

= Bηl

(
a2

r2

)
η=1

∫ η=1

η=0

[
r
a
∇
] (

r
a
V ∂Π

∂η

)
dη −

(
a2

r2

)
ηl

∫ η=ηl

η=0

[
r
a
∇
] (

r
a
V ∂Π

∂η

)
dη

+Bηl
[
η̇ ∂Π
∂η

]
η=1

+

[(
a2

r2

)
ηl

−Bηl
(
a2

r2

)
η=1

](
r2

a2

)
η=0

[
η̇ ∂Π
∂η

]
η=0

(138)

New features brought in the deep layer formulation:

• Term Bηl
[
η̇ ∂Π
∂η

]
η=1

is not modified.

• The term containing
[
η̇ ∂Π
∂η

]
η=0

which was multiplied by 1 − Bηl in the thin layer formulation, is now

multiplied by the coefficient: [(
a2

r2

)
ηl

−Bηl

(
a2

r2

)
η=1

](
r2

a2

)
η=0

which contains the square of the rescaled pseudo-radius at the current level, the surface and the top.

• The upper air diabatic flux [Fm]ηl is multiplied by
(
a2

r2

)
ηl

.

• The surface diabatic flux [Fm]η=1 is multiplied by
(
a2

r2

)
η=1

.
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∗ Pressure coordinate vertical velocity ω: Equation (135) can be rewritten:[
r2

a2

dΠ

dt

]
ηl

=

[
r

a
V

[
r

a
∇
]

Π

]
ηl

−
∫ η=ηl

η=0

[
r

a
∇
](

r

a
V
∂Π

∂η

)
dη +

(
r2

a2

)
η=0

[
η̇
∂Π

∂η

]
η=0

− g [Fm]ηl (139)

This equation can be rewritten in its “barycentric” formulation:[
r2

a2

dΠ

dt

]
ηl

+ g [Fm]ηl =

[
r

a
V

[
r

a
∇
]

Π

]
ηl

−
∫ η=ηl

η=0

[
r

a
∇
](

r

a
V
∂Π

∂η

)
dη +

(
r2

a2

)
η=0

[
η̇
∂Π

∂η

]
η=0

(140)

i.e.:[
r2

a2

ω

Π

]
ηl

=

[
1

Π

r2

a2

dΠ

dt
+

1

Π
gFm

]
ηl

=

[
r

a
V

[
r
a
∇
]

Π

Π

]
ηl

−
1

Πηl

∫ η=ηl

η=0

[
r

a
∇
](

r

a
V
∂Π

∂η

)
dη +

1

Πηl

(
r2

a2

)
η=0

[
η̇
∂Π

∂η

]
η=0

(141)

New features brought by the deep layer formulation:

• Term containing
[
η̇ ∂Π
∂η

]
η=0

: it is multiplied by coefficient:[
a2

r2

]
ηl

[
r2

a2

]
η=0

5.4 The thin layer 3D NH-PDVD fully compressible non-hydrostatic model.

These equations are well described in (IDNHPB) and we will recall here some basics. See (IDNHPB) for more
details, especially for the intermediate calculations leading to the following form of the equations.
In the non-hydrostatic model there are two additional prognostic variables, one linked with the pressure departure,
and the other one with the vertical divergence. For the equations already existing in the 3D primitive equation
model:

• The momentum equation is slightly modified (especially the pressure gradient term).

• The temperature equation is slightly modified.

• Continuity equation computes the evolution of log Πs and is not modified.

• Equations for GFL variables are not modified.

In the fully compressible NH-PDVD model, the two additional prognostic variables are the following ones:

• in the pressure departure equation, prognostic variable is

Q̂ = log(
p

Π
)

• in the vertical divergence equation, prognostic variable is d (vertical divergence). There is a possibility to
take d4 = d+ X, where:

X =
p

∂Π
∂η
RT
∇Φ

(
∂V

∂η

)
(142)

5.4.1 Momentum equation.

Compared to the hydrostatic model, the pressure gradient term now writes:

∂p

∂Π
∇Φ +RT

∇p
p

It is highly desirable to write ∇p/p rather than ∇(log p) because the discretisation of this term is not exactly a
discretisation of ∇(log p).
Lagrangian tendency: Coriolis force can be treated explicitly (δV=0) or implicitly (δV=1) in the Lagrangian
equation.

d (V + δV(2Ω ∧ r))

dt
= [−2(1− δV)(Ω ∧V)]− ∂p

∂Π
∇Φ−RT ∇(p)

p
+ FV (143)

FV is the physical contribution on horizontal wind.
Eulerian tendency: the Eulerian equation writes:

∂V

∂t
= −2Ω ∧V − ∂p

∂Π
∇Φ−RT ∇p

p
−V∇V − η̇ ∂V

∂η
−
(
U

a
tan θbne

)
k ∧V + FV (144)
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Advection (−V∇V) and curvature (−
(
U
a

tan θbne

)
k∧V) terms can be rearranged, in order to show the divergence

and vorticity in the equation and to eliminate the meridian derivatives of U and V :

∂V

∂t
= −2Ω ∧V − ∂p

∂Π
∇Φ−RT ∇p

p
+ DV − η̇

∂V

∂η
+ FV (145)

where DV is the vector of coordinates:(
V ζ − 1

a cos θbne
U ∂U
∂λbne

− 1
a cos θbne

V ∂V
∂λbne

−V D − 1
a cos θbne

U ∂V
∂λbne

+ 1
a cos θbne

V ∂U
∂λbne

− U2+V 2

a
tan θbne

)
5.4.2 Thermodynamic equation.

Compared to the hydrostatic model, there are two differences:

• The adiabatic conversion term now writes −RT
cv
D3, where

D3 = ∇V +
p

∂Π
∂η
RT
∇Φ

(
∂V

∂η

)
− gp

∂Π
∂η
RT

(
∂w

∂η

)
= D + X +

Rd

R
d (146)

• The diabatic term FT must be replaced by
[
cp
cv
FT

]
.

Lagrangian tendency:

d
(
T + δTR

αTΦs
RdTst

)
dt

=
d
(
δTR

αTΦs
RdTst

)
dt

− RT

cv
D3 +

[
cp
cv
FT

]
(147)[

cp
cv
FT

]
is the physical contribution on temperature. When δTR = 1 the Eulerian treatment of orography is applied

and the prognostic variable is replaced by one variable less sensitive to the surface orography. This modification

has been proposed by Ritchie and Tanguay (1996). See equation (79) for definition of αT. Term
d
(
δTR

αTΦs
RdTst

)
dt

only contains advection terms linked to horizontal variations of orography and vertical variations of the coefficient
αT.
Eulerian tendency: the Eulerian equation writes:

∂T

∂t
= −V∇T − η̇ ∂T

∂η
− RT

cv
D3 +

[
cp
cv
FT

]
(148)

5.4.3 Continuity equation and diagnostic expression of some vertical velocities.

Continuity equation is unchanged compared to the hydrostatic equations. The consequence is that the calculation
of η̇ ∂Π

∂η
and ω is unchanged compared to the hydrostatic equations.

5.4.4 Advectable GFL prognostic fields.

Equations of advectable GFL are unchanged compared to the hydrostatic equations.

5.4.5 Relationship for geopotential height gz and pressure depth.

Compared to the hydrostatic model, the perfect gas formula now writes:

p = ρRT (149)

The combination of equations (94) and (149) provides the relationship between gz and pressure depth:

∂(gz)

∂Π
= −RT

Π

Π

p
(150)

The vertical integrated formulation of equation (150) writes:

gz = gzs −
∫ Π

′
=Π

Π
′
=Πs

RT

Π′
Π
′

p
dΠ
′

(151)

5.4.6 Relationship between total geopotential Φ and pressure depth.

In the thin layer equations, Φ = gz. See part (5.4.5) for more details.
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5.4.7 Pressure departure equation.

The prognostic variable currently coded is (option NPDVAR=2):

Q̂ = log
p

Π

Lagrangian tendency:

dQ̂

dt
= −cp

cv
D3 −

ω

Π
+

cp
cvT

FT (152)

Eulerian tendency: the Eulerian equation writes:

∂Q̂

∂t
= −V∇Q̂− η̇ ∂Q̂

∂η
− cp
cv
D3 −

ω

Π
+

cp
cvT

FT (153)

5.4.8 Vertical velocity w and vertical divergence d equations.

∗ Using d as prognostic variable: This part is valid for NVDVAR=3.

The relationship between d and w writes:

d = − gp

RdT
∂Π
∂η

(
∂w

∂η

)
(154)

We can remark that this is Rd and not R which is at the denominator.
Lagrangian tendency:

dd

dt
= −dD3 + d∇V − gp

RdT
∂Π
∂η

∂
[
dw
dt

]
ad

∂η
+

gp

RdT
∂Π
∂η

(∇w)

(
∂V

∂η

)
+ Fd (155)

The physical contribution of d is linked to Fw which is the physical contribution of w, and also to F
′
m by the

following relationship:

Fd = − d[
∂Π
∂η

]F ′m − [ gp

RdT
∂Π
∂η

∂Fw

∂η

]
(156)

One can notice that the RHS of equation (155) contains the term
∂[ dwdt ]

ad
∂η

which requires the computation of dw
dt

(at least its adiabatic part).

Equation of w is:
dw

dt
= g

∂(p−Π)

∂Π
+ Fw (157)

At the surface we have to use another equation (which requires some assumptions about the surface wind):

g
dwsurf

dt
=
dVsurf

dt
∇Φs + Vsurf [Vsurf∇(∇Φs)] + Fwsurf (158)

Value of term dVsurf
dt
∇Φs + Vsurf [Vsurf∇(∇Φs)] contains the horizontal second derivatives of surface orography

and Coriolis term (cf. equation (32) of Geleyn and Bubnová, 1995).
Eulerian tendency: the Eulerian equation writes:

∂d

∂t
= −V∇d− η̇ ∂d

∂η
− dD3 + d∇V − gp

RdT
∂Π
∂η

∂
[
dw
dt

]
ad

∂η
+

gp

RdT
∂Π
∂η

(∇w)

(
∂V

∂η

)
+ Fd (159)

∗ Using d4 as prognostic variable: This part is valid for NVDVAR=4.

Eulerian equation of d4 is:
∂d4

∂t
=
∂d

∂t
+
∂X

∂t
(160)

where ∂X
∂t

is the Eulerian derivative of the quantity (X = p
∂Π
∂η
RT
∇Φ

(
∂V
∂η

)
). The calculation of ∂X

∂t
is not done by

an Eulerian temporal advection but simply by a diagnostic evaluation and the management of this term will be
explained in section (15).
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5.4.9 Geopotential equation.

This equation is not used in the NH-PDVD model but we can mention it:

dΦ

dt
= gw + FΦ (161)

Eulerian tendency: the Eulerian equation writes:

∂Φ

∂t
= −V∇Φ− η̇ ∂Φ

∂η
+ gw + FΦ (162)

5.5 The deep layer 3D fully compressible non-hydrostatic model according
to (WS2003).

The WB1995 formulation of deep layer equations is not well designed for the NH system of equations and the
(Wood and Staniforth, 2003) one will be used instead (denoted WS2003).

5.5.1 Basics deep layer equations.

∗ New features brought in the deep layer equations: The following modifications are done:

• One takes account to the fact, that the distance to the Earth centre is no longer a but a radius r varying
with the vertical. No specific approximation is done on this radius. Two vertical lines are no longer parallel,
so the section of a vertical column varies with the altitude.

• The vertical velocity w is now taken into account in the Coriolis term. w also appears in some new curvature
terms.

• Relationship between r and w is dr
dt

= w.

• The total geopotential Φ does not appear in the adiabatic equations (it is replaced by Gz = G(r − a)); it
may appear in some energetic quantities; Φ is not always equal to Gz.

• A mass vertically integrated quantity Π̃ is introduced, in order to hid some metric terms, especially in the
continuity equation: Π̃ replaces Π in the adiabatic equations (Π becomes, if needed, a diagnostic quantity).

The definition of the hybrid vertical coordinate applies for Π̃, not for Π. Quantities δ and α (depths of

logarithm of hydrostatic pressure) are replaced by δ̃ and α̃ (depths of logarithm of Π̃).

• The vertical variations of g may be taken into account (optionally): we denote by g the vertically-dependent
value and by G the constant reference value (g = G where r = a).

∗ Relationship between Π̃ and Π: Definition of Π̃ is:

∂Π̃

∂r
= −ρGr

2

a2
(163)

and definition of Π is:
∂Π

∂r
= −ρg (164)

Combination of both equations yields:
∂Π̃

∂Π
=
r2

a2

G

g
(165)

A reference pressure level must be chosen, where Π̃ = Π: the most convenient choice is the model top, because
that ensures that Π̃ always remains above 0.
This relationship allows to compute Π, when Π̃ and r are known.

∗ Relationship between r and pressure depth: The vertical integrated formulation of equation
for Gr writes (cf. formula (4.11) of WS2003):

G

3a2
r3 =

G

3a2
r3
surf −

∫ Π̃
′
=Π̃

Π̃
′
=Π̃s

RT

p
dΠ̃
′

(166)

This equation is used to diagnose r.
Bottom conditions:

• r = a at the altitude zero.

• rsurf = a+ zsurf , where zsurf is the orography altitude. Note that Grsurf is always equal to Φs.
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∗ Retrieve Π̃ and r when only Π is known: An iterative algorithm is required, with the following
steps:

• Save the original value of Πs.

• Save the original value of p−Π.

• Do a ”first guess” iteration, with the following structure:

– compute a first guess for r (i.e. r(iter = 0)), using formula (166) with Π instead of Π̃.

– compute Π̃(iter = 0) and Π̃s(iter = 1) using formula (165).

• Do additional iterations:

– start from Π̃s(iter), use the definition of the hybrid vertical coordinate to compute upper air Π̃(iter).

– use formula (166) with Π̃(iter) to compute r(iter).

– use formula (165) to compute Π̃s(iter + 1).

∗ Retrieve δ and α from δ̃ and α̃ when r is known: Such conversions may be useful to enter parts
which keep the thin-layer hypothesis (physics, internal post-processing) and which must see the true hydrostatic
pressure and the true hydrostatic pressure depths.

• First Π must be computed from Π̃ and r.

• Relationship between δ and δ̃ can be approximated by: δ ' δ̃(Π̃a2g)/(Πr2G).

• Relationship between α and α̃ can be approximated by: α ' α̃(Π̃a2g)/(Πr2G).

∗ “Verticality” notions: cf. the similar paragraph for (WB1995) deep-layer equations.

5.5.2 Momentum equation.

Modifications brought by the deep-layer formulation are:

• Additional Coriolis w terms and curvature w terms: they are similar to those of the WB1995 formulation,
but this is w and not W which appears.

• Φ is replaced by Gr, and Π is replaced by Π̃ in the pressure gradient term: this modifications explain why
some metric terms appear.

• Contrary to the WB1995 formulation, there are no µs terms appearing in the pressure gradient term (it
appears in the w equation instead).

Lagrangian tendency (cf. equations (4.4) and (4.5) of WS2003): Coriolis force can be treated explicitly (δV=0)
or implicitly (δV=1) in the Lagrangian equation.

d (V + δV(2Ω ∧ r))

dt
= [−2(1− δV)(Ω ∧V + 2Ω ∧ wk)]− w

r
V − r2

a2

∂p

∂Π̃
∇[Gr]−RT ∇(p)

p
+ FV (167)

FV is the physical contribution on horizontal wind.
Eulerian tendency: the Eulerian equation writes:

∂V

∂t
= −2Ω ∧V− 2Ω ∧wk− w

r
V− r2

a2

∂p

∂Π̃
∇[Gr]−RT ∇p

p
−V∇V− η̇ ∂V

∂η
−
(
U

r
tan θbne

)
k ∧V + FV (168)

Advection (−V∇V) and curvature (−
(
U
r

tan θbne

)
k∧V) terms can be rearranged, in order to show the divergence

and vorticity in the equation and to eliminate the meridian derivatives of U and V :

∂V

∂t
= −2Ω ∧V − 2Ω ∧ wk− w

r
V − r2

a2

∂p

∂Π̃
∇[Gr]−RT ∇p

p
+ DV − η̇

∂V

∂η
+ FV (169)

where DV is the vector of coordinates:(
V ζ − 1

r cos θbne
U ∂U
∂λbne

− 1
r cos θbne

V ∂V
∂λbne

−V D − 1
r cos θbne

U ∂V
∂λbne

+ 1
r cos θbne

V ∂U
∂λbne

− U2+V 2

r
tan θbne

)
This vector can be rewritten:

a

r

(
VM2ζ

′
− 1

a cos θbne
U ∂U
∂λbne

− 1
a cos θbne

V ∂V
∂λbne

−VM2D
′
− 1

a cos θbne
U ∂V
∂λbne

+ 1
a cos θbne

V ∂U
∂λbne

− U2+V 2

a
tan θbne

)
The way of obtaining all the inertial Coriolis/centrifugal terms, and the way of combining them with the horizontal
advection terms, is described in detail in the appendix 4.
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5.5.3 Thermodynamic equation.

Equations (147) and (148) are still valid, but the expression of D3 is modified:

• Modification in the X term: ∇[Gr] instead of ∇Φ, use of Π̃, metric terms coming from the use of Π̃.

• Modification in the vertical divergence term: use of Π̃, vertical derivation of (r2/a2)w instead of w.

Expression of D3 is now (cf. equation (4.14) of WS2003):

D3 = ∇V +
r2

a2

p
∂Π̃
∂η
RT
∇[Gr]

(
∂V

∂η

)
− Gp

∂Π̃
∂η
RT

(
∂ r

2

a2w

∂η

)
= D + X +

Rd

R
d (170)

5.5.4 Continuity equation and diagnostic expression of some vertical velocities.

Nature of changes:

• Π is changed into Π̃.

• Some metric terms appear: replace ∇
(
V ∂Π

∂η

)
by ∇

(
a
r
V ∂Π̃

∂η

)
.

• G appears in factor of the diabatic term.

Taking account of these changes, calculations done in part 5.2.3 can be re-used. We give only a subset of modified
formulae.

∗ Eulerian formulation of continuity equation:

∂ log(Π̃s)

∂t
= − 1

Π̃s

∫ η=1

η=0

∇
(
a

r
V
∂Π̃

∂η

)
dη − 1

Π̃s

[
η̇
∂Π̃

∂η

]
η=1

+
1

Π̃s

[
η̇
∂Π̃

∂η

]
η=0

− 1

Π̃s

G [Fm]η=1 (171)

Fm is the diabatic flux applied to continuity equation. Fm is assumed to be zero at the top of the atmosphere.

∗ Vertically integrated Lagrangian formulation of continuity equation:∫ η=1

η=0
∂B
∂η

d
[
log Π̃s+δTR

Φs
RdTst

]
dt

dη =∫ η=1

η=0
∂B
∂η

(
− 1

Π̃s

∫ η=1

η=0
∇
(
a
r
V ∂Π̃
∂η

)
dη + V∇

[
log Π̃s + δTR

Φs
RdTst

]
− 1

Π̃s

[
η̇ ∂Π̃
∂η

]
η=1

+ 1
Π̃s

[
η̇ ∂Π̃
∂η

]
η=0

− 1
Π̃s
G [Fm]η=1

)
dη(172)

∗ Vertical velocities ω and η̇ ∂Π̃
∂η : Nature of changes:

• one computes η̇ ∂Π̃
∂η

instead of η̇ ∂Π
∂η

.

• definition of ω is now ω = dΠ̃
dt

.

Calculation of these quantities inherit of the changes found in continuity equation. Start from formulae of part

5.2.3, change Π into Π̃, ∇
(
V ∂Π

∂η

)
into ∇

(
a
r
V ∂Π̃

∂η

)
, g into G.

5.5.5 Advectable GFL prognostic fields.

Thin layer equations remain valid.

5.5.6 Pressure departure equation.

It is not possible any longer to use log(p/Π) as prognostic variable. The simplest variable we can use is log(p/Π̃),
but:

log
(
p

Π̃

)
= log

(
p

Π

)
+ log

(
Π

Π̃

)
and for nearly hydrostatic flows, log(Π/Π̃) is significantly bigger than log(p/Π); additionally to that, log(Π/Π̃)
remains close to an average value which has a vertical gradient (that can be not very good for semi-Lagrangian

schemes). For this reason, we take the following prognostic variable (still denoted by Q̂):

Q̂ = log
(
p

Π̃

)
+ δP log

(
Π̃ref

Πref

)
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where Π̃ref and Πref are reference values based on the standard atmosphere (log(Π̃ref/Πref) is temporally constant
and constant along the η surfaces). It is desirable to take a value of δP close to 1.
Lagrangian tendency (cf. equation (4.8) of WS2003):

dQ̂

dt
= −cp

cv
D3 −

ω

Π̃
+ δPη̇

∂ log(Π̃ref/Πref)

∂η
+

cp
cvT

FT (173)

Eulerian tendency: the Eulerian equation writes:

∂Q̂

∂t
= −V∇Q̂− η̇ ∂Q̂

∂η
− cp
cv
D3 −

ω

Π̃
+ δPη̇

∂ log(Π̃ref/Πref)

∂η
+

cp
cvT

FT (174)

5.5.7 Vertical velocity w and vertical divergence d equations.

Equation of w is (cf. equation (4.6) of WS2003):

dw

dt
= −Gµs − (g −G) +G

(
r2

a2
− 1

)
∂p

∂Π̃
+G

∂(p− Π̃)

∂Π̃
+ Fw (175)

Compared to the thin-layer version of this equation, we notice the following modifications:

• Π is replaced by Π̃.

• An additional metric term appears: G
(

1− r2

a2

)
∂p

∂Π̃

• Additional term containing µs (see equation (131)), linked to the fact that we take account of additional
inertia terms.

• Additional term −(g −G), to take account of the vertical variations of g.

The surface condition writes:
wsurf = Vsurf∇r

and this relationship can be used to compute dwsurf
dt

. Currently only the diagnostic calculation of wsurf is used in
the code.

Lagrangian tendency of d equation:

dd

dt
= −dD3 + d∇V − Gp

RdT
∂Π̃
∂η

∂[ d[r
2/a2w]
dt

]ad

∂η
+

Gp

RdT
∂Π̃
∂η

(
∇
[
r2

a2
w

])(
∂V

∂η

)
+ Fd (176)

Eulerian tendency: the Eulerian equation writes:

∂d

∂t
= −V∇d− η̇ ∂d

∂η
− dD3 + d∇V − Gp

RdT
∂Π̃
∂η

∂[ d[r
2/a2w]
dt

]ad

∂η
+

Gp

RdT
∂Π̃
∂η

(
∇
[
r2

a2
w

])(
∂V

∂η

)
+ Fd (177)
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6 The 3D equations: specific features for plane geometry.

6.1 General considerations.

The differences mainly touch the wind equation (in particular the curvature terms) and the horizontal derivatives.
The thin layer equations are described in detail in (Joly, 1992), so detailed calculations will be provided only for
the deep layer equations in this documentation (replace r by a and W , Tr and µs by zero to retrieve thin layer
equations). Only the case LMAP=.TRUE. (conformal Mercator or Lambert projections) will be examined in
this documentation.
Some new quantities have to be defined (KL, λ0, γ, S, C, the derivative operators ∂

′
xX and ∂

′
yX): They are

defined in part (2.2).

6.2 Momentum equation for (WB1995) formulation of deep-layer atmosphere
equations.

6.2.1 Computation of horizontal curvature terms in LAM models.

∗ Use reduced components of the wind elsewhere than in horizontal gradients. One
starts from equation (118). Combining horizontal advection and horizontal curvature terms yields the following
vector: (

− 1
r cos θ

U ∂U
∂λ
− 1

r
V ∂U
∂θ

+ UV
r

tan θ

− 1
r cos θ

U ∂V
∂λ
− 1

r
V ∂V
∂θ
− U2

r
tan θ

)
The following property is used:

∂(X cos θ)

∂θ
= −X sin θ + cos θ

∂X

∂θ

for X = U or V . That yields the following vector, using denotations ∇u and ∇v:(
−U∇uU − V

cos θ
∇v(U cos θ)

−U∇uV − V
cos θ
∇v(V cos θ)− U2+V 2

r
tan θ

)
One replaces (U, V ) by (U

′
, V
′
) elsewhere than in horizontal derivatives; that yields the following vector:(

−MCU
′
∇uU −MSV

′
∇uU + MSU

′

cos θ
∇v(U cos θ)− MCV

′

cos θ
∇v(U cos θ)

−MCU
′
∇uV −MSV

′
∇uV + MSU

′

cos θ
∇v(V cos θ)− MCV

′

cos θ
∇v(V cos θ)−M2 U

′2+V
′2

r
tan θ

)

∗ Sum “horizontal advection and horizontal curvature terms” for the reduced wind
tendency: One applies the operator:

1

M

(
C −S
S C

)
which gives the contribution “horizontal advection and horizontal curvature terms” to the Eulerian tendency of
(U
′
, V
′
). That yields a vector, the two components of which are the following ones:

• first element:

−C2U
′
∇uU − CSV

′
∇uU +

CSU
′

cos θ
∇v(U cos θ)− C2V

′

cos θ
∇v(U cos θ)

+CSU
′
∇uV + S2V

′
∇uV − S2U

′

cos θ
∇v(V cos θ) +

CSV
′

cos θ
∇v(V cos θ)

+MS
U
′2 + V

′2

r
tan θ

• second element:

−CSU
′
∇uU − S2V

′
∇uU +

S2U
′

cos θ
∇v(U cos θ)− CSV

′

cos θ
∇v(U cos θ)

−C2U
′
∇uV − CSV

′
∇uV +

CSU
′

cos θ
∇v(V cos θ)− C2V

′

cos θ
∇v(V cos θ)

−MC
U
′2 + V

′2

r
tan θ
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∗ Use reduced gradient operator on the plane: One must now rewrite this vector using ∂
′
xU
′
,

∂
′
yU
′
, ∂
′
xV
′
, ∂
′
yV
′

instead of ∇uU , ∇uV , ∇v(U cos Θ) and ∇v(V cos Θ). Calculations are long, and detailed in
appendix 5. Calculations yield a vector,the two components of which are the following ones:

• first element:
a

r

[
M(U

′2 + V
′2)S

a cos θ
(sin θ −KL)−M2U

′
∂
′
xU
′
−M2V

′
∂
′
yU
′
]

• second element:

−a
r

[
M(U

′2 + V
′2)C

a cos θ
(sin θ −KL) +M2U

′
∂
′
xV
′

+M2V
′
∂
′
yV
′
]

The deep layer formulation brings an additional multiplication by a
r
.

6.2.2 Horizontal Coriolis term in LAM models.

Spherical components (unstretched and untilted geometry) write:[
∂U

∂t

]
ch

= fV (178)[
∂V

∂t

]
ch

= −fU (179)

Index “ch” means “contribution of the horizontal Coriolis term”. Applying the matricial operator allowing to
retrieve the reduced wind components on the plane, one obtains:[

∂U
′

∂t

]
ch

= fV
′

(180)[
∂V
′

∂t

]
ch

= −fU
′

(181)

The same code can be used in global and LAM models for this term.

6.2.3 Additional inertial terms containing W .

∗ W component of Coriolis term: Spherical components (unstretched and untilted geometry) write:[
∂U

∂t

]
cv

= −2Ω cos θW (182)[
∂V

∂t

]
cv

= 0 (183)

Index “cv” means “contribution of the W component of Coriolis term”. Applying the matricial operator allowing
to retrieve the reduced wind components on the plane, one obtains:[

∂U
′

∂t

]
cv

= −2Ω cos θWC

M
(184)[

∂V
′

∂t

]
cv

= −2Ω cos θWS

M
(185)

The same code can be used in global and LAM models for this term.

∗ W curvature terms: Spherical components (unstretched and untilted geometry) write:[
∂U

∂t

]
cw

= −W
r
U (186)[

∂V

∂t

]
cw

= −W
r
V (187)

Index “cw” means “contribution of the W curvature terms. Applying the matricial operator allowing to retrieve
the reduced wind components on the plane, one obtains:[

∂U
′

∂t

]
cw

= −W
r
U
′

(188)[
∂V
′

∂t

]
cw

= −W
r
V
′

(189)

The same code can be used in global and LAM models for this term.
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6.2.4 Pressure gradient term.

∗ General considerations: For terms which do not contain µs, the only transformation is to rewrite
them with (∂

′
x; ∂

′
y) instead of (∇u;∇v): the deep layer formulation brings an additional multiplication by a

r
. For

terms containing µs, one needs to see how µs and its horizontal gradient rewrites in plane geometry.

∗ Terms containing µs: Spherical components (unstretched and untilted geometry) of the µs contribution
writes: [

∂U

∂t

]
µs

= ∇u

(∫ Π

Πs

−µs
RdTr

Π
dΠ

)
+ µsRdTr∇u log Π (190)

[
∂V

∂t

]
µs

= ∇v

(∫ Π

Πs

−µs
RdTr

Π
dΠ

)
+ µsRdTr∇v log Π (191)

Index “µs” means “contribution of the terms containing µs”. Applying the matricial operator allowing to retrieve
the reduced wind components on the plane, one obtains:[

∂U
′

∂t

]
µs

=
a

r

[
∂
′
x

(∫ Π

Πs

−µs
RdTr

Π
dΠ

)
+ µsRdTr∂

′
x log Π

]
(192)

[
∂V
′

∂t

]
µs

=
a

r

[
∂
′
y

(∫ Π

Πs

−µs
RdTr

Π
dΠ

)
+ µsRdTr∂

′
y log Π

]
(193)

These formulae contain µs, ∂
′
xµs and ∂

′
yµs.

∗ Expression of µs in LAM models: Spherical geometry (unstretched and untilted geometry)
expression of µs writes:

µs = −2rΩ cos θU + U2 + V 2

rg

U and V have to be replaced by U
′

and V
′

using the following formulae:

U = (CU
′

+ SV
′
)M

U2 + V 2 = M2(U
′2 + V

′2)

Thus the final expression of µs writes:

µs = −2rΩ cos θ(C(MU
′
) + S(MV

′
)) + (MU

′
)2 + (MV

′
)2

rg
(194)

The same code can be used in global and LAM models for this term.

∗ Horizontal gradient of µs in LAM models: Calculations are significantly different than the ones
for spherical geometry and are described in detail in appendix 6. After long calculations (see appendix 6 for more

details), both components of the vector (∂
′
xµs; ∂

′
yµs) can be rewritten as follows:

• first element:

−2Ω

g
[MC cos θ] ∂

′
xU
′
− 2Ω

g
[MS cos θ] ∂

′
xV
′
− 2M2

gr
U
′
∂
′
xU
′
− 2M2

gr
V
′
∂
′
xV
′

+
M2(U

′2 + V
′2)

gr2
∂
′
xr

−2ΩKL

ga
V
′

+
2SM

gar
(U
′2 + V

′2)
sin θ −KL

cos θ

• second element:

−2Ω

g
[MC cos θ] ∂

′
yU
′
− 2Ω

g
[MS cos θ] ∂

′
yV
′
− 2M2

gr
U
′
∂
′
yU
′
− 2M2

gr
V
′
∂
′
yV
′

+
M2(U

′2 + V
′2)

gr2
∂
′
yr

+
2ΩKL

ga
U
′
− 2CM

gar
(U
′2 + V

′2)
sin θ −KL

cos θ

or:
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• first element:

−2Ω

g
[C cos θ]

[
M2∂

′
xU
′
]
− 2Ω

g
[S cos θ]

[
M2∂

′
xV
′
]
− 2

gr

[
MU

′
] [
M2∂

′
xU
′
]
− 2

gr

[
MV

′
] [
M2∂

′
xV
′
]

+
([MU

′
]2 + [MV

′
]2)

gr2

[
M∂

′
xr
]
− 2ΩKL

ga

[
MV

′
]

+
2S

gar
([MU

′
]2 + [MV

′
]2)

sin θ −KL

cos θ

• second element:

−2Ω

g
[C cos θ]

[
M2∂

′
yU
′
]
− 2Ω

g
[S cos θ]

[
M2∂

′
yV
′
]
− 2

gr

[
MU

′
] [
M2∂

′
yU
′
]
− 2

gr

[
MV

′
] [
M2∂

′
yV
′
]

+
([MU

′
]2 + [MV

′
]2)

gr2

[
M∂

′
yr
]

+
2ΩKL

ga

[
MU

′
]
− 2C

gar
([MU

′
]2 + [MV

′
]2)

sin θ −KL

cos θ

All terms containing ∂
′
x and ∂

′
y can use the same code for spherical geometry and plane geometry. The only terms

which need a different code for LAM models are the terms containing KL and sin θ−KL
cos θ

.

6.2.5 Reformulation of the wind meridian derivatives, using the divergence and
vorticity.

In plane geometry:

∂
′
yV
′

= D
′
− ∂

′
xU
′

∂
′
yU
′

= ∂
′
xV
′
− ζ

′

6.2.6 Final formulation of momentum equation in the plane.

In the LAM models code the following formulation of the wind component is used:

• U -component:

∂[MU
′
]

∂t
= −a

r
[MU

′
][M2∂

′
xU
′
]− a

r
[MV

′
][M2∂

′
xV
′
−M2ζ

′
] + a

r
[MU

′
]2+[MV

′
]2

a cos θ
(sin θ −KL)S

−W
r

[MU
′
] + f [MV

′
]− 2Ω cos θWC − a

r

(
(RT +RdTrµs)[M∂

′
x(log Π)] + [M∂

′
xΦ]
)

+ η̇ ∂[MU
′
]

∂η

+Fu (195)

• V -component:

∂[MV
′
]

∂t
= −a

r
[MU

′
][M2∂

′
xV
′
]− a

r
[MV

′
][M2D

′
−M2∂

′
xU
′
]− a

r
[MU

′
]2+[MV

′
]2

a cos θ
(sin θ −KL)C

−W
r

[MV
′
]− f [MU

′
]− 2Ω cos θWS − a

r

(
(RT +RdTrµs)[M∂

′
y(log Π)] + [M∂

′
yΦ]
)

+ η̇ ∂[MV
′
]

∂η

+Fv (196)

6.3 Momentum equation for (WS2003) formulation of deep-layer atmosphere
equations.

Some calculations of the previous part can be re-used (all terms other than the pressure gradient term). The
main modifications are:

• Replace W by w.

• Quantity µs does not appear any longer in the pressure gradient term: it appears in the w equation.

• Calculation of the horizontal gradient of µs is no longer required.
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7 Some other diagnosed quantities.

Equations are generally written with the radius r to take account of the deep-layer formulations. For thin-layer
formulations replace r by a and

[
r
a
∇
]

by ∇.

7.1 cp, R and κ.

For cp (air calorific capacity at constant pressure):

cp = cpd(1− q − ql − qi) + cpvq + cplql + cpiqi (197)

where cpd is the dry air calorific capacity at constant pressure, cpv is the water vapour calorific capacity at
constant pressure, cpl is the liquid water calorific capacity, and cpi is the ice calorific capacity.
For R (air constant):

R = Rd(1− q − ql − qi) +Rvq (198)

where Rd is the dry air constant and Rv is the water vapour air constant.
For κ:

κ =
R

cp
(199)

The ratio cv/cp is given by equation:
cv
cp

= 1− κ (200)

7.2
[
r
a
∇
]

(RT ).

Its expression writes: [
r

a
∇
]

(RT ) = (Rv −Rd)T
[
r

a
∇
]
q +R

[
r

a
∇
]
T (201)

7.3 Potential temperature PT and its horizontal gradient.

Expression of PT writes:

PT = T
[

Π

Π1000

]−κ
(202)

where Π1000 = 100000 Pa
Its horizontal gradient writes: [

r

a
∇
]

(PT ) = PT

([
r
a
∇
]
T

T
− κ
[
r
a
∇
]

Π

Π

)
(203)

7.4 Virtual potential temperature PTV .

Its expression writes:

PTV = TV
[

Π

Π1000

]−κd

=
R

Rd
T
[

Π

Π1000

]−κd

(204)

where Π1000 = 100000 Pa; κd = Rd/cpd.

7.5 Equivalent potential temperature PTE.

Its expression writes:

PTE = PT exp

[
Lqsat

[cpsat]T

]
(205)

where the potential temperature PT has been defined by formula (202). Here L is the vapour water latent heat
per mass unit. Expression of [cpsat] writes:

[cpsat] = cpd + (cpv − cpd)qsat
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7.6 Absolute vorticity ζabs.

Its definition is given by formula:
ζabs = ζ + f (206)

for both thin layer and deep layer equations (after formula (4.28) of (White and Bromley, 1995)).
For deep layer equations, it is better to rewrite this formula as follows:

ζabs =
a

r

(
r

a
ζ
)

+ f (207)

in order to show quantities easily available in the model.

7.7 Potential vorticity PV .

In the thin layer formulation, expression of PV is:

PV =
[
g
∂V

∂Π

] [
M

a cos Θ

∂PT

∂Λ

]
−
[
g
∂U

∂Π

] [
M

a

∂PT

∂Θ

]
− gζabs

∂PT

∂Π
(208)

In the WB1995 deep layer formulation (see formulae (4.26) to (4.28) of (White and Bromley, 1995)), expression
of PV is:

PV =

[
a

r
g
∂( r

a
V )

∂Π

] [
a

r

] [
M

a cos Θ

∂PT

∂Λ

]
−
[
a

r
g
∂( r

a
U)

∂Π

] [
a

r

] [
M

a

∂PT

∂Θ

]
− gζabs

∂PT

∂Π
+ 2Ω cos θ

[
a

r

] [
M

a

∂PT

∂Θ

]
(209)

In the (WS2003) deep layer formulation, expression of PV is:

PV =
r

a

[
G
∂V

∂Π̃

] [
M

a cos Θ

∂PT

∂Λ

]
− r

a

[
G
∂U

∂Π̃

] [
M

a

∂PT

∂Θ

]
− r

a
Gζabs

∂PT

∂Π̃
+ 2Ω cos θ

[
a

r

] [
M

a

∂PT

∂Θ

]
(210)

7.8 Shearing deformation SHD and stretching deformation STD.

Spherical geometry:

STD =
1

r cos Θ

∂U

∂Λ
− 0.5D (211)

SHD =
1

r cos Θ

∂V

∂Λ
− 0.5ζ (212)

Plane geometry:
STD = ∇uU − 0.5D (213)

SHD = ∇uV − 0.5ζ (214)

A total deformation can be defined as follows:

DEF =
√

(2SHD)2 + (2STD)2 (215)

7.9 Hydrostatic vertical divergence dhyd.

The “thin layer” expression of dhyd is:

dhyd = − R

Rd

[
cv
cp

ω

Π
+∇V +

Π

RT
∇ [gz]

∂V

∂Π

]
(216)

The (WB1995) deep layer expression of dhyd is:

dhyd = − R

Rd

[
cv
cp

ω

Π
+
a

r

[
r

a
∇
]

V − a2

r2
V
[
r

a
∇
] [

r

a

]
+

Π

RT

[
r

a
∇
]

[gz]
∂
(
aV
r

)
∂Π

]
(217)

The (WS2003) deep layer expression of dhyd is:

dhyd = − R

Rd

[
cv
cp

ω

Π̃

Π̃

Π
+
a

r

[
r

a
∇
]

V +
r

a

Π

RT

[
r

a
∇
]

[Gr]
∂V

∂Π̃

]
(218)
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7.10 Hydrostatic height coordinate vertical velocity whyd.

The “thin layer” expression of whyd matches the following equation:

dhyd = −g Π

RdT

∂whyd/∂η

∂Π/∂η
(219)

which can be rewritten, after a vertical integration:

g [whyd]η=ηl
= g [whyd]surf +

∫ η=1

η=ηl

(∂Π/∂η)RdT

Π
dhyddη (220)

where:
g [whyd]surf = [V]surf ∇Φs (221)

The (WB1995) deep layer expression of whyd matches the following equation:

dhyd = −g Π

RdT

a2

r2

∂
(
r2

a2whyd

)
/∂η

∂Π/∂η
(222)

which can be rewritten, after a vertical integration:

g

[
r2

a2
whyd

]
η=ηl

= g
[r]2surf

a2
[whyd]surf +

∫ η=1

η=ηl

r2

a2

(∂Π/∂η)RdT

Π
dhyddη (223)

where:

g [whyd]surf =
[
a

r
V
]

surf

[
r

a
∇
]

Φs (224)

The (WS2003) deep layer expression of whyd matches the following equation:

dhyd = −G Π

RdT

∂
(
r2

a2whyd

)
/∂η

∂Π̃/∂η
(225)

which can be rewritten, after a vertical integration:

G

[
r2

a2
whyd

]
η=ηl

= G
[r]2surf

a2
[whyd]surf +

∫ η=1

η=ηl

(∂Π̃/∂η)RdT

Π
dhyddη (226)

where:

g [whyd]surf =
[
a

r
V
]

surf

[
r

a
∇
]

Φs (227)

7.11 Moisture convergence CV GQ.

This quantity is also denoted MOCON and is used as input of some convection schemes. Its expression writes:

CV GQ = −V∇q − η̇ ∂q
∂η

(228)

This notion can be generalized to any intensive quantity X: for a quantity X one can define CV GX as:

CV GX = −V∇X − η̇ ∂X
∂η

(229)

7.12 Montgomery potential Φmg and some other energetic quantities.

Formulae containing gz are guaranteed for thin layer equations (is it gz, Gz or Φ for deep-layer equations?).
Formulae for enthalpy and kinetic energy are guaranteed at least for the hydrostatic model (must we add 0.5w2

in the NH model?).

• Montgomery potential: Φmg = cpdT + gz.

• Dry static energy: s = cpT + gz.

• Moist static energy: sh = cpT + gz + Lq.

• Enthalpy: h = cpT + gz + 0.5 ∗ (U2 + V 2).

• Kinetic energy: KE = 0.5 ∗ (U2 + V 2).

Here L is the vapour water latent heat per mass unit.
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7.13 Angular momentum of components MMA, MMB and MMC.

Axial angular momentum:
MMA = [UG + Ωr cos θ] r cos θ (230)

The two other components of the angular momentum are:

MMB = r [− (UG + Ωr cos θ) sin θ cos(λ+ Ωt) + VG sin(λ+ Ωt)] (231)

MMC = r [− (UG + Ωr cos θ) sin θ sin(λ+ Ωt)− VG cos(λ+ Ωt)] (232)

(UG;VG) are the geographical wind components in a geographical system of coordinates; t is the time since the
departure of the model.

7.14 Entropy S.

∗ Hydrostatic model: The total entropy for moist air is given by the following formula:

S = cp log
[
T

T0

]
−R log

[
Π

Π1000

]
+ S0 (233)

where Π1000 = 100000 Pa; T0 = 273.15 K; S0 = S(T = T0; Π = Π1000).
It is easier to get the partial entropies Sd (for dry air), Sv (for water vapour), Sl (for liquid water) and Si (for
ice). They are respectively given by the following formulae:

Sd = cpd log
[
T

T0

]
−Rd log

[
Πd

Π1000

]
+ Sd0 (234)

Sv = cpv log
[
T

T0

]
−Rv log

[
Πv

Π1000

]
+ Sv0 (235)

Sl = cpl log
[
T

T0

]
+ Sl0 (236)

Si = cpi log
[
T

T0

]
+ Si0 (237)

Πd and Πv are respectively the partial pressures of dry air and water vapour: Πv = qΠ and Πd = (1− q)Π.
Constants Sd0, Sv0, Sl0, Si0 have the following values: Sd0 = 6775Jkg−1K−1, Sv0 = 10320Jkg−1K−1,
Sl0 = 3517Jkg−1K−1, Si0 = 2296Jkg−1K−1.
The total entropy for moist air writes:

S = Sd(1− q − ql − qi) + Svq + Slql + Siqi = Sd + (Sv − Sd)q + (Sl − Sd)ql + (Si − Sd)qi

∗ Non-hydrostatic model: The hydrostatic pressures Π, Πd and Πv must be replaced by the total
pressures p, pd and pv.
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8 Discretisation of the equations: general aspects.

8.1 Denotations and preliminary remarks.

∗ Upper index:
• First integration step:

+ : t+ ∆t quantity.

o : t quantity.

− : t quantity.

• Following integration steps:

+ : t+ ∆t quantity.

o : t quantity.

− : t−∆t quantity.

∗ Particular case of the first timestep: Written discretisations are valid from the second integration
step. ∆t has to be replaced by ∆t

2
for the first integration step (in this case the t−∆t quantities are equal to the

t quantities).

∗ The different classes of prognostic variables: Prognostic variables can be split into different
classes:

• 3D variables, the equation RHS of which has a non-zero adiabatic contribution and a non-zero semi-implicit
correction contribution. They are called “GMV” in the code (“GMV” means “grid-point model variables”).
This class of variables includes wind components, temperature (and the two additional non-hydrostatic
variables in a non-hydrostatic model). The sub-class of thermodynamic variables includes T , and the two
additional non-hydrostatic variables in a non-hydrostatic model. There are NFTHER thermodynamic
variables.

• 3D “conservative” variables. The equation RHS of these variables has a zero adiabatic contribution, only
the diabatic contribution (and the horizontal diffusion contribution) can be non-zero. They are called
“GFL” in the code (“GFL” means “grid-point fields”). We can divide this class of variables into two
sub-classes:

– Historical variables (they are advectable). This class of variables includes for example:

∗ humidity q.
∗ liquid water ql.
∗ ice qi.
∗ cloud fraction qa.
∗ rain qr.
∗ snow qs.
∗ convective liquid water qlconv.
∗ convective ice qiconv.
∗ convective rain qrconv.
∗ convective snow qsconv.
∗ graupels qg.
∗ hail qh.
∗ ozone O3.
∗ aerosols qAERO.
∗ TKE (qTKE).
∗ Variables for EFB turbulent parameterization (EFB1 to EFB3).
∗ some extra fields.

– Some non-advectable pseudo-historical variables which are often simple diagnostics which must be
conserved from one timestep to the following one. This class of variables includes for example:

∗ atmospheric total liquid water content for radiation qlrad.
∗ atmospheric total ice content for radiation qirad.
∗ convective precipitation flux (qCPF).
∗ stratiform precipitation flux (qSPF).
∗ second-order flux for AROME (qSRC).
∗ forcings (1D model) (qFORC).
∗ easy diagnostics for AROME physics (qEZDIAG).
∗ greenhouse gases for ECMWF physics (qGHG).
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∗ chemistry for ECMWF physics (qCHEM).
∗ tracers for ECMWF physics (qTRAC).
∗ ERA40 reanalysis fields (ECMWF) (qERA40).
∗ moisture convergence for MF physics (qCVGQ).
∗ total humidity variation for HIRLAM physics (qQVA).
∗ standard deviation of the saturation depression (qSDSAT).
∗ convective vertical velocity (qCVV).
∗ downdraught mesh fraction for ALARO physics (qDAL).
∗ downdraught vertical velocity for ALARO physics (qDOM).
∗ updraught mesh fraction for ALARO physics (qUAL).
∗ updraught vertical velocity for ALARO physics (qUOM).
∗ pseudo-historic convective cloudiness for ALARO physics (qUNEBH).
∗ total turbulent energy (qTTE).
∗ prognostic mixing length (qMXL).
∗ shear source term for turbulence (qSHTUR).
∗ flux form source term for turbulence: moisture (qFQTUR).
∗ flux form source term for turbulence: enthalpy (qFSTUR).
∗ Rasch-Kristjansson enthalpy tendency for ALARO physics (qRKTH).
∗ Rasch-Kristjansson water vapour tendency for ALARO physics (qRKTQV).
∗ Rasch-Kristjansson condensates tendency for ALARO physics (qRKTQC).
∗ pseudo-historic entrainment for ALARO physics (qUEN).
∗ quantities related to methane (qLRCH4).
∗ output aerosols for diagnostics (qAEROUT).
∗ output fields from UV processor (qUVP).
∗ output fields from ECMWF physics (qPHYS).
∗ diagnostic fields for NORO GWD scheme (qNOGW).
∗ semi-Lagrangian dynamics diagnostic fields (qSLDIA).
∗ extra fields for “CRM” model (ECMWF) (qCRM).
∗ specific gas constant (qSPEC).

• 2D variables, the equation RHS of which mixes 3D and 2D terms, has a non-zero adiabatic contribution
and a non-zero semi-implicit correction contribution. They are called “GMVS” in the code (“GMVS”
means “grid-point model variables for surface”). This class of variables includes the logarithm of surface
pressure (continuity equation).

• 2D surface variables used in the physics. They are purely grid-point variables and they represent data at
the surface or into different layers of the soil. This class of variables includes for example the water content
of the superficial reservoir of the soil, or the snow depth. Contrary to the “GMVS” variables they are never
advected. They include prognostic surface fields and diagnostic surface fields.

8.2 Discretisation.

General case: 3D variable in a 3D model:
Equation

∂X

∂t
= −V∇X − η̇ ∂X

∂η
+A+ F (238)

is discretised as follows for unlagged physics:

(X −∆tβL)+ = X− + [2∆tA− 2∆tβL − 2∆tV∇X − 2∆tη̇
∂X

∂η
]o + [∆tβL+ 2∆tF ]− (239)

and as follows for lagged physics:

(X −∆tβL)+ = X− + [2∆tA− 2∆tβL − 2∆tV∇X − 2∆tη̇
∂X

∂η
]o + [∆tβL]− + [2∆tF ]+ (240)

A is the total (non linear and linear) adiabatic contribution, L is the linear adiabatic contribution (semi-implicitly
treated), F is the physical contribution, V∇X is the horizontal advection, η̇ ∂X

∂η
is the vertical advection. All

quantities are evaluated at the same grid point F . Calculation of X+ knowing (X −∆tβL)+ is done in spectral
space. The remaining calculations are done in grid-point space. Horizontal diffusion is not taken in account in
this formula and is done in spectral space.
When doing lagged physics one first computes, without physics

Xprov = (X −∆tβL)+ − (∆tβL)− + (2∆tβL)o = X− + [2∆tA− 2∆tV∇X − 2∆tη̇
∂X

∂η
]o

then does the lagged physics, then computes (X −∆tβL)+
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Particuliar cases:

• GFL variables: terms A and L are zero for these variables. For non advected GFL variables, the advection
terms are replaced by zero.

• 2D variable in a 3D model (continuity equation): see general case, but:

– A+ V∇X is a 2D quantity which is the vertical integral of a 3D quantity.

– L is a 2D quantity which is the vertical integral of a 3D quantity.

– F is a 2D quantity which is the vertical integral of a 3D quantity.

– η̇ ∂X
∂η

is zero.

• 2D variable in a 2D model: see general case, but η̇ ∂X
∂η

is zero in this case.

8.3 Vertical discretisation in a 3D model.

There are two “main” ways of managing the vertical discretisations: a conventional one which has the property
of conserving some global invariants, and another discretisation using a finite elements representation.

∗ Finite difference vertical discretisation (LVERTFE=.F.): The main features of this type
of discretisation are:

• Discretisations mix half level and full level quantities.

• η̇ ∂Π
∂η

is computed at half levels.

• The prognostic 3D variables are computed at full levels.

• When computing a vertical integral from the surface (resp. the top), only quantities between the surface
(resp. the top) are involved; integrals first give half level quantities, then full level quantities by adding a
residual term. This is the case for example for the divergence integral term used in the continuity equation
and in the diagnostic equation giving some vertical velocities.

• The half level hydrostatic pressure always matches the definition of the hybrid vertical coordinate. On the
contrary, the full level hydrostatic pressure does not always do that (that depends on the way to compute
it, there are different possible options).

∗ Finite element vertical discretisation (LVERTFE=.T.): The main features of this type of
discretisation are:

• Discretisations generally avoid computation of half level quantities.

• η̇ ∂Π
∂η

is computed at full levels.

• The prognostic 3D variables are computed at full levels.

• All the vertical integrals of the adiabatic part use a matricial multiplication with special coefficients
computed in setup routines. When computing a vertical integral from the surface or the top, all the
full levels are involved. Vertical integrals directly give full level quantities. The lines of the integral
matricial operator will be denoted by [Rinte](surf,l) (resp. [Rinte](top,l)) for an integral from the surface
(resp. the top) to the layer l. The matricial operator will be denoted by [Rinte](top,surf) for an integral

from the top to the surface. For example,
∫ η=ηl

η=0
Xdη is discretised by the scalar product [Rinte](top,l)〈X〉

where [Rinte](top,l) is the l-th line of the matricial operator Rinte and 〈X〉 is the vector of coordinates
(X1;X2; ...;Xl; ...;XL) (values of X at full levels).

• All the vertical derivatives of the adiabatic part use a matricial multiplication with special coefficients
computed in setup routines. When computing a vertical derivative, all the full levels are involved. Vertical
derivatives directly give full level quantities. The lines of the matricial operator will be denoted by [Rderi]l
for a derivative to the layer l. For example, ∂X

∂η
is discretised by the scalar product [Rderi]l〈X〉 where [Rderi]l

is the l-th line of the matricial operator Rderi and 〈X〉 is the vector of coordinates (X1;X2; ...;Xl; ...;XL)
(values of X at full levels).

• Rderi is not the exact inverse of Rinte, and it is not recommended to apply Rderi and Rinte to the same
quantities (we should avoid to make appear Rderi(Rinte(X)) where this is X which actually appears): this
point may require incremental treatment of vertical derivatives in some parts of the code.

• The finite elements basis for Rinte can be a set of linear functions or a set of Hermite cubic functions.

• Both full level and half level hydrostatic pressure always match the definition of the hybrid vertical
coordinate.

More details are given in (Untch and Hortal, 2001), (Untch and Hortal, 2004) and in appendix 7.
The operator [Rinte] is stored in the array RINTE or RINTBF11 of YOMVERT and pre-computed in the
setup under SUVERTFE. Vertical integrations are done in the routine VERINT.
The operator [Rderi] is stored in one of the arrays RDER.. of YOMVERT and pre-computed in the setup
under SUVERTFE. Vertical derivatives are done in the routine VERDER. It is not exactly the inverse of the
operator [Rinte].
These arrays are attributes of structure TVFE (module YOMVERT).
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9 The hydrostatic pressure based η vertical coordinate.

Parts 9.1 to 9.7 are valid for thin layer equations or (WB1995) formulation of deep-layer equations. For (WS2003)

formulation of deep-layer equations, equations are valid for Π̃, not for Π: this is Π̃ and not Π which matches the
definition of hybrid coordinate.

9.1 Definition and calculation of the hydrostatic pressure at half levels.

The definition of the η-coordinate yields the following relationship:

Π = A(η) +B(η)Πs (241)

The coefficients A and B only depend on η. One has the following additional relationships:

• η = 1 at the surface.

• η = 0 at the top of the model.

• A(η = 1) = 0 and B(η = 1) = 1 at the surface.

• A(η = 0) = Πtop and B(η = 1) = 0 at the top of the model.

A and B are given at half levels, so:
Π
l

= A
l
+B

l
Πs (242)

9.2 Calculation of the hydrostatic pressure at full levels.

There are several ways to compute the hydrostatic pressure at full levels, according to the value of the namelist
variables LVERTFE, NDLNPR and LAPRXPK.

• LVERTFE=.F.:

– NDLNPR=0; LAPRXPK=.TRUE. :

Πl = 0.5(Π
l
+ Π

l−1
) (243)

Remark: this equation matches the definition of the hybrid, coordinate, taking Al = 0.5(A
l
+A

l−1
)

and Bl = 0.5(B
l
+B

l−1
).

For layer l = 1:
Πl=1 = 0.5Π

l=1
(244)

– NDLNPR=0; LAPRXPK=.FALSE. :

log(Πl) =
Π
l
log(Π

l
)−Π

l−1
log(Π

l−1
)

Π
l
−Π

l−1

− 1 (245)

Remark: this equation does not match the definition of the hybrid coordinate but it matches the
identity log(Πl) = log(Π

l
)− αl (see section 10 for definition of α).

For layer l = 1 (replace Π
l−1

and Π
l−1

log(Π
l−1

) by zero in formula (245)):

Πl=1 = Π
l=1

/ exp(1) (246)

– NDLNPR=1 :
Πl =

√
Π
l
Π
l−1

(247)

Remark: this equation does not match the definition of the hybrid coordinate but it matches the
identity log(Πl) = 0.5(log(Π

l
) + log(Π

l−1
)).

For layer l = 1:

Πl=1 = Π
l=1

/
(

1 +
cpd

Rd

)
= Π

l=1
/4.5 (248)

• LVERTFE=.T.:

– NDLNPR=0; LAPRXPK=.TRUE. : for all layers (including the layer number 1):

Πl = Al +BlΠs (249)

The way of computing Al and Bl is the following (the same method is applied to A and B, the
following equations are written for A): one discretises the following equation:

Aη −Aη=0 =

∫ η
′
=η

η
′
=0

dA

dη′
dη
′

(250)
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This is a vertical integral and this integral is computed like any vertical integral in the case
LVERTFE=.T., using a matricial product coded in routine VERINT. dA

dη
at full levels is discretised

as follows: [
dA

dη

]
l

=
A
l
−A

l−1

η
l
− η

l−1

(251)

Remarks:

∗ Equation (249) matches the definition of the hybrid coordinate.
∗ The result slightly depends on the definition of η (variable LVFE REGETA) and gives

something close to the option: LVERTFE=.F.; NDLNPR=0; LAPRXPK=.TRUE. .

– NDLNPR=0; LAPRXPK=.FALSE. : This case is not defined.

– NDLNPR=1 : This case is not defined.

9.3 Calculation of η at half levels.

The explicit definition of η is used at two locations: the semi-Lagrangian vertical interpolator and the VFE
integral and derivative operators.

There are two ways to compute η at half levels, according to the value of the namelist variable LREGETA (or
LVFE REGETA for the version of η used in the VFE operators, denoted by ηvfe):

• LREGETA=.TRUE. (regular spacing of η):

η
l

=
l

L
(252)

• LREGETA=.FALSE. (irregular spacing of η):

η
l

=
A
l

Πsst

+B
l

(253)

LREGETA is relevant only in the semi-Lagrangian scheme. LVFE REGETA is relevant only if
LVERTFE=.T. .

For ηvfe there is an additional option (LVFE REGETA=F, LVFE CENTRI=T) which gives something
intermediate between the original LVFE REGETA=F formulation and the original LVFE REGETA=T
formulation.

η
l

=

∑i=l

i=1
(Πsti −Πsti−1)q∑i=L

i=1
(Πsti −Πsti−1)q

(254)

where q is an exponent between 0 and 1; q = 0 provides LVFE REGETA=T; q = 1 provides the original
LVFE REGETA=F.

9.4 Calculation of η at full levels.

It is always computed according the following way:

ηl = 0.5(η
l
+ η

l−1
) (255)

9.5 Calculation of the horizontal gradient of the hydrostatic pressure at half
levels.

One simply applies the horizontal gradient operator to the half level pressure, using the formula (242).([
r

a
∇
]

Π
)
l

= B
l

[
r

a
∇
]

Πs (256)

9.6 Calculation of the horizontal gradient of the hydrostatic pressure at full
levels.

∗ Case LVERTFE=.F.: This gradient can be written with several different ways. The code is provided
according the following formula:[[

r
a
∇
]

Π

Π

]
l

=

 [∆B]l + δl
A
l
B
l−1
−A

l−1
B
l(

Π
l
−Π

l−1

)(
Π
l
−Π

l−1

)
[ r

a
∇
]

Πs (257)

δl is given by formulae (261) and (263).
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∗ Case LVERTFE=.T.: Expression is simpler and simply writes:([
r

a
∇
]

Π
)
l

= Bl

[
r

a
∇
]

Πs (258)

or: [[
r
a
∇
]

Π

Π

]
l

=
Bl

Al +BlΠs

[
r

a
∇
]

Πs (259)

9.7 Computation of a good set of A and B at half levels.

It requires a formula giving a rather regular spacing in pressure, with the following constraints:

• (C1) ∆Π has little variations in the free troposphere.

• (C2) ∆Π is smaller in the PBL than in the free troposphere, and the variations of ∆Π are smooth in the
PBL.

• (C3) ∆Π regularly decreases when going up in the stratosphere.

• (C4) Π is a monotonous variable, even over high mountains.

• (C5) A is always positive, B is always between 0 and 1 and is a monotonous function.

• (C6) Near the surface, the vertical coordinate is a pure σ one. That means that A
l=L

and A
l=L−1

are
always 0.

• (C7) Near the top, the vertical coordinate is a pure pressure one. That means that B
l=1

and B
l=0

are
always 0.

• (C8) The set of A and B provided must ensure that the operator B used in the semi-implicit scheme can be
always diagonalised with real positive eigenvalues in all the available vertical discretisation schemes (this
is a delicate point especially when the vertical finite element scheme is used with LVFE REGETA=.F.).

Until 2006, we have used a formula provided by J.F. Geleyn: A and B are given by third-degree polynomials.
The freedom degrees are:

• The pressure of the first full layer.

• A ratio allowing to tune the depth of the layer number L.

• A reference pressure on the average orography of the Earth, which can be taken lower than the surface
standard pressure.

It is assumed that there are only one purely σ layer and one purely pressure layer, and that Πtop = 0. Some
tests done during autumn 2004 have shown that the operator B cannot always be diagonalised with real positive
eigenvalues, especially when the vertical finite element scheme is used with LVFE REGETA=.F. . The other
shortcoming of this formula is the too stringent constraint which obliges to have exactly one purely σ layer and
one purely pressure layer. We wish to be able to put several purely pressure layers in the stratosphere and to
obtain sets of A and B close to the ones used at ECMWF.

At ECMWF, a different formula is used, there is no documentation about it and no available FORTRAN
program giving it directly. It allows the possibility of having several purely pressure layers.

To overcome the previously mentioned shortcomings, we have regularly developed new ways of computing the
A and B allowing mode freedom degrees.
An algorithm has been developed between 2004 and 2006 and is described in the internal paper (IDAB). The
freedom degrees are:

• The pressure of the tropopause (generally taken to 250 hPa).

• The pressure of the top of the PBL (generally taken to 900 hPa).

• The number of layers in the stratosphere + mesosphere.

• The number of layers in the PBL.

• The number of layers in the free troposphere.

• The number of purely pressure layers.

• The number of purely σ layers.

• The pressure depth of the bottom model layer.

• The pressure of the first full layer.

• The speed of going from σ layers to pressure layers (governing spacing about mountains).

To sum-up, atmosphere is shared into three main layers and algorithm uses vertical polynomials depending on
pressure.
A more recent algorithm has been developed in 2012 with a possibility to share atmosphere into more than three
main layers; vertical dependency of polynomials used in this algorithm is done according to altitude instead of
pressure; conversions between altitude and pressure use standard atmosphere; altitude depths are prescribed at
some pre-defined altitude levels.
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10 The quantities α and δ linked to pressure depth layers.

The content of this section is valid for thin layer equations or (WB1995) formulation of deep-layer equations. For
(WS2003) formulation of deep-layer equations, replace Π by Π̃, δ by δ̃, α by α̃.

Meaning: δ has the following meaning: the pressure depth of a layer, divided by the “average” pressure of this
layer. α has the following meaning: the pressure depth between a half level and the full level situated immediately
above it, divided by the “average” pressure between this half level and this full level. These operators are used for
discretisations of some vertical integrals. They have a different expression according to the value of the integer
NDLNPR.

Expressions for α and δ at full levels:

• Case LVERTFE=.F.; NDLNPR=0:

– For a layer l between 2 and L (and also l = 1 if the pressure at the top of the model is not zero), α
and δ are discretised as follows at full levels:

αl = 1−
Π
l−1

∆Πl
log

(
Π
l

Π
l−1

)
(260)

δl = log

(
Π
l

Π
l−1

)
(261)

– For the layer l = 1 if the pressure at the top of the model is zero:

∗ αl=1 = 1 at METEO-FRANCE.

∗ αl=1 = log(2) at ECMWF.

∗ δl=1 has an infinite value. In practical, in the code, δl=1 is computed with a top pressure equal
to 0.1 Pa in this case in order to avoid the calculation of an infinite value.

• Case LVERTFE=.F.; NDLNPR=1:

– For a layer l between 2 and L (and also l = 1 if the pressure at the top of the model is not zero), α
and δ are discretised as follows at full levels:

αl = 1−

√
Π
l−1

Π
l

= 1− Πl

Π
l

(262)

δl =
∆Πl

Πl
=

∆Πl√
Π
l−1

Π
l

(263)

Equation (263) can be rewritten: [
1

Π

]
l

=
δl

∆Πl
(264)

– For the layer l = 1 if the pressure at the top of the model is zero:

∗ αl=1 = 1 and α
l=0

= 1.

∗ δl=1 = 1 +
cpd
Rd

.

∗ Πl=1 = ∆Πl=1
δl=1

= ∆Πl=1

1+
cpd
Rd

.

∗
[

1
Π

]
l=1

=
1+

cpd
Rd

∆Πl=1
.

– Remark: equation (264) is also used for case NDLNPR=0 to discretise [1/Π]l.

• Case LVERTFE=.T.; NDLNPR=0: For a layer l between 1 and L, α and δ are discretised as follows at
full levels:

αl =
Π
l
−Πl

Πl
(265)

δl =
∆Πl

Πl
=

∆Πl

Al +BlΠs
(266)

Remark: quantity αl is not used in the adiabatic part of the model (only in the MF-physics).

• Case LVERTFE=.T.; NDLNPR=1: this case is not defined.
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Expressions for
[
r
a∇
]
α and

[
r
a∇
]
δ at full levels: For case LVERTFE=.F., details of calculations

are provided in appendix 1.

• Case LVERTFE=.F.; NDLNPR=0:

– For a layer l between 2 and L (and also l = 1 if the pressure at the top of the model is not zero),[
r
a
∇
]
α and

[
r
a
∇
]
δ are discretised as follows at full levels:

[[
r

a
∇
]
α
]
l

=
Π
l
Π
l−1

log
(

Π
l

Π
l−1

)
−Π

l−1
(Π

l
−Π

l−1
)

(Π
l
−Π

l−1
)2

[
B
l

Π
l

−
B
l−1

Π
l−1

] [
r

a
∇
]

Πs (267)

[[
r

a
∇
]
δ
]
l

= −
A
l
B
l−1
−A

l−1
B
l

Π
l
Π
l−1

[
r

a
∇
]

Πs (268)

The gradient of α+ log Π has a simple expression in this case:[[
r

a
∇
]

(α+ log Π)
]
l

=
B
l

Π
l

[
r

a
∇
]

Πs (269)

– For the layer l = 1 if the pressure at the top of the model is zero:

∗
[[
r
a
∇
]
α
]
l=1

= 0.

∗
[[
r
a
∇
]
δ
]
l=1

has an infinite value.

• Case LVERTFE=.F.; NDLNPR=1:

– For a layer l between 2 and L (and also l = 1 if the pressure at the top of the model is not zero),[
r
a
∇
]
α and

[
r
a
∇
]
δ are discretised as follows at full levels:[[

r

a
∇
]
α
]
l

= −
αl
[
A
l
B
l−1
−A

l−1
B
l

]√
Π
l
Π
l−1

(
Π
l
−Π

l−1

) [ r
a
∇
]

Πs (270)

[[
r

a
∇
]
δ
]
l

= −
δl
[
A
l
B
l−1
−A

l−1
B
l

]√
Π
l
Π
l−1

(
Π
l
−Π

l−1

) [ r
a
∇
]

Πs (271)

Using equation (263), equation (273) can be rewritten:[[
r

a
∇
]
δ
]
l

= −

[
A
l
B
l−1
−A

l−1
B
l

]
Π
l
Π
l−1

[
r

a
∇
]

Πs (272)

– For the layer l = 1 if the pressure at the top of the model is zero:

∗
[[
r
a
∇
]
α
]
l=1

= 0.

∗
[[
r
a
∇
]
δ
]
l=1

= 0.

• Case LVERTFE=.T.; NDLNPR=0: For a layer l between 1 and L,
[
r
a
∇
]
δ is discretised as follows at

full levels: [[
r

a
∇
]
δ
]
l

=

(
[∆B]l
[∆Π]l

− Bl
Πl

)
δl

[
r

a
∇
]

Πs =
Al[∆B]l − [∆A]lBl

Πl[∆Π]l
δl

[
r

a
∇
]

Πs (273)

Quantity
[[
r
a
∇
]
α
]
l

is useless in this case.

• Case LVERTFE=.T.; NDLNPR=1: this case is not defined.

46



11 Treatment of the advection (2D and 3D models).

11.1 Treatment of the horizontal advection (2D and 3D models).

∗ 3D model: Horizontal advections are computed at full levels. For a variable X other than wind components:

[V∇X]l = Vl [∇Xl]l (274)

In the deep layer formulation, it is better to rewrite this equation as follows:

[V∇X]l =
[
a

r

]
l
Vl

[[
r

a
∇
]
X
]
l

(275)

Remarks:

• In the deep layer equations, quantities Vl and
[[
r
a
∇
]
X
]
l

are easily available in the model, and there is

one additional multiplication by [a
r
]l to do compared to the thin layer equations.

• For X = U or X = V (horizontal wind components) the meridian derivatives of U and V are not easily
available, and the horizontal gradient is rewritten in order to use the divergence, vorticity, and some
curvature terms. See the parts (5.2.1) and (5.3.2) concerning the momentum equation for more details.

• The values of r, V and X used in formulae (274) and (275) are taken at instant t.

∗ 2D model: The only difference with the 3D case is that there is only one layer (index l is useless) and that
the notion of deep layer equations has no sense in this case.

11.2 Treatment of the vertical advection (3D model).

Case LVERTFE=.F. .

Vertical advection is treated explicitly. For a variable X, its vertical advection η̇ ∂X
∂η

is computed at full levels and
is discretised as follows:(

η̇
∂X

∂η

)
l

= 0.5

((
η̇ ∂Π
∂η

)
l
(Xl+1 −Xl)

(∆Π)l
+

(
η̇ ∂Π
∂η

)
l−1

(Xl −Xl−1)

(∆Π)l

)
(276)

For the layer l = 1
(
η̇ ∂Π
∂η

)
η=0

can be different from 0 if a radiative upper condition is applied; one uses the top

value Xη=0 of X: (
η̇
∂X

∂η

)
1

= 0.5

((
η̇ ∂Π
∂η

)
l=1

(X2 −X1)

(∆Π)1
+

2
(
η̇ ∂Π
∂η

)
η=0

(X1 −Xη=0)

(∆Π)1

)
(277)

For the layer l = L,
(
η̇ ∂Π
∂η

)
L

can be different from 0 (if taking account of rainfall and evaporation in the continuity

equation); one uses the bottom value Xη=1 of X:(
η̇
∂X

∂η

)
L

= 0.5

(
2
(
η̇ ∂Π
∂η

)
η=1

(Xη=1 −XL)

(∆Π)L
+

(
η̇ ∂Π
∂η

)
l=L−1

(XL −XL−1)

(∆Π)L

)
(278)

The values of X,
(
η̇ ∂Π
∂η

)
and (∆Π) present in the RHS of equations (276), (277) and (278) are taken at instant t.

Case LVERTFE=.T. .

∗ General case:
Vertical advection is treated explicitly. For a variable X, its vertical advection η̇ ∂X

∂η
is computed at full levels and

is discretised as follows: (
η̇
∂X

∂η

)
l

=

(
η̇
∂Π

∂η

)
l

(∆η)l
(∆Π)l

(
∂X

∂η

)
l

(279)

where (
∂X

∂η

)
l

= [Rderi]l〈X〉

(〈X〉 is the vector containing all layer values of X).

∗ Particuliar case of the moisture convergence:
The code present in routine CPPHINP currently uses a different vertical discretisation not described in detail.
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12 Physics and physics-dynamics interface (3D model).

12.1 Time of evaluation.

In an Eulerian scheme physics can be evaluated at t −∆t (not lagged physics) or t + ∆t (lagged physics). The
lagged physics use as input the provisional t + ∆t variables available at the end of the grid-point calculations
(before the inversion of the semi-implicit system and the horizontal diffusion).

12.2 Physical tendencies, flux divergences, and flux in the thin layer
equations.

∗ Physical tendencies and flux divergences: Physical tendencies write F = 1
ρ
∂F
∂z

in z-vertical

coordinate and F = −g ∂F
∂Π

in pressure Π-vertical coordinate. F is the flux.

∗ Relationship between fluxes and flux divergences: Between two hydrostatic pressure layers
Π(1) and Π(2), the fluxes difference writes:

F(Π(2))−F(Π(1)) =

∫ Π=Π(2)

Π=Π(1)

∂F
∂Π

dΠ (280)

The discretised form of this equation writes:

F
l
−F

l−1
=
[
∂F
∂Π

]
l
[∆Π]l (281)

12.3 Physical tendencies, flux divergences, and flux in the deep layer
equations.

∗ Physical tendencies and flux divergences: Physical tendencies write F = 1
ρ
a2

r2
∂F
∂z

in z-vertical

coordinate and F = −g[a
2

r2
∂F
∂Π

] in pressure Π-vertical coordinate. F is a flux defined by an additive quantity,
divided by a surface area on a surface iso-r = a. This is more convenient to store this flux in the model (which
is additive) than the genuine flux Fvrai which would be defined by an additive quantity divided by the true
surface taken on a surface iso-r where r is not necessary equal to a (Fvrai and F are linked by the relationship

Fvrai = a2

r2
F). For convenience, the flux divergence which is actually stored in the model is [a

2

r2
∂F
∂Π

].

∗ Relationship between fluxes and flux divergences: Between two hydrostatic pressure layers
Π(1) and Π(2), the fluxes difference writes:

F(Π(2))−F(Π(1)) =

∫ Π=Π(2)

Π=Π(1)

r2

a2

[
a2

r2

∂F
∂Π

]
dΠ (282)

The discretised form of this equation writes:

F
l
−F

l−1
=

[
r2

a2

]
l

[
a2

r2

∂F
∂Π

]
l

[∆Π]l (283)

One has to remember that the quantities stored in the model code are F at half levels and [a
2

r2
∂F
∂Π

] at full levels.

12.4 Remark for VFE vertical discretisation.

Vertical integrals in the physics and transformations between fluxes and flux divergences use the same
discretisation as for LVERTFE=.F. . Operator Rinte is not used. Fluxes remain computed at half levels.
When a flux is needed at full levels knowing its value at half levels, the following average is used:

Fl = F
l−1

+
αl
δl

(
F
l
−F

l−1

)
The only difference between LVERTFE=.T. and LVERTFE=.F. is the way of discretizing αl and δl.
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12.5 Levels of physics-dynamics interfaces.

To summarize, we can say that calling the different physical parameterisations is done according to the following
scheme:

dynamics ->

physics-dynamics interface routines ->

physics caller routine ->

the different physical parameterisations.

For non-AROME MF physics, this kind of scheme can be retrieved in the following sequence of calls:

CPG -> MF_PHYS -> APLPAR -> AC.. and RAD.. routines.

Actions done in the physics-dynamics interface routines are:

• Calculation of input quantities which are used only in the physics (for example moisture convergence, solar
angle).

• Call the physics (via a physics caller routine).

• Conversion of the physics outputs (fluxes or tendencies of physics prognostic variables) into tendencies of
dynamics prognostic variables.

• Store tendencies in / add tendencies to appropriate buffers.

• Perform additional diagnostics.

• Temporal advance of surface and soil variables.

Some of them may have to call GP.. or GNH.. routines (do intermediate dynamical calculations), for example
GPHPRE.

In physics caller routines, we just find call to different physical parameterisation routines. These routines should
not do dynamics (call to GP.. routines like GPHPRE is forbidden) and should not know the kind of vertical
coordinate which is used in the adiabatic part of the model.

See documentation (IDPHYE) for more details about physics, and physics-dynamics interface.

12.6 The “delta m = 1” barycentric formulation.

The “δm = 0” assumption says that, when it rains, a particle of water is not replaced by a particle of dry air,
and when there is some evaporation (especially near the ground), there is no removal of dry air. This assumption
can lead to bad conservation of mass, especially for high resolution simulations (below 10 km). This assumption
remains acceptable for the ranges of horizontal resolutions where the hydrostatic hypothesis works well.
But a “δm = 1” formulation has been coded since several years, which takes account of the rainfall and the
evaporation in the dry air budget, for example by replacing a particle of water by a particle of dry air when
it rains. This “δm = 1” has evolved during the last years, going from a “non barycentric” formulation to a
“barycentric” formulation (the last one treats at the same level rainfall and evaporation). Since CY29T3/AL29T3,
the “barycentric” formulation of “δm = 1” formulation has been implemented in the code and we will give a short
description of it.

For “δm = 0”:

• when it rains, a particle of water is not replaced by a particle of dry air: the consequence is that the
diabatic term linked to rainfall is replaced by zero in the continuity equation.

• when there is evaporation, a created particle of water does not pull out a particle of dry air: the consequence
is that the diabatic term linked to evaporation is replaced by zero in the continuity equation.

• Fm becomes equal to zero.

• there is no modification of the vertical velocity, and η̇ ∂Π
∂η

at the surface is equal to zero.

For “δm = 1”:

• The precipitation flux and the evaporation flux must be taken into account, and Fm = FE +Fp is non-zero.
For the time being the following assumptions are done:
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– FE is non-zero only at the surface, zero elsewhere.

– Fp is zero at the top of the atmosphere.

• η̇ ∂Π
∂η

is modified, excepted at the top of the atmosphere (where it remains to zero, unless LRUBC=.T.).

The “barycentric” formulation of “δm = 1” leads to the following modifications (a
2

r2
appears only for the (WB1995)

deep-layer equations, this factor must be replaced by 1 otherwise; Π must be replaced by Π̃ for Wood and Staniforth
deep layer equations).

• Term ω: the RHS of equations (141) and (105) is the same for “δm = 0” and “δm = 1”. The consequence
is that: [

ω

Π

]
ηl,δm=1

=
[
ω

Π

]
ηl,δm=0

• Term η̇ ∂Π
∂η

at the surface:[
η̇
∂Π

∂η

]
η=1,δm=1

=

[
η̇
∂Π

∂η

]
η=1,δm=0

+

(
a2

r2

)
η=1

g [FE + Fp]η=1

• Upper air term η̇ ∂Π
∂η

: we combine [RHS eqn (138)]δm=1 - [RHS eqn (138)]δm=0 with the previous equation:[
η̇
∂Π

∂η

]
ηl,δm=1

=

[
η̇
∂Π

∂η

]
ηl,δm=0

+Bηl

(
a2

r2

)
η=1

g [FE + Fp]η=1

• Diabatic part of ∂ log(Πs)
∂t

:[
∂ log(Πs)

∂t

]
δm=1

−
[
∂ log(Πs)

∂t

]
δm=0

= − 1

Πs
g [FE + Fp]η=1

(
a2

r2

)
η=1
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13 The Eulerian discretisation of the 2D shallow-water system
of equations (spherical geometry).

13.1 Momentum equation.

∗ Definition of X, A and L.
X = V + δV(2Ω ∧ r) (284)

A = −2(Ω ∧V)−∇Φ (285)

L = −∇Φ + βCo[−2Ω ∧V] (286)

∗ Remarks.

• If β=1, the part of the non linear term which does not contain the Coriolis term is zero.

• It is desirable to discretise the momentum equation form given by equation (75). Vector DV can be
computed knowing the following quantities easily available in the grid-point part of the model: U , V , D,
ζ, 1

a cos θbne

∂U
∂λbne

, 1
a cos θbne

∂V
∂λbne

, 2
a

tan θbne.

13.2 Continuity equation.

∗ Definition of X, A and L.
X = Φ (287)

A = −(Φ− Φs)D (288)

L = −Φ∗(M
2
D
′
) (289)

13.3 Application to the 2D “vorticity” system of equations.

• For the 2D “vorticity” system of equations, start from the shallow-water model, and replace Φ and Φs by
zero in it.
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14 The Eulerian discretisation of the 3D primitive equation
model.

14.1 Thin layer formulation of the momentum equation.

∗ Definition of X, A, L and F , top and bottom values.

X = V (290)

A = −2Ω ∧V −∇Φ−RT∇(log Π) (291)

L = −∇ [γT +RdT
∗ log(Πs)] + βCo[−2(Ω ∧V)] (292)

F = FV (293)

Top and bottom values are defined as follows:

Vη=0 = Vl=1 (294)

If δm = 0:
Vη=1 = Vl=L (295)

If δm = 1:
Vη=1 = 0 (296)

∗ Remarks.
• Coriolis term can also be put in the semi-implicit scheme by tuning βCo. Values βCo = 0 (LIMPF=.F.) and
βCo = 1 (LIMPF=.T.) are available. Caution: do not use LIMPF=.T. in variable resolution (formulation
of spectral computations is not correct in this case for the semi-implicit scheme).

• It is desirable to discretise the momentum equation form given by equation (82). Vector [DV]l on layer l
can be computed knowing the following quantities easily available in the grid-point part of the model: Ul,

Vl, M
2D
′
l , M

2ζ
′
l , [ 1

a cos θbne

∂U
∂λbne

]l, [ 1
a cos θbne

∂V
∂λbne

]l, [ 2
a

tan θbne]l.

∗ Discretisation of −2Ω ∧V at full levels:

[(−2Ω ∧V).i]l = 2Ω sin θVl (297)

[(−2Ω ∧V).j]l = −2Ω sin θUl (298)

∗ Discretisation of the pressure gradient term at full levels: The pressure gradient term
writes:

− (∇Φ +RT∇(log Π))

It contains the geopotential Φ = gz. Expression of gz is provided by equation (97). So the pressure gradient term
can be rewritten as follows:

−
(
∇Φs +∇

(∫ Π

Πs

−RT
Π
dΠ

)
+RT∇(log Π)

)
Term:

∇Φs +∇
(∫ Π

Πs

−RT
Π
dΠ

)
+RT∇(log Π)

is discretised as follows if LVERTFE=.F.:[
∇Φs +∇

(∫ Π

Πs
−RT

Π
dΠ
)

+RT∇(log Π)
]
l

=

∇Φs +
∑l+1

k=L
[∇(RT )]k δk +

∑l+1

k=L
(RT )k [∇δ]k

+ [∇(RT )]l αl + (RT )l [∇(α+ log Π)]l (299)

and as follows if LVERTFE=.T.:[
∇Φs +∇

(∫ Π

Πs
−RT

Π
dΠ
)

+RT∇(log Π)
]
l

=

∇Φs + [Rinte](surf,l)
〈
−∇(RT )δ+RT∇δ

∆η

〉
+ (RT )l [∇(log Π)]l (300)

(where 〈X〉 denotes the vertical vector of coordinates (Xk=1, ..., Xk=l, ..., Xk=L)).

∗ Discretisation of the grid-point Rayleigh friction: This term writes KfricU i, its discretisation
on layer l is KfricUli. An optional contribution can be added to V -component: this term writes KfricV j, its
discretisation on layer l is KfricVlj.
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14.2 (WB1995) deep layer formulation of the momentum equation.

∗ Definition of X, A, L and F , top and bottom values.

X = V (301)

A = −2Ω ∧V − 2Ω ∧Wk− W

r
V −∇Φ− (RT + µsRdTr)∇(log Π) (302)

L = −M∇
′
[γT +RdT

∗ log(Πs)] + βCo[−2(Ω ∧V)] (303)

F = FV (304)

Top and bottom values are defined as follows:

Vη=0 = Vl=1 (305)

If δm = 0:
Vη=1 = Vl=L (306)

If δm = 1:
Vη=1 = 0 (307)

∗ Remarks.
• Coriolis term can also be put in the semi-implicit scheme by tuning βCo. Values βCo = 0 (LIMPF=.F.) and
βCo = 1 (LIMPF=.T.) are available. Caution: do not use LIMPF=.T. in variable resolution (formulation
of spectral computations is not correct in this case for the semi-implicit scheme).

• It is desirable to discretise the momentum equation form given by equation (119). Vector [DV]l on layer l
can be computed knowing the following quantities easily available in the grid-point part of the model: Ul,

Vl, M
2D
′
l , M

2ζ
′
l , [ 1

a cos θbne

∂U
∂λbne

]l, [ 1
a cos θbne

∂V
∂λbne

]l, [ 2
a

tan θbne]l, [a
r
]l.

∗ Discretisation of −2Ω ∧V at full levels: See formulae (297) and (298), which are still valid.

∗ Discretisation of W at full levels:

Wl = −Rd[Tr]l[ω]l
g[Π]l

(308)

See part (14.10) for discretisation of ω at full levels. See part (9.2) for discretisation of Π at full levels.

∗ Discretisation of −2Ω ∧Wk at full levels:

[(−2Ω ∧Wk).i]l = −2GnordmΩ cos θWl (309)

[(−2Ω ∧Wk).j]l = 2GnordlΩ cos θWl (310)

∗ Discretisation of −W
r V at full levels:

−
[(
W

r
V
)
.i
]
l

= −
[
a

r

]
l

Wl

a
Ul (311)

−
[(
W

r
V
)
.j
]
l

= −
[
a

r

]
l

Wl

a
Vl (312)

∗ Discretisation of the pressure gradient term at full levels: The pressure gradient term
writes:

− (∇Φ +RT∇(log Π) + µsRdTr∇(log Π))

It contains the total geopotential Φ, and the additional term µsRdTr∇(log Π). This expression can be rewritten

with the semi-reduced gradient operator
[
r
a
∇
]
:

−a
r

([
r

a
∇
]

Φ +RT
[
r

a
∇
]

(log Π) + µsRdTr

[
r

a
∇
]

(log Π)
)

Expression of Φ is provided by equation (134). So the pressure gradient term can be rewritten as the sum of two
terms:

• The first one, which comes from the expression of gz:

−a
r

([
r

a
∇
]

Φs +
[
r

a
∇
](∫ Π

Πs

−RT
Π
dΠ

)
+RT

[
r

a
∇
]

(log Π)

)
53



• The second one, which contains some additional µs terms:

−a
r

([
r

a
∇
](∫ Π

Πs

−µs
RdTr

Π
dΠ

)
+ µsRdTr

[
r

a
∇
]

(log Π)

)
Term: [

r

a
∇
]

Φs +
[
r

a
∇
](∫ Π

Πs

−RT
Π
dΠ

)
+RT

[
r

a
∇
]

(log Π)

which already exists in the thin layer formulation, is discretised like in the thin layer formulation:

• Case LVERTFE=.F.: [[
r
a
∇
]

Φs +
[
r
a
∇
] (∫ Π

Πs
−RT

Π
dΠ
)

+RT
[
r
a
∇
]

(log Π)
]
l

=[
r
a
∇
]

Φs +
∑l+1

k=L

[[
r
a
∇
]

(RT )
]
k
δk +

∑l+1

k=L
(RT )k

[[
r
a
∇
]
δ
]
k

+
[[
r
a
∇
]

(RT )
]
l
αl + (RT )l

[[
r
a
∇
]

(α+ log Π)
]
l

(313)

• Case LVERTFE=.T.: [[
r
a
∇
]

Φs +
[
r
a
∇
] (∫ Π

Πs
−RT

Π
dΠ
)

+RT
[
r
a
∇
]

(log Π)
]
l

=[
r
a
∇
]

Φs + [Rinte](surf,l)

〈
− [ ra∇](RT )δ+RT [ ra∇]δ

∆η

〉
+ (RT )l

[[
r
a
∇
]

(log Π)
]
l

(314)

The code does all the calculations with the operator
[
r
a
∇
]
, and after these calculations, it does a multiplication

by a/(r)l to obtain the geographical pressure gradient term. The additional term containing µs uses the same
type of discretisation (re-use formulae (313) and (314) in replacing ∇Φs by zero and RT by µsRdTr). That leads
to the following discretisation:

• Case LVERTFE=.F.: [[
r
a
∇
] (∫ Π

Πs
−µs

RdTr

Π
dΠ
)

+ µsRdTr

[
r
a
∇
]

log Π
]
l

=∑l+1

k=L

[[
r
a
∇
]

(µsRdTr)
]
k
δk +

∑l+1

k=L
(µsRdTr)k

[[
r
a
∇
]
δ
]
k

+
[[
r
a
∇
]

(µsRdTr)
]
l
αl + (µsRdTr)l

[[
r
a
∇
]

(α+ log Π)
]
l

(315)

• Case LVERTFE=.T.: [[
r
a
∇
] (∫ Π

Πs
−µs

RdTr

Π
dΠ
)

+ µsRdTr

[
r
a
∇
]

log Π
]
l

=

[Rinte](surf,l)

〈
− [ ra∇](µsRdTr)δ+µsRdTr[ ra∇]δ

∆η

〉
+ (µsRdTr)l

[[
r
a
∇
]

(log Π)
]
l

(316)

Term µsRdTr is not more difficult to discretise than RT .

[µsRdTr]l = [µs]lRd[Tr]l (317)

For µs, discretisation of equation (131) at full levels yields:

[µs]l = −
2 [r]l Ω cos θ(GnordmUl − GnordlVl) + U2

l + V 2
l

[r]l g
(318)

For Tr, use formula (107) and formulae provided in part (9.2) (computation of hydrostatic pressure at full levels).

Term
[
r
a
∇
]

(µsRdTr) is more difficult to discretise, because of the rather tricky discretisation of
[
r
a
∇
]
µs.[

r
a
∇
]

(µsRdTr) can be written as a sum of two terms: µsRd

[
r
a
∇
]
Tr +RdTr

[
r
a
∇
]
µs.

• For µs at full levels, use equation (318).

• For Tr at full levels, use formula (107) and formulae provided in part (9.2) (computation of hydrostatic
pressure at full levels).

• For
[
r
a
∇
]
Tr, use formula (109) and formulae provided in part (9.6) (discretisation of

[ ra∇]Π
Π

at full levels).

54



• For
[
r
a
∇
]
µs: for details of all the calculations, see appendix 3. This quantity has to be put under the sum

of several quantities. [
r
a
∇
]
µs =

− 2Ω
g
Gnordm cos θ

[
r
a
∇
]
U + 2Ω

g
Gnordl cos θ

[
r
a
∇
]
V

− 2Ω
g
U
[
r
a
∇
]

(Gnordm cos θ) + 2Ω
g
V
[
r
a
∇
]

(Gnordl cos θ)

+U2+V 2

gr2

[
r
a
∇
]
r − 1

rg

(
2U
[
r
a
∇
]
U + 2V

[
r
a
∇
]
V
)

(319)

This expression uses the following quantities:

– U and V at full levels.

– r at full levels: use formulae (110) or (112) and formulae provided in part (9.2) (computation of
hydrostatic pressure at full levels).

–
[
r
a
∇
]
r: use formulae (111) or (113) and formulae provided in part (9.6) (discretisation of

[ ra∇]Π
Π

at

full levels).

–
[
r
a
∇
]
U : it is convenient to write its expression with vorticity and some curvature terms. It can be

written as a vector of coordinates: M2
[

1
a cos Θ

∂U
′

∂Λ

]
M2
[
−ζ
′

+ 1
a cos Θ

∂V
′

∂Λ

]
+
[
MU
′

2

(
2 tan θbne

a

)]


–
[
r
a
∇
]
V : it is convenient to write its expression with divergence and some curvature terms. It can

be written as a vector of coordinates: M2
[

1
a cos Θ

∂V
′

∂Λ

]
M2
[
D
′
− 1

a cos Θ
∂U
′

∂Λ

]
+
[
MV
′

2

(
2 tan θbne

a

)]


–
[
r
a
∇
]

(Gnordl cos θ): this geometrical quantity (useless in the thin layer equations) is zero in an untilted
geometry; in a tilted geometry it is a vector of components:[

r

a
∇
]

(Gnordl cos θ) =
(
− M
a cos Θ

cos θpe cos Λ
0

)
(320)

–
[
r
a
∇
]

(Gnordm cos θ): this geometrical quantity (useless in the thin layer equations) is a vector of
components: (

1
2ca cos Θ

(
(c2 − 1) + (c2 + 1) sin Θ

)
cos θpe sin Λ

− 1
a

(((c2−1)+(c2+1) sin Θ) sin θpe+2c cos Θ cos θpe cos Λ)
((c2+1)+(c2−1) sin Θ)

)

∗ Discretisation of the grid-point Rayleigh friction: This term writes KfricU i, its discretisation
on layer l is KfricUli. An optional contribution can be added to V -component: this term writes KfricV j, its
discretisation on layer l is KfricVlj.

14.3 Thermodynamic equation.

∗ Definition of X, A, L and F , top and bottom values.

X = T (321)

A =
RT

cp

ω

Π
(322)

L = −τ(M
2
D
′
) (323)

F = FT (324)

Top:
Tη=0 = Tl=1 (325)

Bottom if δm = 0:
Tη=1 = Tl=L (326)

Bottom if δm = 1 (output of physics):
Tη=1 = Ts (327)
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∗ Discretisation of the conversion term.[
RT

cp

ω

Π

]
l

=
RlTl
[cp]l

[
ω

Π

]
l

(328)

See part (14.10) for discretisation of ω
Π

at full levels.

14.4 Thin layer formulation of the continuity equation.

∗ Definition of X, A, L, and F .
X = log Πs (329)

A = − 1

Πs

∫ η=1

η=0

∇
(

V
∂Π

∂η

)
dη + V∇ [log Πs]−

1

Πs

[
η̇
∂Π

∂η

]
η=1

+
1

Πs

[
η̇
∂Π

∂η

]
η=0

(330)

L = −M
2

M2
νD (331)

F =
(
Fm

Πs

)
(332)

The actual form of continuity equation which is discretised replaces the sum of A and of the horizontal advection
term by a term which is a vertical integral of a divergence term.

∗ Discretisation of the vertical integral of the divergence term: The term to discretise is:

1

Πs

∫ η=1

η=0

∇
(

V
∂Π

∂η

)
dη

In the RHS of continuity equation, term
1

Πs
∇
(

V
∂Π

∂η

)
is rewritten under the sum of several terms:

1

Πs
V∇

(
∂Π

∂η

)
+

1

Πs

(
∂Π

∂η

)
∇V

• Term 1
Πs

V∇
(
∂Π
∂η

)
: using equation (241), the vertical integral of this term can be rewritten as:∫ η=1

η=0

V
∂B

∂η
(η)∇ log Πsdη

Discretisation of this term writes:

– Case LVERFTE=.F.:
L∑
l=1

[∆B]lVl∇ log Πs

– Case LVERFTE=.T.:

[Rinte](top,surf)

〈
∆B

∆η
V∇ log Πs

〉
• Term 1

Πs

(
∂Π
∂η

)
∇V: discretisation of this term writes:

– Case LVERFTE=.F.:

1

Πs

L∑
l=1

[∆Π]l∇Vl

– Case LVERFTE=.T.:
1

Πs
[Rinte](top,surf)

〈
∆Π

∆η
∇V

〉
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14.5 (WB1995) deep layer formulation of the continuity equation.

∗ Definition of X, A, L, and F .
X = log Πs (333)

A = −
[
a2

r2

]
η=1

1

Πs

∫ η=1

η=0

[
r

a
∇
](

r

a
V
∂Π

∂η

)
dη+

a

r
V
[
r

a
∇
]

[log Πs]−
1

Πs

[
η̇
∂Π

∂η

]
η=1

+
1

Πs

[
a2

r2

]
η=1

[
r2

a2

]
η=0

[
η̇
∂Π

∂η

]
η=0

(334)

L = −ν(M
2
D
′
) (335)

F =
(
Fm

Πs

)
(336)

The actual form of continuity equation which is discretised replaces the sum of A and of the horizontal advection
term by a term which is a vertical integral of a divergence term. One discretises equation (124).

∗ Discretisation of the vertical integral of the divergence term: The term to discretise is:

1

Πs

∫ η=1

η=0

[
r

a
∇
](

r

a
V
∂Π

∂η

)
dη

In the RHS of continuity equation, term
1

Πs

[
r

a
∇
](

r

a
V
∂Π

∂η

)
is rewritten under the sum of several terms:

1

Πs

r

a
V
[
r

a
∇
](

∂Π

∂η

)
+

1

Πs

r

a

(
∂Π

∂η

)[
r

a
∇
]

V +
1

Πs
V

(
∂Π

∂η

)[
r

a
∇
](

r

a

)
• Term 1

Πs

r
a
V
[
r
a
∇
] (

∂Π
∂η

)
: using equation (241), the vertical integral of this term can be rewritten as:∫ η=1

η=0

r

a
V
∂B

∂η
(η)
[
r

a
∇
]

log Πsdη

Discretisation of this term writes:

– Case LVERFTE=.F.:
L∑
l=1

[∆B]l

(
r

a

)
l
Vl

[
r

a
∇
]

log Πs

– Case LVERFTE=.T.:

[Rinte](top,surf)

〈
∆B

∆η

(
r

a

)
V
[
r

a
∇
]

log Πs

〉
• Term 1

Πs

r
a

(
∂Π
∂η

) [
r
a
∇
]
V: discretisation of this term writes:

– Case LVERFTE=.F.:

1

Πs

L∑
l=1

(
r

a

)
l
[∆Π]l

[
r

a
∇
]

Vl

– Case LVERFTE=.T.:
1

Πs
[Rinte](top,surf)

〈(
r

a

)
∆Π

∆η

[
r

a
∇
]

V

〉
• Term 1

Πs
V
(
∂Π
∂η

) [
r
a
∇
] (

r
a

)
: discretisation of this term writes:

– Case LVERFTE=.F.:

1

Πs

L∑
l=1

Vl[∆Π]l

[[
r

a
∇
](

r

a

)]
l

– Case LVERFTE=.T.:
1

Πs
[Rinte](top,surf)

〈
V

∆Π

∆η

[[
r

a
∇
](

r

a

)]〉
The sum of integrated terms has then to be multiplied by

(
a2

r2

)
η=1

to obtain the tendency ∂ log(Πs)
∂t

.
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14.6 Moisture equation.

∗ Definition of X, A, L and F , top and bottom values.

X = q (337)

A = 0 (338)

L = 0 (339)

F = Fq (340)

Top:
qη=0 = ql=1 (341)

Bottom if δm = 0:
qη=1 = ql=L (342)

Bottom if δm = 1 (see CPQSOL, relative humidity is the same for η = ηL and η = 1):

qη=1 = qs (343)

14.7 Other GFL variables.
∗ Definition of X, A, L and F , top and bottom values, for advectable variables.
Equations are discretised as for humidity equation, the only difference is sometimes for the choice of vertical
boundary conditions at the top and bottom. For example, for liquid water ql:

X = ql (344)

A = 0 (345)

L = 0 (346)

Top:
[ql]η=0 = [ql]l=1 (347)

Bottom if δm = 0:
[ql]η=1 = [ql]l=L (348)

Bottom if δm = 1:
[ql]η=1 = 0 (349)

Vertical boundary conditions:

• quantities are assumed constant above the middle of the upper layer and below the middle of the lower
layer in case δm = 0.

• quantities are assumed constant above the middle of the upper layer in case δm = 1.

• advectable GFL variables other than humidity are assumed to be zero at the surface in case δm = 1.

∗ Particular case of non advectable pseudo-historic GFL variables: Equations given for
liquid water are still valid; advections have to be replaced by zero; definition of top and bottom values is useless.

14.8 Relationship between geopotential height gz and pressure depth.

∗ Geopotential height at half levels (case LVERTFE=.F. only): Discretisation of equation
(97) at half levels yields:

gz
l

= gzs +

k=l+1∑
k=L

[RkTk] δk (350)

See section (10) for discretisation of δ at full levels.

∗ Geopotential height at full levels:
• Case LVERTFE=.F.: It is computed from the geopotential height at half levels by the following

relationship:
gzl = gz

l
+ [RlTl]αl (351)

See section (10) for discretisation of α at full levels.

• Case LVERTFE=.T.:

gzl = gzs + [Rinte](surf,l)

〈
−RTδ

∆η

〉
(352)

See section (10) for discretisation of δ at full levels.
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∗ Horizontal gradient of the geopotential height at half levels (case LVERTFE=.F.
only): One applies the operator

[
r
a
∇
]

(∇ in the thin layer equations) to equation (350). That yields:

g
[[
r

a
∇
]
z
]
l

= g
[
r

a
∇
]
zs +

k=l+1∑
k=L

[[
r

a
∇
]

(RT )
]
k
δk +

k=l+1∑
k=L

[RkTk]
[[
r

a
∇
]
δ
]
k

(353)

See section (10) for discretisation of δ and
[
r
a
∇
]
δ at full levels.

∗ Horizontal gradient of the geopotential height at full levels: One applies the operator[
r
a
∇
]

(∇ in the thin layer equations) to equation (351). That yields:

• Case LVERTFE=.F.:

g
[[
r

a
∇
]
z
]
l

= g
[[
r

a
∇
]
z
]
l
+
[[
r

a
∇
]

(RT )
]
l
αl + [RlTl]

[[
r

a
∇
]
α
]
l

(354)

See section (10) for discretisation of α and
[
r
a
∇
]
α at full levels.

• Case LVERTFE=.T.:

g
[[
r

a
∇
]
z
]
l

= g
[
r

a
∇
]
zs + [Rinte](surf,l)

〈
−
[
r
a
∇
]

(RT )δ +RT
[
r
a
∇
]
δ

∆η

〉
(355)

See section (10) for discretisation of δ and
[
r
a
∇
]
δ at full levels.

14.9 Total geopotential Φ in the (WB1995) system.

∗ Total geopotential at half levels (case LVERTFE=.F. only): Discretisation of equation
(134) at half levels yields:

Φ
l

= Φs +

k=l+1∑
k=L

[RkTk] δk +

k=l+1∑
k=L

[[µs]kRd[Tr]k] δk (356)

See section (10) for discretisation of δ at full levels. See part (14.2) for discretisation of µs at full levels.

∗ Total geopotential at full levels:
• Case LVERTFE=.F.: It is computed from the total geopotential at half levels by the following relationship:

Φl = Φ
l
+ [RlTl]αl + [[µs]lRd[Tr]l]αl (357)

See section (10) for discretisation of α at full levels.

• Case LVERTFE=.T.:

Φl = Φs + [Rinte](surf,l)

〈
−RTδ + µsRdTrδ

∆η

〉
(358)

See section (10) for discretisation of δ at full levels.

See part (14.2) for discretisation of µs at full levels.

∗ Horizontal gradient of the total geopotential at half levels (case LVERTFE=.F.
only): One applies the operator

[
r
a
∇
]

to equation (356). That yields:[[
r
a
∇
]

Φ
]
l

=
[
r
a
∇
]

Φs +
∑k=l+1

k=L

[[
r
a
∇
]

(RT )
]
k
δk +

∑k=l+1

k=L
[RkTk]

[[
r
a
∇
]
δ
]
k

(359)

+
∑k=l+1

k=L
Rd[µs]k

[[
r
a
∇
]
Tr

]
k
δk +

∑k=l+1

k=L
Rd[Tr]k

[[
r
a
∇
]
µs

]
k
δk +

∑k=l+1

k=L
[[µs]kRd[Tr]k]

[[
r
a
∇
]
δ
]
k

See section (10) for discretisation of δ and
[
r
a
∇
]
δ at full levels. See part (14.2) for discretisation of µs and

[
r
a
∇
]
µs

at full levels.
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∗ Horizontal gradient of the total geopotential at full levels: One applies the operator
[
r
a
∇
]

to equation (357). That yields:

• Case LVERTFE=.F.:[[
r
a
∇
]

Φ
]
l

=
[[
r
a
∇
]

Φ
]
l
+
[[
r
a
∇
]

(RT )
]
l
αl + [RlTl]

[[
r
a
∇
]
α
]
l

(360)

+Rd[µs]l
[[
r
a
∇
]
Tr

]
l
αl +Rd[Tr]l

[[
r
a
∇
]
µs

]
l
αl + [[µs]lRd[Tr]l]

[[
r
a
∇
]
α
]
l

See section (10) for discretisation of α and
[
r
a
∇
]
α at full levels.

• Case LVERTFE=.T.:[[
r
a
∇
]

Φ
]
l

=
[
r
a
∇
]

Φs + [Rinte](surf,l)

〈
− [ ra∇](RT )δ

∆η

〉
+ [Rinte](surf,l)

〈
− (RT )[ ra∇]δ

∆η

〉
(361)

+[Rinte](surf,l)

〈
−Rdµs[ ra∇]Trδ

∆η

〉
+ [Rinte](surf,l)

〈
−RdTr[ ra∇]µsδ

∆η

〉
+ [Rinte](surf,l)

〈
−RdTrµs[ ra∇]δ

∆η

〉
See section (10) for discretisation of δ and

[
r
a
∇
]
δ at full levels.

See part (14.2) for discretisation of µs and
[
r
a
∇
]
µs at full levels.

14.10 Diagnostic expression of some vertical velocities: thin layer
formulation.

∗ Term η̇ ∂Π
∂η at half levels if LVERTFE=.F.: for the half level l, equation (101) is discretised as

follows:

• Term:

Bηl

∫ η=1

η=0

∇
(

V
∂Π

∂η

)
dη

is discretised as follows:

B
l

[
L∑
k=1

[∆B]kVk∇Πs +

L∑
k=1

[∆Π]k∇Vk

]
• Term:

−
∫ η=ηl

η=0

∇
(

V
∂Π

∂η

)
dη

is discretised as follows:

−

[
l∑

k=1

[∆B]kVk∇Πs +

l∑
k=1

[∆Π]k∇Vk

]
• Term:

Bηl

[
η̇
∂Π

∂η

]
η=1

+ [1−Bηl ]
[
η̇
∂Π

∂η

]
η=0

is discretised as follows:

B
l

[
η̇
∂Π

∂η

]
surf

+
[
1−B

l

] [
η̇
∂Π

∂η

]
top

∗ Term η̇ ∂Π
∂η at full levels if LVERTFE=.T.: for the layer l, equation (101) is discretised as follows:

• Term:

Bηl

∫ η=1

η=0

∇
(

V
∂Π

∂η

)
dη

is discretised as follows:

Bl[Rinte](top,surf)

〈
∆B

∆η
V∇Πs +

∆Π

∆η
∇V

〉
• Term:

−
∫ η=ηl

η=0

∇
(

V
∂Π

∂η

)
dη

is discretised as follows:

−[Rinte](top,l)

〈
∆B

∆η
V∇Πs +

∆Π

∆η
∇V

〉
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• Term:

Bηl

[
η̇
∂Π

∂η

]
η=1

+ [1−Bηl ]
[
η̇
∂Π

∂η

]
η=0

is discretised as follows:

Bl

[
η̇
∂Π

∂η

]
surf

+ [1−Bl]
[
η̇
∂Π

∂η

]
top

∗ Pressure coordinate vertical velocity ω: for the layer l, equation (105) is discretised as follows:

• Term 1
Πηl

: its discretisation at full levels is:

– Case LVERTFE=.F.: [
1

Π

]
l

=
δl

[∆Π]l
(362)

– Case LVERTFE=.T.: Equation (362) is still valid but in this case it can be rewritten in a simpler
way as follows: [

1

Π

]
l

=
1

[Π]l
=

1

Al +BlΠs
(363)

• “Vertical integral of divergence” term ∫ η=ηl

η=0

∇
(

V
∂Π

∂η

)
dη

– Case LVERTFE=.F.: This term can be easily computed at half levels and its discretisation on the
half level number l is:[∫ η=ηl

η=0

∇
(

V
∂Π

∂η

)
dη

]
l

=

k=l∑
k=1

[∆B]kVk∇Πs +

k=l∑
k=1

[∆Π]k∇Vk (364)

Computation of ω/Π needs this discretisation at full levels, that needs a weighting of the following
type:

[.]l = [.]
l−1

+
αl
δl

(
[.]
l
− [.]

l−1

)
(365)

That yields the following discretisation at full levels:[∫ η=ηl

η=0
∇
(
V ∂Π

∂η

)
dη
]
l

=
∑k=l−1

k=1
[∆B]kVk∇Πs +

∑k=l−1

k=1
[∆Π]k∇Vk + αl

δl
([∆B]lVl∇Πs + [∆Π]l∇Vl) (366)

– Case LVERTFE=.T.: This term is directly computed at full levels and its discretisation on the
layer number l is:[∫ η=ηl

η=0

∇
(

V
∂Π

∂η

)
dη

]
l

= [Rinte](top,l)

〈
∆B

∆η
V∇Πs +

∆Π

∆η
∇V

〉
(367)

• Product “Vertical integral of divergence” times − 1
Πηl

at full levels: discretised as:

– Case LVERTFE=.F.:

−
[

1
Π

∫ η=ηl

η=0
∇
(
V ∂Π

∂η

)
dη
]
l

= − δl
[∆Π]l

(∑k=l−1

k=1
[∆B]kVk∇Πs +

∑k=l−1

k=1
[∆Π]k∇Vk

)
− αl

[∆Π]l
[∆B]lVl∇Πs − αl∇Vl (368)

– Case LVERTFE=.T.:

−
[

1
Π

∫ η=ηl

η=0
∇
(
V ∂Π

∂η

)
dη
]
l

= − 1
Al+BlΠs

[Rinte](top,l)
〈

∆B
∆η

V∇Πs + ∆Π
∆η
∇V

〉
(369)

• Term
[
V∇Π

Π

]
on layer l is discretised as follows:[

V
∇Π

Π

]
l

= Vl

[∇Π

Π

]
l

Discretisation of ∇Π
Π

is given by equation (257) or equation (259) according to the value of LVERTFE.
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• Term 1
Πηl

[
η̇ ∂Π
∂η

]
η=0

: its discretisation on the layer l is:

δl
[∆Π]l

[
η̇
∂Π

∂η

]
top

This term is non-zero only if a radiative upper boundary condition is applied (case LRUBC=.T.).

14.11 Diagnostic expression of some vertical velocities: (WB1995) deep layer
formulation.

∗ Term η̇ ∂Π
∂η at half levels if LVERTFE=.F.: For the half level l, equation (137) is discretised as

follows:

• Term:

Bηl

(
a2

r2

)
η=1

∫ η=1

η=0

[
r

a
∇
](

r

a
V
∂Π

∂η

)
dη

is discretised as follows:

B
l

(
a2

r2

)
surf

[
L∑
k=1

[∆B]k

(
r

a

)
k

Vk

[
r

a
∇
]

Πs +

L∑
k=1

(
r

a

)
k

[∆Π]k

[
r

a
∇
]

Vk +

L∑
k=1

Vk[∆Π]k

[[
r

a
∇
](

r

a

)]
k

]
• Term:

−
(
a2

r2

)
ηl

∫ η=ηl

η=0

[
r

a
∇
](

r

a
V
∂Π

∂η

)
dη

is discretised as follows:

−
(
a2

r2

)
l

[
l∑

k=1

[∆B]k

(
r

a

)
k

Vk

[
r

a
∇
]

Πs +

l∑
k=1

(
r

a

)
k

[∆Π]k

[
r

a
∇
]

Vk +

l∑
k=1

Vk[∆Π]k

[[
r

a
∇
](

r

a

)]
k

]
• Term:

Bηl

[
η̇
∂Π

∂η

]
η=1

+

[(
a2

r2

)
ηl

−Bηl

(
a2

r2

)
η=1

](
r2

a2

)
η=0

[
η̇
∂Π

∂η

]
η=0

is discretised as follows:

B
l

[
η̇
∂Π

∂η

]
surf

+

[(
a2

r2

)
l

−B
l

(
a2

r2

)
surf

](
r2

a2

)
top

[
η̇
∂Π

∂η

]
top

∗ Term η̇ ∂Π
∂η at full levels if LVERTFE=.T.: For the layer l, equation (137) is discretised as follows:

• Term:

Bηl

(
a2

r2

)
η=1

∫ η=1

η=0

[
r

a
∇
](

r

a
V
∂Π

∂η

)
dη

is discretised as follows:

Bl

(
a2

r2

)
surf

[Rinte](top,surf)

〈
∆B

∆η

(
r

a

)
V
[
r

a
∇
]

Πs +
(
r

a

)
∆Π

∆η

[
r

a
∇
]

V + V
∆Π

∆η

[[
r

a
∇
](

r

a

)]〉
• Term:

−
(
a2

r2

)
ηl

∫ η=ηl

η=0

[
r

a
∇
](

r

a
V
∂Π

∂η

)
dη

is discretised as follows:

−
(
a2

r2

)
l

[Rinte](top,l)

〈
∆B

∆η

(
r

a

)
V
[
r

a
∇
]

Πs +
(
r

a

)
∆Π

∆η

[
r

a
∇
]

V + V
∆Π

∆η

[[
r

a
∇
](

r

a

)]〉
• Term:

Bηl

[
η̇
∂Π

∂η

]
η=1

+

[(
a2

r2

)
ηl

−Bηl

(
a2

r2

)
η=1

](
r2

a2

)
η=0

[
η̇
∂Π

∂η

]
η=0

is discretised as follows:

Bl

[
η̇
∂Π

∂η

]
surf

+

[(
a2

r2

)
l

−Bl
(
a2

r2

)
surf

](
r2

a2

)
top

[
η̇
∂Π

∂η

]
top
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∗ Pressure coordinate vertical velocity ω: For the layer l, equation (141) is discretised as follows:

• Term 1
Πηl

: its discretisation at full levels is given by equation (362) or (363) according to the value of

LVERTFE.

• “Vertical integral of divergence” term ∫ η=ηl

η=0

[
r

a
∇
](

r

a
V
∂Π

∂η

)
dη

– Case LVERTFE=.F.: This term can be easily computed at half levels and its discretisation on half
level number l is: [∫ η=ηl

η=0

[
r
a
∇
] (

r
a
V ∂Π

∂η

)
dη
]
l

=
∑k=l

k=1
[∆B]k

[
r
a

]
k

Vk

[
r
a
∇
]

Πs +
∑k=l

k=1

[
r
a

]
k

[∆Π]k
[
r
a
∇
]
Vk

+
∑k=l

k=1
Vk[∆Π]k

[[
r
a
∇
] (

r
a

)]
k

(370)

Computation of ω/Π needs this discretisation at full levels, that needs a weighting of the following
type:

[.]l = [.]
l−1

+
αl
δl

(
[.]
l
− [.]

l−1

)
(371)

That yields the following discretisation at full levels:[∫ η=ηl

η=0

[
r
a
∇
] (

r
a
V ∂Π

∂η

)
dη
]
l

=
∑k=l−1

k=1
[∆B]k

[
r
a

]
k

Vk

[
r
a
∇
]

Πs +
∑k=l−1

k=1

[
r
a

]
k

[∆Π]k
[
r
a
∇
]
Vk

+
∑k=l−1

k=1
Vk[∆Π]k

[[
r
a
∇
] (

r
a

)]
k

+αl
δl

(
[∆B]l

[
r
a

]
l
Vl

[
r
a
∇
]

Πs +
[
r
a

]
l
[∆Π]l

[
r
a
∇
]
Vl + Vl[∆Π]l

[[
r
a
∇
] (

r
a

)]
l

)
(372)

– Case LVERTFE=.T.: This term is directly computed at full levels and its discretisation on the
layer number l is: [∫ η=ηl

η=0

[
r
a
∇
] (

r
a
V ∂Π

∂η

)
dη
]
l

= [Rinte](top,l)
〈

∆B
∆η

r
a
V
[
r
a
∇
]

Πs

〉
+ [Rinte](top,l)

〈
r
a

∆Π
∆η

[
r
a
∇
]
V
〉

+[Rinte](top,l)
〈
V ∆Π

∆η

[[
r
a
∇
] (

r
a

)]〉
(373)

• Product “Vertical integral of divergence” times − 1
Πηl

at full levels: discretised as:

– Case LVERTFE=.F.: [
− 1

Π

∫ η=ηl

η=0

[
r
a
∇
] (

r
a
V ∂Π

∂η

)
dη
]
l

= − δl
[∆Π]l

(∑k=l−1

k=1
[∆B]k

[
r
a

]
k

Vk

[
r
a
∇
]

Πs +
∑k=l−1

k=1

[
r
a

]
k

[∆Π]k
[
r
a
∇
]
Vk

)
− δl

[∆Π]l

(∑k=l−1

k=1
Vk[∆Π]k

[[
r
a
∇
] (

r
a

)]
k

)
− αl

[∆Π]l
[∆B]l

[
r
a

]
l
Vl

[
r
a
∇
]

Πs − αl
[
r
a

]
l

[
r
a
∇
]
Vl − αlVl

[[
r
a
∇
] (

r
a

)]
l

(374)

– Case LVERTFE=.T.: [
− 1

Π

∫ η=ηl

η=0

[
r
a
∇
] (

r
a
V ∂Π

∂η

)
dη
]
l

= − 1
Al+BlΠs

[Rinte](top,l)
(〈

∆B
∆η

r
a
V
[
r
a
∇
]

Πs

〉
+
〈
r
a

∆Π
∆η

[
r
a
∇
]
V
〉

+
〈
V ∆Π

∆η

[[
r
a
∇
] (

r
a

)]〉)
(375)

• Term
[
r
a
V

[ ra∇]Π
Π

]
on layer l is discretised as follows:[

r

a
V

[
r
a
∇
]

Π

Π

]
l

=
[
r

a

]
l
Vl

[[
r
a
∇
]

Π

Π

]
l

Discretisation of
[ ra∇]Π

Π
is given by equation (257) or equation (259) according to the value of LVERTFE.
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• Term 1
Πηl

(
r2

a2

)
η=0

[
η̇ ∂Π
∂η

]
η=0

: its discretisation on the layer l is:

δl
[∆Π]l

(
r2

a2

)
top

[
η̇
∂Π

∂η

]
top

This term is non-zero only if a radiative upper boundary condition is applied (case LRUBC=.T.).

• Once discretised the RHS of equation (141) one obtains
[
r2

a2
ω
Π

]
l

at full levels; a multiplication by
[
a2

r2

]
l

has then to be done to get
[
ω
Π

]
l
.

14.12 Specific features for plane geometry.

14.12.1 Momentum equation.

∗ Equations: It is desirable to discretise the momentum equation form reformulated on the plane, with the

reduced components of the wind (U
′
;V
′
), and the reduced gradient ∇

′
= (∂

′
x; ∂

′
y): vectorial equation is replaced

by the couple of equations (195) and (196) (replace r/a by 1, Tr, µs and W by zero in the thin layer equations).
The main difference with the spherical geometry is the expression of the curvature terms.

∗ Discretisation of −2Ω ∧V at full levels: See formulae (297) and (298), which are still valid.

∗ Discretisation of W at full levels: See equation (308).

∗ Discretisation of −2Ω∧Wk at full levels: Replace (Gnordl;Gnordm) by (−S;C) in equations (309)
and (310), which become:

[(−2Ω ∧Wk).i]l = −2Ω cos θWlC (376)

[(−2Ω ∧Wk).j]l = −2Ω cos θWlS (377)

∗ Discretisation of −W
r V at full levels: It is desirable to rewrite equations (311) and (312) with U

′

and V
′
. These equations become:

−
[(
W

r
V
)
.i
]
l

= −
[
a

r

]
l

Wl

a
MU

′
l (378)

−
[(
W

r
V
)
.j
]
l

= −
[
a

r

]
l

Wl

a
MV

′
l (379)

∗ Discretisation of the pressure gradient term at full levels: For the thin layer formulation,

equation (299) can be used but it is desirable to use rather the reduced gradient operator ∇
′

= (∂
′
x; ∂

′
y). For the

deep layer formulation, equations (313), (315) and (317) can be used but it is desirable to use rather the reduced

gradient operator ∇
′

= (∂
′
x; ∂

′
y).

• For µs, the equation which has to be discretised is (194); the same code can be used for spherical and plane
geometry. Discretisation at full levels writes:

[µs]l = −
2 [r]l Ω cos θ(C(MU

′
l ) + S(MV

′
l )) + (MU

′
l )

2 + (MV
′
l )2

[r]l g
(380)

• For the horizontal gradient of µs, the components are given in part (6.2.4). Discretisation at full levels give
the two following components:

– first element: [
∂
′
xµs

]
l

=

−2Ω

g
[C cos θ]

[
M2∂

′
xU
′
]
l
−2Ω

g
[S cos θ]

[
M2∂

′
xV
′
]
l
− 2

g[r]l

[
MU

′
]
l

[
M2∂

′
xU
′
]
l
− 2

g[r]l

[
MV

′
]
l

[
M2∂

′
xV
′
]
l

+
([MU

′
]2l + [MV

′
]2l )

g[r2]l

[
M [∂

′
xr]l

]
− 2ΩKL

ga

[
MV

′
]
l
+

2S

ga[r]l
([MU

′
]2l + [MV

′
]2l )

sin θ −KL

cos θ
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– second element: [
∂
′
yµs

]
l

=

−2Ω

g
[C cos θ]

[
M2∂

′
yU
′
]
l
−2Ω

g
[S cos θ]

[
M2∂

′
yV
′
]
l
− 2

g[r]l

[
MU

′
]
l

[
M2∂

′
yU
′
]
l
− 2

g[r]l

[
MV

′
]
l

[
M2∂

′
yV
′
]
l

+
([MU

′
]2l + [MV

′
]2l )

g[r2]l

[
M [∂

′
yr]l

]
+

2ΩKL

ga

[
MU

′
]
l
− 2C

ga[r]l
([MU

′
]2l + [MV

′
]2l )

sin θ −KL

cos θ

All terms containing ∂
′
x and ∂

′
y can use the same code for spherical geometry and plane geometry. The

only terms which need a different code for LAM models are the terms containing KL and sin θ−KL
cos θ

.

∗ Expression of the meridian derivatives of U
′
and V

′
: As in spherical geometry, it is desirable

to write them with the divergence, vorticity, and zonal derivatives of the wind. Discretisation at full levels is:[
∂
′
yV
′
]
l

= D
′
l −
[
∂
′
xU
′
]
l[

∂
′
yU
′
]
l

=
[
∂
′
xV
′
]
l
− ζ

′
l

∗ Discretisation of the grid-point Rayleigh friction: This term writes KfricU i = KfricMU
′
i

and its discretisation on a layer l is KfricMU
′
l i. An optional contribution can be added to V -component: this

term writes KfricV j, its discretisation on layer l is KfricMV
′
l j.

14.12.2 Other equations.

• Thermodynamic equation: equations (321), (322), (323), (324), (325), (326), (327) and (328) are still valid.

• Continuity equation, diagnostic expression of some vertical velocities: content of parts (14.4), (14.5), (14.10)

and (14.11) is still valid; it is simply desirable to use denotation M∇
′

= (M∂
′
x;M∂

′
y) instead of

[
r
a
∇
]
,

and write V as (MU
′
;MV

′
), in order to work in a local system of coordinates linked to the plane. For

continuity equation, the same code is used in global and LAM models in the grid-point part.

• Moisture and other GFL equations: equations (337), (338), (339), (340), (341), (342) and (343) are still
valid.

• Relationships for geopotential: see parts (14.8) and (14.9) (use operator M∇
′

= (M∂
′
x;M∂

′
y) rather than[

r
a
∇
]
).
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15 The Eulerian discretisation of the 3D fully compressible non-
hydrostatic model (NH-PDVD).

Some of the discretisations are well described in (IDNHPB) and we will recall here some basics. See (IDNHPB)
for more details, especially for the intermediate calculations and the assumptions leading to the following
discretisations.

15.1 Discretisation of some intermediate quantities for the thin layer
equations.

We have to discretise at least the following quantities:

• Half level total pressure.

• Total pressure depths at full levels.

• Surface wind Vsurf .

• Half levels wind when required.

• X = p
∂Π
∂η
RT
∇Φ

(
∂V
∂η

)
.

• gw and its horizontal gradient.

• d (knowing gw).

• D3.

• Laplacian term:
∂
(
∂(p−Π)
∂Π

)
∂η

.

∗ Half level total pressure:
It is required for finite difference treatment of some terms. The following assumptions are done:

• The top value of p−Π is assumed to be zero. If the top value of Π is zero, the top value of p is also zero.

The consequence is that: Q̂
l=0

= 0

• Q̂ is assumed to be constant between l = L and the surface: Q̂surf = Q̂l=L

• For the other half levels: Q̂
l

= 0.5(Q̂l + Q̂l+1)

From Q̂
l

and Π
l

we can compute p
l
.

∗ Total pressure depths at full levels:

• Finite difference discretisation (LVFE DELNHPRE=F): [∆p]l = p
l
− p

l−1
.

• Finite element discretisation if LVFE INT ECMWF=F and LVFE DELNHPRE=T: the following
formula is used:

[∆p]l = [∆Π]l

[
∂p

∂Π

]
l

where: [
∂p

∂Π

]
l

=
pl
Πl

+

[
∂
(
p−Π

Π

)
∂ log Π

]
l

Discretisation of
∂( p−Π

Π )
∂ log Π

at full levels is:[
∂
(
p−Π

Π

)
∂ log Π

]
l

=
[
Rderi

(
p−Π

Π

)]
l

[∆η]l
δl

• Finite element discretisation if LVFE INT ECMWF=T and LVFE DELNHPRE=T: the following
formula is used:

[∆p]l = [∆Π]l
pl
Πl

+ pl[∆ log (p/Π)]l

where:
[∆ log (p/Π)]l = [Rderi (log (p/Π))]l[∆η]l

∗ Surface wind:
Vsurf = Vl=L (381)
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∗ Half level wind:
V
l

=W
l
Vl + (1−W

l
)Vl+1 (382)

where:

W
l

=
δl+1 − αl+1

δl+1 − αl+1 + αl
(383)

Remarks:
• W

l=L
is set to zero.

• Top boundary condition: Vtop = Vl=1.
• Bottom boundary condition: Vsurf = Vl=L.

∗ Quantity X:
• Finite difference discretisation (LVFE X TERM=F): It is better to rewrite X as follows for the

discretisation

X =
p

Π

1

RT
∇[gz]

∂V

∂ log Π
X is discretised at full levels as follows:

Xl =
[
p

Π

]
l

1

[RT ]lδl

[
∇[gz]

l−1
(Vl −V

l−1
) +∇[gz]

l
(V

l
−Vl)

]
(384)

This discretisation uses ∇[gz] at half levels and V at both full and half levels.
The discretisation of ∇[gz] at half levels is given by equation (437).

For NPDVAR=2, [p/Π]l = [exp(Q̂)]l.
• Finite element discretisation (LVFE X TERM=T): X is discretised at full levels as follows:

Xl =
[
p

Π

]
l

[∆η]l
[RT ]lδl

∇[gz]l[RderiV]l (385)

∗ Quantity D3: D3 is computed at full levels and requires the preliminary computation of Xl.

[D3]l = Dl + Xl + dl
Rd

Rl
(386)

For NVDVAR=4 it is desirable to rewrite this equation by replacing dl by d4l − Xl.

∗ Retrieving full levels d from full levels ∆[gw]: Such a calculation is required for example when
reading initial files (where this is ∆[gw] at full levels which is stored).
It is desirable to rewrite the definition of d as follows:

d = − 1

RdT

p

Π

∂[gw]

∂ log Π

The discretisation writes:

dl = − 1

RdTlδl

[
p

Π

]
l
[∆[gw]]l (387)

∗ Retrieving [gw] from full levels d: This discretisation looks like the integration of the geopotential
equation. Note that w can be required also in the hydrostatic model.
• Finite difference discretisation (LVFE GW=F):

First the surface vertical velocity must be computed, using the surface boundary condition:

gwsurf = Vsurf∇[Φs] (388)

Integrating equation (387) from the surface, yields:

[∆[gw]]l = dlRdTlδl

[
Π

p

]
l

(389)

gw
l

= gwsurf +

k=l+1∑
k=L

(
dkRdTkδk

[
Π

p

]
k

)
(390)

and:

gwl = gw
l
+ dlRdTlαl

[
Π

p

]
l

(391)

• Finite element discretisation (LVFE GW=T):
Use equation (388) at the surface; for upper-air full level values of w discretisation is:

gwl = gwsurf + [Rinte](surf,l)

〈
−Π

p

dRdTδ

∆η

〉
(392)
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∗ Retrieving ∇[gw] from full levels d and ∇d:
• Finite difference discretisation (LVFE GW=F):

First the horizontal gradient of the surface vertical velocity must be computed, using the surface boundary
condition:

∇[gwsurf ] = ∇[Vsurf∇[Φs]] (393)

The RHS of this equation is the vector of components:

[∇zoUsurf ][∇zoΦs] + Usurf [∇2
zo zoΦs] + [∇zoVsurf ][∇meΦs] + Vsurf [∇2

zo meΦs]

and
[∇meUsurf ][∇zoΦs] + Usurf [∇2

zo meΦs] + [∇meVsurf ][∇meΦs] + Vsurf [∇2
me meΦs]

Integrating equation (387) from the surface, and applying the gradient operator, yields:

[∆∇[gw]]l = ∇[RdTl]

[
Π

p

]
l

dlδl +RdTl∇
[

Π

p

]
l

dlδl +RdTl

[
Π

p

]
l

∇dlδl +RdTl

[
Π

p

]
l

dl∇δl (394)

Note that ∇
[

Π
p

]
l

can be rewritten:

∇
[

Π

p

]
l

= −
[

Π

p

]
l

∇
[
log

p

Π

]
l

The half level values are given by:

∇[gw
l
] = ∇[gwsurf ] +

k=l+1∑
k=L

[∆∇[gw]]k (395)

and:

∇[gwl] = ∇[gw
l
] +∇[RdTl]

[
Π

p

]
l

dlαl +RdTl∇
[

Π

p

]
l

dlαl +RdTl

[
Π

p

]
l

∇dlαl +RdTl

[
Π

p

]
l

dl∇αl (396)

• Finite element discretisation (LVFE GW=T): Use equation (393) at the surface; for upper-air full level
values of ∇[gw] discretisation is:

∇[gwl] = ∇[gwsurf ] + [Rinte](surf,l)

〈
−
∇[ Π

p
dRdTδ]

∆η

〉
(397)

with:[
∇
(

Π

p
dRdTδ

)]
l

= ∇[RdTl]

[
Π

p

]
l

dlδl +RdTl∇
[

Π

p

]
l

dlδl +RdTl

[
Π

p

]
l

∇dlδl +RdTl

[
Π

p

]
l

dl∇δl

Remarks: there are two difficulties which can appear for some options:

• Case NVDVAR=4: calculation of ∇d is required, but in this case this is ∇d4 which is available, and ∇X
is not convenient to compute. This is why there is an additional thermodynamic variable “NHX” which
contains X and ∇X.

• Case LSPRT=.T.: in this case RT is stored instead of T , and ∇[RT ] is available in the code, but not
∇[RdT ]. We can see in formula (394) that the computation of ∇[RdT ] is required, and currently we have
approximated it by ∇[RT ]. Using of the prognostic variable “virtual vertical divergence” [Rd/R]d allows
to solve this problem (no additional difficulty is introduced in the adiabatic part of the equations, the
diabatic term becomes slightly longer but not so difficult to compute).

∗ Laplacian term
∂
(
∂(p−Π)
∂Π

)
∂η .

• Finite difference discretisation (LVFE LAPL=F): both derivatives are computed separately. ∂(p−Π)
∂Π

(at

half levels) appears in the RHS of the w-equation. ∂...
∂η

(at full levels) is applied when transforming w into

d or in term
∂[ dw
dt

]ad

∂η
in the RHS of the d or d4 equation.
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• Finite element discretisation (LVFE LAPL=T): this term requires some attention and its study is still
an issue. It seems that writing it into a combination of two first-order derivatives does not give a stable
scheme. For the time being the following formula is applied:

∂
(
∂(p−Π)
∂Π

)
∂η

=
1

Π

∂
(
p−Π

Π

)
∂η

∂
[
∂η
∂Π

Π2
]

∂η
+

∂η

∂ log Π

∂2
(
p−Π

Π

)
∂η2

(398)

Discretisation is:[
∂
(
∂(p−Π)
∂Π

)
∂η

]
l

=
1

Πl

[
Rderi

〈
p−Π

Π

〉]
l

[
Rderi

〈
∂η

∂Π
Π2
〉]

l
+

[∆η]l
δl

[
Rdderi

〈
p−Π

Π

〉]
l

(399)

where Rdderi is the second-order derivative VFE operator.

15.2 Discretisation of some intermediate quantities for the (WS2003) deep
layer equations.

∗ Radius: The following discretisations come from equation (166).

• Finite difference discretisation (LVERTFE=F):

r
l

=

[
r3
surf +

3a2

G

k=l+1∑
k=L

[
RkTkΠ̃k δ̃k

pk

]]1/3

(400)

and:

rl =

[
r3

l
+

3a2

G

RlTlΠ̃lα̃l
pl

]1/3

(401)

where rsurf = a+ zsurf .

• Finite element discretisation (LVERTFE=T):

rl =

[
r3

l
+

3a2

G
Rinte(surf,l)

〈
−RT Π̃δ̃

p[∆η]

〉]1/3

(402)

∗ Horizontal gradient of radius: Applying horizontal derivations to formula (166) yields:

• [
r

a
∇
]
rsurf =

[
r

a
∇
]
zsurf

• Finite difference discretisation (LVERTFE=F):
Half levels: [

r

a
∇
]
r
l

=
r2
surf

r2

l

[
r

a
∇
]
rsurf +

a2

Gr2

l

k=l+1∑
k=L

[
r

a
∇
] [

RkTkΠ̃k δ̃k
pk

]
(403)

with: [
r

a
∇
]
RkTkΠ̃k δ̃k

pk

=
TkΠ̃k δ̃k
pk

[
r

a
∇
]
Rk +

RkΠ̃k δ̃k
pk

[
r

a
∇
]
Tk +

RkTk δ̃k
pk

[
r

a
∇
]

Π̃k +
RkTkΠ̃k

pk

[
r

a
∇
]
δ̃k −

RkTkΠ̃k δ̃k
p2
k

[
r

a
∇
]
pk

Full levels: [
r

a
∇
]
rl =

r2

l

r2
l

[
r

a
∇
]
r
l
+

a2

Gr2
l

[
r

a
∇
] [

RlTlΠ̃lδ̃l
pl

]
(404)

• Finite element discretisation (LVERTFE=T):

[
r

a
∇
]
rl =

r2
surf

r2
l

[
r

a
∇
]
rsurf +

a2

Gr2
l

Rinte(surf,l)

〈[ r
a
∇
] [

RT Π̃δ̃
p

]
∆η

〉
(405)

∗ Quantity µs: See equation (318) for discretisation at full levels, replace g by G. For discretisation at half
levels, use V at half levels, r at half levels.
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∗ Half level total pressure: Definition of Q̂ is changed but formulae giving half level values of Q̂
(including top and bottom values) are unchanged.

∗ Total pressure depths at full levels: See treatment for thin layer equations, replace Π and δ by Π̃

and δ̃ in equations.

∗ Surface and half level wind: Thin layer discretisations remain valid: see equations (381), (382),
(383).

∗ Quantity X:
• Finite difference discretisation (LVFE X TERM=F): It is better to rewrite X as follows for the

discretisation

X =
r

a

p

Π̃

1

RT

[
r

a
∇
]

[Gr]
∂V

∂ log(Π̃)

X is discretised at full levels as follows:

Xl =
rl
a

[
p

Π̃

]
l

1

[RT ]lδ̃l

[[
r

a
∇
]

[Gr]
l−1

(Vl −V
l−1

) +
[
r

a
∇
]

[Gr]
l
(V

l
−Vl)

]
(406)

This discretisation uses
[
r
a
∇
]

[Gr] at half levels and V at both full and half levels.

The discretisation of
[
r
a
∇
]

[Gr] at half levels is given by equation (403).

• Finite element discretisation (LVFE X TERM=T): X is discretised at full levels as follows:

Xl =
rl
a

[
p

Π̃

]
l

[∆η]l

[RT ]lδ̃l

[
r

a
∇
]

[Gr]l[RderiV]l (407)

∗ Quantity D3: Thin layer discretisations remain valid: see equations (386).

∗ Retrieving full levels d from full levels ∆[G(r2/a2)w] or ∆[Gw]:

dl = − 1

RdTlδ̃l

[
p

Π̃

]
l

[∆[G(r2/a2)w]]l (408)

To retrieve full levels d from full levels ∆[Gw], follow the following steps:

• Finite difference discretisation (LVFE GW=F):

– Vertical integration to compute Gw
l
.

– Compute r
l
/a.

– Compute G(r2

l
/a2)w

l

– Vertical derivative to compute full level ∆[G(r2/a2)w].

– Use formula (408).

• Finite element discretisation (LVFE GW=T): Not yet completely implemented. It seems recommended
to follow the following steps, in order to avoid to apply Rinte and Rderi to the same quantities:

– VFE vertical integration to compute Gwl.

– Compute rl/a.

– Compute G(r2
l /a

2 − 1)wl

– VFE vertical derivative to compute full level ∆[G(r2/a2 − 1)w].

– Add this to the original full level ∆[Gw] to obtain full level ∆[G(r2/a2)w].

– Use formula (408).
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∗ Retrieving [Gw] or [G(r2/a2)w] from full levels d:

• Finite difference discretisation (LVFE GW=F):
First the surface vertical velocity must be computed, using the surface boundary condition:

gwsurf = Vsurf(a/rsurf)
[
r

a
∇
]

[Grsurf ] (409)

Integrating equation (408) from the surface, yields:

[∆[G(r2/a2)w]]l = dlRdTlδ̃l

[
Π̃

p

]
l

(410)

G(r2

l
/a2)w

l
= G(r2

surf/a
2)wsurf +

k=l+1∑
k=L

(
dkRdTk δ̃k

[
Π̃

p

]
k

)
(411)

(multiply by a2/r2

l
to obtain Gw

l
), and:

G(r2
l /a

2)wl = G(r2

l
/a2)w

l
+ dlRdTlα̃l

[
Π̃

p

]
l

(412)

(multiply by a2/r2
l to obtain Gwl).

• Finite element discretisation (LVFE GW=T):
Use equation (409) at the surface; for upper-air full level values of w discretisation is:

G(r2
l /a

2)wl = G(r2
surf/a

2)wsurf + [Rinte](surf,l)

〈
− Π̃

p

dRdT δ̃

∆η

〉
(413)

(multiply by a2/r2
l to obtain Gwl).

∗ Retrieving ∇[gw] from full levels d and ∇d: Same kind of methodology to find discretised

equations (apply the operator gradient to equations giving [G(r2
l /a

2)w] from d) as with the thin layer equations.
Differences with the thin layer equations will be:

• Replace g by G.

• Replace ∇ by (a/r)
[
r
a
∇
]
.

• Replace Π by Π̃.

• Replace δ by δ̃.

• Replace α by α̃.

• Replace w by (r2/a2)w.

15.3 Thin layer formulation of the momentum equation.

∗ Definition of X, A, L and F , top and bottom values.

X = V (414)

A = [−2(1− δV)(Ω ∧V)]− ∂p

∂Π
∇Φ−RT ∇(p)

p
(415)

L = −∇
[
γT − T ∗(γQ̂) +RdT

∗ log(Πs) +RdT
∗Q̂
]

+ βCo[−2(1− δV)(Ω ∧V)] (416)

F = FV (417)

Top and bottom values are defined as follows:

Vη=0 = Vl=1 (418)

If δm = 0:
Vη=1 = Vl=L (419)

If δm = 1:
Vη=1 = 0 (420)

Note that this bottom condition is not fully consistent with the one done in the remaining part of the NH code
(Vη=1 = Vl=L).
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∗ Remarks. the remarks done for the hydrostatic model remain valid here. We must add an additional
remark: in some cases we need this equation also at the surface, with some assumptions (explicit treatment of
the Coriolis term, Vη=1 = Vl=L).

∗ Discretisation of −2Ω ∧V at full levels: It is the same as for the hydrostatic model.

∗ Discretisation of the pressure gradient term at full levels: It is modified compared to the
hydrostatic case.
The pressure gradient term writes:

−
(
∂p

∂Π
∇Φ +RT

∇p
p

)
It contains the geopotential Φ = gz.

• LVERTFE=.F.: the pressure gradient term is rewritten in order to isolate a main part which looks
like the hydrostatic pressure gradient term, and to isolate some purely anhydrostatic contributions. Its
discretisation at full levels is written under a sum of 4 terms. The first one looks like the hydrostatic
pressure gradient term; the following ones become zero in a hydrostatic model.

−
[
∇Φ +

Π

p
RT∇ log Π

]
l

−
[(

∆p

∆Π
− 1
)
∇Φ
]
l
−
[
RT∇

[
log

p

Π

]]
l
−
[
RT

(
1− Π

p

)
∇ log Π

]
l

– Term
[
∇Φ + Π

p
RT∇ log Π

]
l
: it looks like the pressure gradient term in the hydrostatic model, but

with an additional factor Π
p

; its treatment is similar to what is done in the hydrostatic model:[
∇Φ + Π

p
RT∇ log Π

]
l

=

∇Φs +
∑l+1

k=L

[
Π
p

]
k

[∇(RT )]k δk −
∑l+1

k=L

[
Π
p

]
k
∇ log

[
p
Π

]
k

(RT )kδk +
∑l+1

k=L

[
Π
p

]
k

(RT )k [∇δ]k
+
[

Π
p

]
l
[∇(RT )]l αl −

[
Π
p

]
l
∇ log

[
p
Π

]
l
(RT )lαl +

[
Π
p

]
l
(RT )l [∇(α+ log Π)]l (421)

– Term
[(

∆p
∆Π
− 1
)
∇Φ
]
l
: its discretisation is:[(

∆p

∆Π
− 1
)
∇Φ
]
l

=

(
[∆p]l
[∆Π]l

− 1

)
[∇Φ]l (422)

For [∇Φ]l see equation (435). Discretisation of [∆p]l has already been studied.

– Term
[
RT∇

[
log p

Π

]]
l
: its discretisation is:[

RT∇
[
log

p

Π

]]
l

= [RT ]l∇Q̂l (423)

– Term
[
RT
(
1− Π

p

)
∇ log Π

]
l
: its discretisation is:[

RT

(
1− Π

p

)
∇ log Π

]
l

= [RT ]l

[
1− Πl

pl

] [∇Π

Π

]
l

(424)

See part (9.6) for the discretisation of
[
∇Π
Π

]
l
.

• LVERTFE=.T.:

−
[
∂p

∂Π
∇Φ +RT

∇p
p

]
l

= − [∆p]l
[∆Π]l

[∇Φ]l − [RT ]l

[
∇p
p

]
l

(425)

where:

– [∇Φ]l is discretised with applying the operator Rinte (see equation (436)).

– [∆p]l has been already studied above.

–
[∇p
p

]
l
: for NPDVAR=2 it is convenient to rewrite this term as follows:[

∇p
p

]
l

= [∇Q̂]l +
[∇Π

Π

]
l

∗ Discretisation of the pressure gradient term at the surface: It is computed in the RHS

of equation giving dVsurf
dt

, in the case LVERTFE=.F. . Currently the pressure gradient term at the surface is set
to the pressure gradient term at the full level l = L.
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∗ Discretisation of the grid-point Rayleigh friction: It is the same as for the hydrostatic model.

15.4 Deep layer formulation of the momentum equation according to
(WS2003).

The following modifications must be brought to the thin layer equations:

• Additional w terms appear, use rl, wl; see the treatment of W terms for LVERCOR=T (see part 14.2).

• Pressure gradient term: ∂p
∂Π
∇Φ is replaced by r2

a2
∂p

∂Π̃
∇[Gr]. Use the discretisation of rl,

[
r
a
∇
]
rl.

For LVERTFE=F it is not possible any longer to isolate the hydrostatic contribution, and we simply
discretise:

−rl
a

[∆p]l

[∆Π̃]l

[
r

a
∇
]

[Grl]−
a

rl
RlTl

[[
r
a
∇
]
p

p

]
l

15.5 Thermodynamic equation.

∗ Definition of X, A, L and F , top and bottom values.

X = T (426)

A = −RT
cv

D3 (427)

L = −RdT
∗

cvd

[
M

2
D
′

+ d
]

(428)

F =
[
cp
cv
FT

]
(429)

Top:
Tη=0 = Tl=1 (430)

Bottom if δm = 0:
Tη=1 = Tl=L (431)

Bottom if δm = 1 (output of physics):
Tη=1 = Ts (432)

∗ Discretisation of the conversion term.[
RT

cv
D3

]
l

=
RlTl
[cv]l

[D3]l (433)

See part (15.1) for discretisation of D3 at full levels.

15.6 Continuity equation.
Thin layer formulation is identical to the hydrostatic model one.

Deep layer formulation: the following modifications must be brought to the thin layer equations:

• Π is replaced by Π̃.

• Some metric terms appear: replace
[
∇
(
V ∂Π

∂η

)]
l

by
[
∇
(
a
r
V ∂Π̃

∂η

)]
l
, discretised as follows:[

∇
(
a

r
V
∂Π̃

∂η

)]
l

=
a2

r2
l

[
r

a
∇
](

V
∂Π̃

∂η

)
l

− a3

r3
l

(
V
∂Π̃

∂η

)
l

[
r

a
∇
]
rl
a

• Replace g by G.

15.7 Moisture and other GFL equations.
Formulation is identical to the hydrostatic model.
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15.8 Relationship between geopotential height gz and pressure depth (thin
layer formulation).

∗ Geopotential height at half levels (case LVERTFE=.F. only): Discretisation of equation
(151) at half levels yields:

gz
l

= gzs +

k=l+1∑
k=L

Πk

pk
[RkTk] δk (434)

See section (10) for discretisation of δ at full levels.

∗ Geopotential height at full levels:
• Case LVERTFE=.F.: It is computed from the geopotential height at half levels by the following

relationship:

gzl = gz
l
+

Πl

pl
[RlTl]αl (435)

See section (10) for discretisation of α at full levels.

• Case LVERTFE=.T.:

gzl = gzs + [Rinte](surf,l)

〈
−Π

p

RTδ

∆η

〉
(436)

See section (10) for discretisation of δ at full levels.

∗ Horizontal gradient of the geopotential height at half levels (case LVERTFE=.F.
only): One applies the operator ∇ to equation (434). That yields:

g [∇z]
l

= g∇zs +
∑k=l+1

k=L

Πk
pk

[∇(RT )]k δk −
∑k=l+1

k=L

Πk
pk
∇ log pk

Πk
[RkTk] δk

+
∑k=l+1

k=L

Πk
pk

[RkTk] [∇δ]k (437)

See section (10) for discretisation of δ and ∇δ at full levels.

∗ Horizontal gradient of the geopotential height at full levels: One applies the operator ∇
to equation (351). That yields:

• Case LVERTFE=.F.:

g [∇z]l = g [∇z]
l
+

Πl

pl
[∇(RT )]l αl −

Πl

pl
∇ log

pl
Πl

[RlTl]αl +
Πl

pl
[RlTl] [∇α]l (438)

See section (10) for discretisation of α and ∇α at full levels.

• Case LVERTFE=.T.:

g [∇z]l = g∇zs + [Rinte](surf,l)

〈
−

Π
p
∇(RT )δ − Π

p
∇(log p

Π
)RTδ + Π

p
RT∇δ

∆η

〉
(439)

See section (10) for discretisation of δ and ∇δ at full levels.

15.9 Relationship between geopotential quantities gz and Φ, and pressure
depth in (WS2003) system.

• Geopotential height gz: r = a + z and formulae are written with r instead of z. Calculation of r and its
horizontal gradient have been described in part 15.2.

• Geopotential Φ: Calculations (not detailed) show that Φl =
√
Gglzl. If g remains vertically constant,

Φl = Gzl.

• Note that Φ is not used in the adiabatic equations, but only in some energetic quantities (physics,
diagnostics).
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15.10 Diagnostic expression of some vertical velocities.
Thin layer formulation is identical to the hydrostatic model one.

Deep layer formulation: the following modifications must be brought to the thin layer equations:

• One computes η̇ ∂Π̃
∂η

instead of η̇ ∂Π
∂η

.

• Definition of ω is now ω = dΠ̃
dt

.

• Calculation of η̇ ∂Π̃
∂η

and ω/Π̃ inherit of the changes found in continuity equation: replace Π by Π̃, replace[
∇
(
V ∂Π

∂η

)]
l

by
[
∇
(
a
r
V ∂Π̃

∂η

)]
l
, g by G.

15.11 Thin layer formulation of the pressure departure equation.

∗ Definition of X, A, L and F , top and bottom values.

X = Q̂ (440)

A = −cp
cv
D3 −

ω

Π
(441)

L = −
[
cpd

cvd

(M
2
D
′

+ d)−
cpd

RdT ∗
τ(M

2
D
′
)
]

(442)

F =
cp
cvT

FT (443)

Top:

Q̂η=0 = 0 (444)
Bottom if δm = 0:

Q̂η=1 = Q̂l=L (445)
Bottom if δm = 1 (output of physics):

Q̂η=1 = Q̂l=L (446)

∗ Discretisation of the RHS term.[
−cp
cv
D3 −

ω

Π

]
l

= − [cp]l
[cv]l

[D3]l −
[
ω

Π

]
l

(447)

See part (15.1) for discretisation of D3 at full levels. Discretisation of ω
Π

has already been studied.

15.12 Deep layer formulation of the pressure departure equation in
(WS2003) system.

The following modifications must be brought to the thin layer equations:

• Replace ω/Π by ω/Π̃; definition of ω is now ω = dΠ̃
dt

; take account of remarks listed in part 15.10.

• See parts 15.1 and 15.2.
• δP-term only contains a vertical advection contribution; same kind of treatment as for the δTR-terms in

temperature equation.

15.13 Thin layer formulation of the gw and vertical divergence equation.

∗ Definition of X, A, L and F , top and bottom values, for the vertical divergence.
X = d (448)

A = −dD3 + d∇V − gp

RdT
∂Π
∂η

∂
[
dw
dt

]
ad

∂η
+

gp

RdT
∂Π
∂η

(∇w)

(
∂V

∂η

)
(449)

L = − g2

RdT ∗a
(L∗Q̂) (450)

F = − d[
∂Π
∂η

]F ′m − [ gp

RdT
∂Π
∂η

∂Fw

∂η

]
(451)

Top:
dη=0 = dl=1 (452)

Bottom if δm = 0:
dη=1 = dl=L (453)

Bottom if δm = 1: currently cf. δm = 0. Note that this bottom condition is not fully consistent with the one
done on the horizontal wind and the vertical velocity w.
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∗ Definition of X, A, L and F , top and bottom values, for the vertical velocity.

X = w (454)

A = g
∂(p−Π)

∂Π
(455)

F = Fw (456)

Top:

• LVFE GW=.F.: wη=0 is computed by the general formula giving w at half levels.

• LVFE GW=.T.: top value of w is useless.

Bottom if δm = 0:
wη=1 = Vsurf∇zsurf (457)

Bottom if δm = 1: currently the same as for δm = 0. Remark: we also need the equation of the surface vertical
velocity.

∗ Discretisation of term g ∂(p−Π)
∂Π :

• LVFE GW=.F., if LVERTFE=.T., LVFE INT ECMWF=.F. and LVFE DELNHPRE=.T.:[
g
∂(p−Π)

∂Π

]
l

= g[Rderi (p−Π)]
l

ηl+1 − ηl
Πl+1 −Πl

(458)

• LVFE GW=.F., other cases: [
g
∂(p−Π)

∂Π

]
l

= g
[p−Π]l+1 − [p−Π]l

Πl+1 −Πl
(459)

At the top of the model, this formula becomes:[
g
∂(p−Π)

∂Π

]
top

= g
[p−Π]l=1

Πl=1 −Πtop
(460)

• LVFE GW=.T.: This quantity must be evaluated at full levels: use the full level [∆p]l (see its
discretisation in part 15.1).
Additional remark for LGWADV=T: once updated temporally gw, using the gw equation, it is
recommended to apply vertical derivatives on temporal increments (and not directly on the temporally
updated gw) to restore the temporally updated d. This precaution is to ensure that we discretise
d(t+∆t) = d(t−∆t)+2∆t ∂d

∂t
and not something looking like: d(t+∆t) = Rderi(Rinte(d(t−∆t)))+2∆t ∂d

∂t
.

∗ Discretisation of the RHS of [gwsurf ] equation: This calculation must be done in some cases
(LGWADV=F): This RHS is the sum of the product:

dVsurf

dt
∇Φs

and the “Jacobian” term:
Vsurf (Vsurf∇[∇Φs])

• dVsurf
dt

has already been studied above.

• The “Jacobian” term can be developed as follows:

U2
surf [∇2

zo zoΦs] + 2UsurfVsurf [∇2
zo meΦs] + V 2

surf [∇2
me meΦs]

∗ Discretisation of the RHS of the vertical divergence d equation:
• Term −dD3 + d∇V at full levels:

[−dD3 + d∇V]l = −dl[D3]l + dl[∇V]l (461)

This discretisation can be applied for both finite difference and finite element vertical discretisations.

• Term − gp

RdT
∂Π
∂η

∂[ dwdt ]
ad

∂η
:
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– LVFE GW=.F.: This term is rewritten:

− gp

RdTΠ

∂
[
dw
dt

]
ad

∂ log Π

Its discretisation at full levels is:[
− gp

RdTΠ

∂
[
dw
dt

]
ad

∂ log Π

]
l

= − pl
Πl

g

RdTlδl

[[
dw

dt

]
ad,l
−
[
dw

dt

]
ad,l−1

]
(462)

– LVFE GW=.T.: It is desirable to isolate the Laplacian term:[
dw

dt

]
ad

=
[
dw

dt

]
lap

+
[
dw

dt

]
oth

(
[
dw
dt

]
oth

is zero for thin layer equations). The Laplacian contribution provides the term:

− g2p

RdT
∂Π
∂η

∂
(
∂(p−Π)
∂Π

)
∂η

Its discretisation at full levels is:[
− g2p

RdT
∂Π
∂η

∂
(
∂(p−Π)
∂Π

)
∂η

]
l

= − pl
Πl

g2

RdTlδl
[∆η]l

[
∂
(
∂(p−Π)
∂Π

)
∂η

]
l

The discretisation of
∂
(
∂(p−Π)
∂Π

)
∂η

has been studied in part 15.1.

Remark: the discretisation of this term, combined with the discretisation of the RHS of the w equation,
must respect the constraint “C2” of (IDVNH2.1).

• Term Z = − gp

RdT
∂Π
∂η

(∇w)
(
∂V
∂η

)
: its discretisation looks like the one of X.

– LVFE Z TERM=.F.: This term is rewritten:

Z = − gp

RdTΠ
(∇w)

(
∂V

∂ log Π

)
Its discretisation at full levels is:

Zl = − pl
Πl

g

RdTlδl

[
∇[w]

l−1
(Vl −V

l−1
) +∇[w]

l
(V

l
−Vl)

]
(463)

This discretisation uses ∇[w] at half levels and V at both full and half levels. The discretisation of
∇[gw] at half levels is given by equation (395).

– LVFE Z TERM=.T.: Z is discretised at full levels as follows:

Zl = − pl
Πl

g[∆η]l
RdTlδl

∇[w]l[RderiV]l (464)

∗ Use of d4 as prognostic variable: In equation (160), the calculation of ∂X
∂t

is not done by an Eulerian
temporal advection but simply by a diagnostic evaluation. In the Eulerian scheme without any predictor-corrector
scheme, the discretisation of ∂X

∂t
follows:

∂X

∂t
=

Xo − X−

∆t
(465)

With a predictor-corrector scheme, there are two options:

• Option 1 (ND4SYS=1): include all the contributions of the evolution of X in the predictor-corrector
scheme iterations.

• Option 2 (ND4SYS=2): include only the advective contributions evolution of X in the predictor-corrector
scheme iterations; after the last step of the corrector step, include the non advective processes.
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15.14 (WS2003) deep layer formulation of the gw and vertical divergence
equation.

∗ Definition of X, A, L and F , top and bottom values, for the vertical divergence.

X = d (466)

A = −dD3 + d∇V − Gp

RdT
∂Π̃
∂η

∂[ d[r
2/a2w]
dt

]ad

∂η
+

Gp

RdT
∂Π̃
∂η

(
∇
[
r2

a2
w

])(
∂V

∂η

)
(467)

L, physics, top and bottom values: cf. thin layer formulation.

∗ Definition of X, A, L and F , top and bottom values, for the vertical velocity.

X = w (468)

A = −Gµs − (g −G) +G

(
r2

a2
− 1

)
∂p

∂Π̃
+G

∂(p− Π̃)

∂Π̃
(469)

Physics, top and bottom values: cf. thin layer formulation.

∗ Discretisation of each component of the RHS. They are discretised at half levels if
LVFE GW=F, at full levels if LVFE GW=T.

• Term −Gµs: discretisation of µs has been already studied. See equation (318) for discretisation at full
levels (case LVFE GW=T), replace g by G; for discretisation at half levels (case LVFE GW=F), use V
at half levels, r at half levels.

• Term (g −G) is non-zero only if vertical variations of g are taken into account.
In this case: (g −G)l = G(a2/r2

l − 1) and (g −G)
l

= G(a2/r2

l
− 1).

• Term G
(

1− r2

a2

)
∂p

∂Π̃
+G ∂(p−Π̃)

∂Π̃
: depths of pressure are discretised like in the thin layer model.

– Case LVFE GW=F: use the half level values of [∆p], [∆Π̃], r, already studied.

– Case LVFE GW=T: use the full level values of [∆p], [∆Π̃], r, already studied.

The way to separate the non-Laplacian residual from the main Laplacian term is still an issue (relevant for
LGWADV=F).

• To compute the RHS of d equation we additionally need the following formula:

d
[
r2

a2w
]

dt
=
r2

a2

dw

dt
+ 2

r

a2
w2

15.15 Specific features for plane geometry.
Like for the hydrostatic model, the specific features for plane geometry mainly touch the momentum equation.
These specific features are identical in the hydrostatic and non-hydrostatic model, so we don’t recall them.
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16 Discretisation of some other diagnosed quantities.

Discretisations are generally written with the radius r to take account of the deep-layer formulations. For thin-
layer formulations replace r by a and

[
r
a
∇
]

by ∇.

16.1 cp, R and κ.

For cp (air calorific capacity at constant pressure) at full levels:

[cp]l = cpd

(
1− [q]l − [ql]l − [qi]l

)
+ cpv [q]l + cpl [ql]l + cpi [qi]l (470)

where cpd is the dry air calorific capacity at constant pressure, cpv is the water vapour calorific capacity at
constant pressure, cpl is the liquid water calorific capacity, and cpi is the ice calorific capacity.
For R (air constant) at full levels:

[R]l = Rd

(
1− [q]l − [ql]l − [qi]l

)
+Rv [q]l (471)

where Rd is the dry air constant and Rv is the water vapour air constant.
For κ at full levels:

[κ]l =
[R]l
[cp]l

(472)

The ratio cv/cp at full levels is given by equation:[
cv
cp

]
l

= 1− [κ]l (473)

16.2
[
r
a
∇
]

(RT ).

Its discretisation at full levels writes:[[
r

a
∇
]

(RT )
]
l

= (Rv −Rd) [T ]l

[[
r

a
∇
]
q
]
l
+ [R]l

[[
r

a
∇
]
T
]
l

(474)

16.3 Potential temperature PT and its horizontal gradient.

Discretisation of PT at full levels writes:

[PT ]l = [T ]l

[
[Π]l

Π1000

]−[κ]l

(475)

where Π1000 = 100000 Pa
Discretisation of its horizontal gradient at full levels writes:[[

r

a
∇
]

(PT )
]
l

= [PT ]l

([[
r
a
∇
]
T
]
l

[T ]l
− [κ]l

[[
r
a
∇
]

Π

Π

]
l

)
(476)

The expression of
[ ra∇]Π

Π
at full levels is given in part (9.6).

Remark: in the cycle 45 the code does not match exactly formula (476); this has to be changed in the future.

16.4 Virtual potential temperature PTV .

Its discretisation at full levels writes:

[PTV ]l = [TV ]l

[
[Π]l

Π1000

]−κd

=
Rl
Rd

Tl

[
[Π]l

Π1000

]−κd

(477)

where Π1000 = 100000 Pa; κd = Rd/cpd.
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16.5 Equivalent potential temperature PTE.

Its discretisation at full levels writes:

[PTE]l = [PT ]l exp

[
Ll[qsat]l
[cpsat]lTl

]
(478)

where the discretisation of the potential temperature PT has been provided by formula (475). Discretisation of
[cpsat] at full levels writes:

[cpsat]l = cpd + (cpv − cpd)[qsat]l

16.6 Absolute vorticity ζabs.

Its discretisation at full levels writes:
[ζabs]l = [ζ]l + f (479)

for both thin layer and deep layer equations (after formula (4.28) of (White and Bromley, 1995)).
In the deep layer formulation, it is better to rewrite this formula as follows:

[ζabs]l =
[
a

r

]
l

[
r

a
ζ
]
l
+ f (480)

in order to show quantities easily available in the model.

16.7 Potential vorticity PV .

∗ Vertical finite difference discretisation.
In the thin layer formulation, discretisation of PV at full levels is:

[PV ]l = g
[
∂V

∂Π

]
l

[
M

a cos Θ

∂PT

∂Λ

]
l
− g
[
∂U

∂Π

]
l

[
M

a

∂PT

∂Θ

]
l
− g [ζabs]l

[
∂PT

∂Π

]
l

(481)

In the (WB1995) deep layer formulation, discretisation of PV at full levels is:

[PV ]l =
[
a2

r2

]
l
g
[
∂( r
a
V )

∂Π

]
l

[
M

a cos Θ
∂PT
∂Λ

]
l
−
[
a2

r2

]
l
g
[
∂( r
a
U)

∂Π

]
l

[
M
a
∂PT
∂Θ

]
l

−g [ζabs]l
[
∂PT
∂Π

]
l
+ 2Ω cos θ

[
a
r

]
l

[
M
a
∂PT
∂Θ

]
l

(482)

In the (WS2003) deep layer formulation, discretisation of PV at full levels is:

[PV ]l =
[
r
a

]
l
G
[
∂V

∂Π̃

]
l

[
M

a cos Θ
∂PT
∂Λ

]
l
−
[
r
a

]
l
G
[
∂U

∂Π̃

]
l

[
M
a
∂PT
∂Θ

]
l

−
[
r
a

]
l
G [ζabs]l

[
∂PT

∂Π̃

]
l
+ 2Ω cos θ

[
a
r

]
l

[
M
a
∂PT
∂Θ

]
l

(483)

Discretisation of vertical derivatives relative to hydrostatic pressure: for a variable X:[
∂X

∂Π

]
l

= 0.5

(
Xl+1 −Xl−1

[∆Π]l

)
(484)

[
∂X

∂Π

]
l=1

=

(
Xl=2 −Xl=1

[∆Π]l=1

)
(485)[

∂X

∂Π

]
l=L

=

(
Xl=L −Xl=L−1

[∆Π]l=L

)
(486)

In the (WB1995) deep layer formulation, this discretisation is applied to X = (r/a)U , X = (r/a)V and X = PT ,
otherwise it is applied to X = U , X = V and X = PT .
Discretisation of the components of

[
r
a
∇
]

(PT ): see equation (476).

∗ Vertical finite element discretisation.
The same discretisations are currently used. VFE discretisation of vertical derivatives has not been implemented
for this quantity which is currently used only in the post-processing.
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16.8 Shearing deformation SHD and stretching deformation STD.

Spherical geometry:

[STD]l = M
[
a

r

]
l

[
1

a cos Θ

∂U
′

∂Λ

]
l

− 0.5Dl (487)

[SHD]l = M
[
a

r

]
l

[
1

a cos Θ

∂V
′

∂Λ

]
l

− 0.5ζl (488)

Plane geometry:

[STD]l = M2
[
a

r

]
l
[∂
′
xU
′]l − 0.5Dl (489)

[SHD]l = M2
[
a

r

]
l
[∂
′
xV
′]l − 0.5ζl (490)

16.9 Hydrostatic vertical divergence dhyd.

The thin layer discretisation of dhyd at full levels is:

[dhyd]l = −Rl
Rd

[
cv
cp

]
l

[
ω

Π

]
l
− Rl
Rd

[∇V]l −
1

RdTl

[
∇ [gz] Π

∂V

∂Π

]
l

(491)

with:

• if finite differences discretisation applied to vertical derivatives:[
∇ [gz] Π

∂V

∂Π

]
l

=
1

δl

[(
[V]

l
− [V]l

)
[∇ [gz]]

l
+
(
[V]l − [V]

l−1

)
[∇ [gz]]

l−1

]
(492)

• if VFE discretisation applied to vertical derivatives:[
∇ [gz] Π

∂V

∂Π

]
l

=
[∆η]l
δl

[Rderi(V)]l [∇ [gz]]l (493)

The (WB1995) discretisation of dhyd at full levels is:

[dhyd]l = −Rl
Rd

[
cv
cp

]
l

[
ω

Π

]
l
− Rl
Rd

[
a

r

]
l

[[
r

a
∇
]

V
]
l
+
Rl
Rd

[
a2

r2

]
l

[V]l

[[
r

a
∇
] [

r

a

]]
l
− 1

RdTl

[[
r

a
∇
]

[gz] Π
∂
(
aV
r

)
∂Π

]
l

(494)
with:

• if finite differences discretisation applied to vertical derivatives:[[
r

a
∇
]

[gz] Π
∂
(
aV
r

)
∂Π

]
l

=
a

δl

[([
V

r

]
l
−
[

V

r

]
l

)[[
r

a
∇
]

[gz]
]
l
+

([
V

r

]
l
−
[

V

r

]
l−1

)[[
r

a
∇
]

[gz]
]
l−1

]
(495)

• if VFE discretisation applied to vertical derivatives:[[
r

a
∇
]

[gz] Π
∂
(
aV
r

)
∂Π

]
l

=
a[∆η]l
δl

[
Rderi

(
V

r

)]
l

[[
r

a
∇
]

[gz]
]
l

(496)

The (WS2003) deep layer discretisation of dhyd at full levels is:

[dhyd]l = −Rl
Rd

[
cv
cp

]
l

[
ω

Π̃

]
l

[
Π̃

Π

]
l

− Rl
Rd

[
a

r

]
l

[[
r

a
∇
]

V
]
l
+
[
r

a

]
l

1

RdTl

[[
r

a
∇
]

[Gr] Π
∂V

∂Π̃

]
l

(497)

with:

• if finite differences discretisation applied to vertical derivatives:[[
r

a
∇
]

[Gr] Π
∂V

∂Π̃

]
l

=
1

δ̃l

Πl

Π̃l

[(
[V]

l
− [V]l

) [[ r
a
∇
]

[Gr]
]
l
+
(
[V]l − [V]

l−1

) [[ r
a
∇
]

[Gr]
]
l−1

]
(498)

• if VFE discretisation applied to vertical derivatives:[[
r

a
∇
]

[Gr] Π
∂V

∂Π̃

]
l

=
[∆η]l

δ̃l

Πl

Π̃l

[Rderi(V)]l

[[
r

a
∇
]

[Gr]
]
l

(499)

One needs the discretisation of the horizontal wind at half levels: this discretisation has been given in part (15.1).
Discretisation of each other RHS terms has been previously studied in this documentation.
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16.10 Hydrostatic height coordinate vertical velocity whyd.

∗ Vertical finite difference discretisation.
The thin layer discretisation of whyd matches the following equation:

g [whyd]
l

= g [whyd]surf +

k=L∑
k=l+1

RdTk [dhyd]k δk (500)

Discretisation of whyd at full levels is given by the following equation:

g [whyd]l = g [whyd]
l
+RdTl [dhyd]l αl (501)

At the surface:
g [whyd]surf = [V]l=L∇Φs (502)

The (WB1995) discretisation of whyd at half levels is given by the following equation:

g
[r]2
l

a2
[whyd]

l
= g

[r]2surf

a2
[whyd]surf +

k=L∑
k=l+1

[r]2k
a2

RdTk [dhyd]k δk (503)

Discretisation of whyd at full levels is given by the following equation:

g
[r]2l
a2

[whyd]l = g
[r]2
l

a2
[whyd]

l
+

[r]2l
a2

RdTl [dhyd]l αl (504)

At the surface:

g [whyd]surf =
[
a

r

]
l=L

[V]l=L

[
r

a
∇
]

Φs (505)

The (WS2003) deep layer discretisation of whyd at half levels is given by the following equation:

G
[r]2
l

a2
[whyd]

l
= G

[r]2surf

a2
[whyd]surf +

k=L∑
k=l+1

Π̃k

Πk
RdTk [dhyd]k δ̃k (506)

Discretisation of whyd at full levels is given by the following equation:

G
[r]2l
a2

[whyd]l = G
[r]2
l

a2
[whyd]

l
+

Π̃l

Πl
RdTl [dhyd]l α̃l (507)

At the surface:

G [whyd]surf =
[
a

r

]
l=L

[V]l=L

[
r

a
∇
]

Φs (508)

∗ Vertical finite element discretisation.
One directly computes whyd at full levels.
The thin layer discretisation of whyd at full levels is given by the following equation:

g [whyd]l = g [whyd]surf + [Rinte](surf,l)

〈
RdTdhydδ

∆η

〉
(509)

At the surface, g [whyd]surf is still given by equation (502).
The (WB1995) discretisation of whyd at full levels is given by the following equation:

g
[r]2l
a2

[whyd]l = g
[r]2surf

a2
[whyd]surf + [Rinte](surf,l)

〈
r2

a2

RdTdhydδ

∆η

〉
(510)

At the surface, g [whyd]surf is still given by equation (505).
The (WS2003) deep layer discretisation of whyd at full levels is given by the following equation:

G
[r]2l
a2

[whyd]l = G
[r]2surf

a2
[whyd]surf + [Rinte](surf,l)

〈
Π̃

Π

RdTdhydδ̃

∆η

〉
(511)

At the surface, G [whyd]surf is still given by equation (508).
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16.11 Moisture convergence CV GQ.

This quantity is evaluated at full levels. For NCOMP CVGQ=0 or 1, calculation is done as follows:

[CV GQ]l = − [V∇q]l −
[
η̇
∂q

∂η

]
l

(512)

For NCOMP CVGQ=2, calculation is done as follows:

[CV GQ]l =
[
∂q

∂t

]
l
−
[
dq

dt

]
l

(513)

NCOMP CVGQ=2 can be used only in the semi-Lagrangian scheme.
For the way of discretizing − [V∇q]l (which is an horizontal advection term) report to part 11.1. For the way of

discretizing −
[
η̇ ∂q
∂η

]
l

(which is a vertical advection term) report to part 11.2.

16.12 Montgomery potential Φmg and some other energetic quantities.

All these quantities are discretised at full levels. Formulae containing gz are guaranteed for thin layer equations.
Formulae for enthalpy and kinetic energy are guaranteed at least for the hydrostatic model.

• Montgomery potential: [Φmg]l = cpdTl + [gz]l.

• Dry static energy: sl = [cp]l Tl + [gz]l.

• Moist static energy: [sh]l = [cp]l Tl + [gz]l + Llql.

• Enthalpy: hl = [cp]l Tl + [gz]l + 0.5 ∗ (U2
l + V 2

l ).

• Kinetic energy: [KE]l = 0.5 ∗ (U2
l + V 2

l ).

16.13 Angular momentum of components MMA, MMB and MMC.

All these quantities are discretised on layer using the layer values of (UG;VG) and r.

16.14 Entropy S.

Hydrostatic model: the entropies are discretised at full levels using the layer values of q, ql, qi, T and Π; the layer
values of Πv and Πd have to be taken consistently with the one of Π: [Πv]l = [q]l [Π]l and [Πd]l = (1− [q]l) [Π]l.

Non hydrostatic model: the hydrostatic pressure Π must be replaced by the total pressure p in the previous
formulae.
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17 Treatment of the linear terms.

The grid-point calculations of the model provide the quantity (X −∆tβL)+ for a subset of equations. Retrieving
X+ is done in the spectral computations after the direct spectral transforms and just before the horizontal
diffusion. The algorithm of solving the semi-implicit scheme is described in a specific documentation (IDSI)
about semi-implicit scheme.

In the (WB1995) system, a reference state must be defined for Tr, r, W and µs. The reference state is defined
by an horizontal wind equal to zero: the consequence is that the reference state for divergence, vorticity, and
µs is zero. The equation giving η̇ ∂Π

∂η
gives a reference state for η̇ ∂Π

∂η
equal to zero. The equation giving (ω/Π)

gives a reference state for (ω/Π) which is equal to zero; the consequence is that the reference state for W is also
zero. The reference state r∗ for r must depend only on the hydrostatic pressure Π, but also match the formula
dr∗

dt
= 0: the consequence is that ∂r∗

∂Π
must be zero, so r∗ must be a constant; the simplest way to define this

constant is to take r∗ = a. Thus the reference profile for Tr is zero. The consequence is that the spectral part of
the semi-implicit scheme is the same in the deep layer and the thin layer equations.

In the (WS2003) formulation of deep layer equations, a reference state must be defined for r and µs. The reference
state for w is also relevant in the NH thin layer equations and is zero.

• Reference state for µs: the reference state is defined by an horizontal wind equal to zero: the consequence
is that the reference state for divergence, vorticity, and µs is zero.

• Reference state for r: the simplest way to define it is to take r∗ = a.

18 The Asselin filter.

In a leap-frog scheme, a weak time filter is used after Asselin (1972). If Xfil denotes the filtered value of X:

Xo
fil = Xo + εass1(X−fil −X

o) + εass2(X+ −Xo) (514)

19 Lateral boundary coupling and upper boundary coupling.

A limited area model (LAM) needs to get information from the lateral boundaries. It can be done:

• By lateral boundary coupling, in grid-point space.
The LAM domain is divided into 3 zones (C for inner zone, I for intermediate zone, E for extension zone).
Davies (1976) relaxation is applied to fields:

Xcoupled = (1− αrel)Xcoupled + αrelXlbc (515)

αrel is equal to 1 in the extension zone, 0 in the inner zone, and varies between 0 and 1 in the intermediate
zone. αrel is vertically constant and can depend on the coupled variable.

• By upper boundary coupling.
The same kind of formula:

Xcoupled = (1− αnud)Xcoupled + αnudXlbc (516)

is still applied, but now αnud is vertically-dependent (generally non-zero near the model top only) and may
depend on the wavenumber too.
αnud writes:

αnud =
αvαhKnud

1 + αvαhKnud

αv is a vertically-dependent coefficient: 1 for l below a threshold lnen1; 0 for l above a threshold lnen2;
continuous and monotonic function between 0 and 1 otherwise. αv is identical for all variables.
αh is a wavenumber-dependent coefficient: 1 for low wavenumbers (below a threshold nnek0); 0 for high
wavenumbers (above a threshold nnek1); continuous and monotonic function between 0 and 1 otherwise.
αh is identical for all variables.
Knud is a tunable coefficient which may be different for each variable.
Such scheme is activated in practical to force the LAM large-scale patterns by the large scale model in the
high atmosphere.
There are two ways to activate such a scheme:

– Spectral nudging, in spectral space: both vertical and wavenumber dependencies are possible. Could
be applied in spectral space to spectral fields only.

– Grid-point nudging, in grid-point space: only vertical dependency is possible. Could be applied in
grid-point space to grid-point fields.

Xlbc is needed at each timestep, but coupling files are not read at each timestep (frequency of reading such files
is generally between 1h and 3h). A temporal linear, quadratic or cubic interpolation is applied to retrieve Xlbc

at the current instant from values read on files.

A call-tree for lateral boundary coupling and upper boundary coupling is given in part 24.6 .
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20 The flux form of an equation and its discretisation.

20.1 The flux form of the equation of a variable X.

20.1.1 Introduction.

The aim is to evaluate the Eulerian tendency of an additive quantity QX corresponding to some content on an
additive quantity in a particle. The additive quantity QX is linked to an intensive quantity X. For example:

• For X = 1 the additive quantity Q1 is the total mass in a particle.

• For X = q (specific humidity), the additive quantity Qq is the water vapour mass in the same particle.

• For X = V, the additive quantity QV is the momentum in the same particle.

X and QX are linked by the following relationship:

QX = Q1X

All the calculations will be done for the deep layer equations.

Given a particle of dimensions δx, δy, δz, of density ρ: the total mass contained in this particle is

Q1 = ρδxδyδz

Using the hydrostatic relationship δΠ = −ρgδz, expression of Q1 can be rewritten as follows:

Q1 = −1

g
δxδyδΠ

Product δxδy involves r2

a2 and a surface δSa which does not depend on the vertical nor on the hydrostatic pressure.
Q1 writes:

Q1 = −1

g

r2

a2
δSaδΠ = −1

g

r2

a2

∂Π

∂η
δSaδη

All what does not depend on the time t has to be put in factor (for example g, δSa and δη); the Eulerian tendency

of r2

a2
∂Π
∂η
X has to be taken to write the flux form of the evolution equation of X.

20.1.2 The flux form of the equation of X.

∗ Calculation with metric terms. One does a combination between the Eulerian form of the evolution
equation of X and the Eulerian form of continuity equation to obtain it.
Equation for X writes:

∂X

∂t
= −a

r
V
[
r

a
∇
]
X − η̇ ∂X

∂η
+
[
dX

dt

]
ad

+ FX (517)

where
[
dX
dt

]
ad

is the adiabatic Lagrangian tendency of X. One here omits the horizontal diffusion terms and
semi-implicit correction terms.
Equation (517) is combined with equation (555) divided by a2. In continuity equation the following term must
appear:

∂
[
r2

a2
∂Π
∂η

]
∂t

Term ∂
[
r2

a2
∂Π
∂t

]
/∂η can be rewritten:

∂
[
r2

a2
∂Π
∂t

]
∂η

=
∂Π

∂t

∂
[
r2

a2

]
∂η

+

[
r2

a2

]
∂ ∂Π
∂t

∂η
=
∂Π

∂t

∂
[
r2

a2

]
∂η

+

[
r2

a2

]
∂ ∂Π
∂η

∂t
=
∂Π

∂t

∂
[
r2

a2

]
∂η

− ∂Π

∂η

∂
[
r2

a2

]
∂t

+
∂
[
r2

a2
∂Π
∂η

]
∂t

One moves the terms ∂Π
∂t

∂
[
r2

a2

]
∂η

and: − ∂Π
∂η

∂
[
r2

a2

]
∂t

in the RHS of the equation.
Continuity equation can be rewritten under its flux form:

∂
[
r2

a2
∂Π
∂η

]
∂t

= −∂Π

∂t

∂
[
r2

a2

]
∂η

+
∂Π

∂η

∂
[
r2

a2

]
∂t

−
[
r

a
∇
] [

r

a
V
∂Π

∂η

]
−
∂
[
r2

a2 η̇
∂Π
∂η

]
∂η

− g ∂Fp

∂η
(518)

The quantity:
∂
[
r2

a2
∂Π
∂η

]
∂t

is given by the combination of equations: X (518) +
[
r2

a2
∂Π
∂η

]
(517)
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• Terms containing
[
r
a
∇
]

in the RHS:

−
[
r2

a2

∂Π

∂η

]
a

r
V

[
r

a
∇
]
X−X

[
r

a
∇
] [

r

a
V
∂Π

∂η

]
= −

[
r

a
V
∂Π

∂η

] [
r

a
∇
]
X−X

[
r

a
∇
] [

r

a
V
∂Π

∂η

]
= −

[
r

a
∇
] [

r

a
V
∂Π

∂η
X

]
• Terms containing ∂

∂η
, other than the one which is multiplied by ∂Π

∂t
in the RHS:

−
[
r2

a2

∂Π

∂η

]
η̇
∂X

∂η
−X

∂
[
r2

a2 η̇
∂Π
∂η

]
∂η

= −
∂
[
r2

a2Xη̇
∂Π
∂η

]
∂η

• Term containing
[
dX
dt

]
ad

in the RHS: [
r2

a2

∂Π

∂η

] [
dX

dt

]
ad

• Physical term containing FX: [
r2

a2

∂Π

∂η

]
FX

• Physical term containing
∂Fp

∂η
:

−gX ∂Fp

∂η

That finally gives the flux form of the Eulerian equation of X:

∂
[
r2

a2
∂Π
∂η
X
]

∂t
= −

[
r
a
∇
] [

r
a
V ∂Π

∂η
X
]
−

∂
[
r2

a2Xη̇
∂Π
∂η

]
∂η

−X ∂Π
∂t

∂
[
r2

a2

]
∂η

+X ∂Π
∂η

∂
[
r2

a2

]
∂t

+
[
r2

a2
∂Π
∂η

] [
dX
dt

]
ad

+
[
r2

a2
∂Π
∂η

]
FX − gX ∂Fp

∂η
(519)

∗ Final equation.

• (WB1995) deep-layer formulation of hydrostatic equations: see equation (519).

• Thin layer formulation of hydrostatic equations: some terms disappear and this equation takes a simpler
form.

∂
[
∂Π
∂η
X
]

∂t
= −∇

[
V
∂Π

∂η
X

]
−
∂
[
Xη̇ ∂Π

∂η

]
∂η

+

[
∂Π

∂η

] [
dX

dt

]
ad

+

[
∂Π

∂η

]
FX − gX

∂Fp

∂η
(520)

• (WS2003) deep-layer formulation of NH equations: replacing Π by Π̃ allows to hide some metric terms.
Equation can be written:

∂

[
∂Π̃
∂η
X

]
∂t

= −
a

r

[
r

a
∇
][

a

r
V
∂Π̃

∂η
X

]
−
[

1−
a

r

]
a

r

∂Π̃

∂η
V

[
r

a
∇
]
X−

∂

[
Xη̇ ∂Π̃

∂η

]
∂η

+

[
∂Π̃

∂η

][
dX

dt

]
ad

+

[
∂Π̃

∂η

]
FX−gX

∂Fp

∂η

(521)

or:

∂
[
∂Π̃
∂η
X
]

∂t
= −a

r

[
r

a
∇
] [

a

r
V
∂Π̃

∂η

]
X− a

r

∂Π̃

∂η
V
[
r

a
∇
]
X−

∂
[
Xη̇ ∂Π̃

∂η

]
∂η

+

[
∂Π̃

∂η

] [
dX

dt

]
ad

+

[
∂Π̃

∂η

]
FX−gX

∂Fp

∂η

(522)

If vertical variations of g are taken into account, an alternate possible formulation is to use the RHS of
∂
[
G
g
∂Π̃
∂η
X
]

∂t
, which provides more consistent budgets. But the RHS of the corresponding equation is more

tricky: this option has not been retained.

20.1.3 Specific features for plane geometry.

Equations (519) and (520) are still valid but it is desirable to use the gradient operator M∇
′

= (M∂
′
x;M∂

′
y) and

the quantities (MU
′
;MV

′
) for the wind, and to write equations on the plane.
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20.2 Use of the discretisation of the flux form of equations.

The flux form of equations is used in some diagnostics, like the DDH package (horizontal diagnostics in boxes).
There is a specific documentation for the DDH package, at least for the thin layer equations (Piriou, 2006), so
no additional detail will be given here. Only the list of variables diagnosed (to which is applied the flux form of
equations) is given below:

• X = 1 (continuity equation).

• X = q (moisture equation).

• X = V (horizontal wind).

• X = 0.5(U2 + V 2) = 0.5V.V (kinetic energy).

• X = cpT .

• X = cpT + gz + 0.5(U2 + V 2) (total energy).

• X = ql (liquid water).

• X = qi (ice).

• X = M = r ∧ (Ω ∧ r + V) (kinetic momentum).

• X = S (entropy).

For some of these variables,
[
dX
dt

]
ad

is assumed to be zero (X = 1; q; cpT + gz + 0.5(U2 + V 2); ql; qi; S); for

some other ones which are not prognostic variables, computation of
[
dX
dt

]
ad

need some additional calculations (for

example for the kinetic energy).

Additional remark: gz has been kept in some energetic quantities but it may be better to write Φ (which is not
always equal to gz for deep-layer formulations of equations).

20.3 The discretisation of the “thin layer” flux form of the equation of a
variable X.

20.3.1 Left hand side.

In the LHS,
[
∂Π
∂η
X
]

is computed at full levels, and is discretised as follows:[
∂Π

∂η
X

]
l

=
[∆Π]l
[∆η]l

Xl

20.3.2 Term containing the horizontal divergence in the RHS.

This term is rewritten under a sum of 3 terms, in order to show the quantities ∇V, ∇Π and ∇X, and writes:

−
[
∂Π

∂η
X

]
∇V − [VX]∇∂Π

∂η
−
[
V
∂Π

∂η

]
∇X

Discretisation shows the quantities [∆Π]l, [∆η]l, [∇V]l, [X]l, [∆B]l. For the second term one uses the definition

of the hybrid vertical coordinate, showing ∂B
∂η

and Πs. So the discretised form of the sum of 3 terms writes:

−
[

[∆Π]l
[∆η]l

Xl

]
[∇V]l − [VlXl]

[
[∆B]l
[∆η]l

∇Πs

]
−
[
Vl

[∆Π]l
[∆η]l

]
l

[∇X]l

Remark: term −∇
[
V ∂Π

∂η
X
]

can be rewritten as −X∇
[
V ∂Π

∂η

]
−V ∂Π

∂η
∇X to show the quantity ∇

[
V ∂Π

∂η

]
easily

available in the model.

20.3.3 Term containing the vertical divergence in the RHS.

∗ Vertical finite difference discretisation: Its discretisation writes:

−

[
Xη̇ ∂Π

∂η

]
l
−
[
Xη̇ ∂Π

∂η

]
l−1

[∆η]l

• Vertical integration of continuity provides η̇ ∂Π
∂η

at half levels, so this is η̇ ∂Π
∂η

at half levels which has to be
used in the discretisation.
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• X is known at full levels; its discretisation at half levels is given by formula:

X
l

= 0.5 (Xl +Xl+1)

The former expression can be rewritten as a difference of two fluxes (more exactly − g
[∆η]l

(flux
l
− flux

l−1
)) where:

flux
l

=
0.5(Xl +Xl+1)

g

[
η̇
∂Π

∂η

]
l

fluxtop =
Xtop

g

[
η̇
∂Π

∂η

]
top

fluxsurf =
Xsurf

g

[
η̇
∂Π

∂η

]
surf

The DDH package (routine CPDYDDH) stores these half level fluxes.

∗ Vertical finite element discretisation: What is currently coded is a mixed FD-VFE discretisation
where the operator Rderi is not used:

• Vertical integration of continuity provides η̇ ∂Π
∂η

at full levels; its discretisation at half levels is given by
formula: [

η̇
∂Π

∂η

]
l

= 0.5

([
η̇
∂Π

∂η

]
l

+

[
η̇
∂Π

∂η

]
l+1

)
• X is known at full levels; its discretisation at half levels is given by formula:

X
l

= 0.5 (Xl +Xl+1)

The discretisation currently proposed is:

• Layers 2 to L− 1:

−
[0.5 (Xl +Xl+1)]

[
0.5
([
η̇ ∂Π
∂η

]
l
+
[
η̇ ∂Π
∂η

]
l+1

)]
− [0.5 (Xl−1 +Xl)]

[
0.5
([
η̇ ∂Π
∂η

]
l−1

+
[
η̇ ∂Π
∂η

]
l

)]
[∆η]l

• Layer 1:

−
[0.5 (X1 +X2)]

[
0.5
([
η̇ ∂Π
∂η

]
1

+
[
η̇ ∂Π
∂η

]
2

)]
−Xtop

[
η̇ ∂Π
∂η

]
top

[∆η]1

• Layer L:

−
Xsurf

[
η̇ ∂Π
∂η

]
surf
− [0.5 (XL−1 +XL)]

[
0.5
([
η̇ ∂Π
∂η

]
L−1

+
[
η̇ ∂Π
∂η

]
L

)]
[∆η]L

This discretisation does not match completely the way of discretising a vertical derivative (which uses the operator
Rderi), but this is the discretisation which leads to the minimum amount of modifications in the DDH package
(routine CPDYDDH) compared to the case LVERTFE=.F., since the fluxes remain defined and stored at half
levels. The former expressions can be rewritten as a difference of two fluxes (more exactly − g

[∆η]l
(flux

l
−flux

l−1
))

where:

flux
l

=
0.5(Xl +Xl+1)

g

[
0.5

([
η̇
∂Π

∂η

]
l

+

[
η̇
∂Π

∂η

]
l+1

)]

fluxtop =
Xtop

g

[
η̇
∂Π

∂η

]
top

fluxsurf =
Xsurf

g

[
η̇
∂Π

∂η

]
surf

The DDH package (routine CPDYDDH) stores these half level fluxes.

20.3.4 Term containing
[
dX
dt

]
ad

in the RHS.

Its discretisation writes:
[∆Π]l
[∆η]l

[[
dX

dt

]
ad

]
l
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20.3.5 Physical term containing FX in the RHS.

Its discretisation writes:
[∆Π]l
[∆η]l

[FX]l

20.3.6 Physical term containing
∂Fp

∂η in the RHS.

Its discretisation writes:

−gXl
[∆Fp]l
[∆η]l

20.4 The discretisation of the flux form of the equation of a variable X in
the (WB1995) system.

20.4.1 Left hand side.

In the LHS,
[
r2

a2
∂Π
∂η
X
]

is computed at full levels, and is discretised as follows:[
r2

a2

∂Π

∂η
X

]
l

=

[
r2
]
l

a2

[∆Π]l
[∆η]l

Xl

20.4.2 Term containing the horizontal divergence in the RHS.

This term is rewritten under a sum of 4 terms, in order to show the quantities
[
r
a
∇
]
V,
[
r
a
∇
]

Π,
[
r
a
∇
]
X and[

r
a
∇
]
r, and writes:

−
[
r

a

∂Π

∂η
X

] [
r

a
∇
]

V −
[
r

a
VX

] [
r

a
∇
]
∂Π

∂η
−
[
r

a
V
∂Π

∂η

] [
r

a
∇
]
X −

[
V
∂Π

∂η
X

] [
r

a
∇
]
r

a

Discretisation shows the quantities [r]l, [∆Π]l, [∆η]l,
[[
r
a
∇
]
V
]
l
, [X]l, [∆B]l. For the second term one uses the

definition of the hybrid vertical coordinate, showing ∂B
∂η

and Πs. So the discretised form of the sum of 4 terms
writes:

−
[

[r]l
a

[∆Π]l
[∆η]l

Xl

][[
r

a
∇
]
V

]
l
−
[

[r]l
a

VlXl

][
[r]l
a

[∆B]l
[∆η]l

[
r

a
∇
]

Πs

]
−
[

[r]l
a

Vl
[∆Π]l
[∆η]l

]
l

[[
r

a
∇
]
X

]
l
−
[
Vl

[∆Π]l
[∆η]l

Xl

][[
r

a
∇
]
r

a

]
l

Remark: term −
[
r
a
∇
] [

r
a
V ∂Π

∂η
X
]

can be rewritten as −X
[
r
a
∇
] [

r
a
V ∂Π

∂η

]
− r

a
V ∂Π

∂η

[
r
a
∇
]
X to show the quantity[

r
a
∇
] [

r
a
V ∂Π

∂η

]
easily available in the model.

20.4.3 Term containing the vertical divergence in the RHS.

∗ Vertical finite difference discretisation: Its discretisation writes:

−

[
r2

a2Xη̇
∂Π
∂η

]
l
−
[
r2

a2Xη̇
∂Π
∂η

]
l−1

[∆η]l

• Vertical integration of continuity provides r2

a2 η̇
∂Π
∂η

at half levels, so this is r2

a2 η̇
∂Π
∂η

at half levels which has

to be used in the discretisation (this is equivalent to use r2

a2 at half levels and η̇ ∂Π
∂η

at half levels).

• X is known at full levels; its discretisation at half levels is given by formula:

X
l

= 0.5 (Xl +Xl+1)

The former expression can be rewritten as a difference of two fluxes (more exactly − g
[∆η]l

(flux
l
− flux

l−1
)) where:

flux
l

=
0.5(Xl +Xl+1)

g

[
r2

a2
η̇
∂Π

∂η

]
l

fluxtop =
Xtop

g

[
r2

a2
η̇
∂Π

∂η

]
top

89



fluxsurf =
Xsurf

g

[
r2

a2
η̇
∂Π

∂η

]
surf

The DDH package (routine CPDYDDH) stores these half level fluxes.

∗ Vertical finite element discretisation: What is currently coded is a mixed FD-VFE discretisation
where the operator Rderi is not used:

• Vertical integration of continuity provides r2

a2 η̇
∂Π
∂η

at full levels; its discretisation at half levels is given by
formula: [

r2

a2
η̇
∂Π

∂η

]
l

= 0.5

([
r2

a2
η̇
∂Π

∂η

]
l

+

[
r2

a2
η̇
∂Π

∂η

]
l+1

)
• X is known at full levels; its discretisation at half levels is given by formula:

X
l

= 0.5 (Xl +Xl+1)

The discretisation currently proposed is:

• Layers 2 to L− 1:

−
[0.5 (Xl +Xl+1)]

[
0.5

([
r2

a2 η̇
∂Π
∂η

]
l
+
[
r2

a2 η̇
∂Π
∂η

]
l+1

)]
− [0.5 (Xl−1 +Xl)]

[
0.5

([
r2

a2 η̇
∂Π
∂η

]
l−1

+
[
r2

a2 η̇
∂Π
∂η

]
l

)]
[∆η]l

• Layer 1:

−
[0.5 (X1 +X2)]

[
0.5
([

r2

a2 η̇
∂Π
∂η

]
1

+
[
r2

a2 η̇
∂Π
∂η

]
2

)]
−Xtop

[
r2

a2 η̇
∂Π
∂η

]
top

[∆η]1

• Layer L:

−
Xsurf

[
r2

a2 η̇
∂Π
∂η

]
surf
− [0.5 (XL−1 +XL)]

[
0.5

([
r2

a2 η̇
∂Π
∂η

]
L−1

+
[
r2

a2 η̇
∂Π
∂η

]
L

)]
[∆η]L

This discretisation does not match completely the way of discretising a vertical derivative (which uses the operator
Rderi), but this is the discretisation which leads to the minimum amount of modifications in the DDH package
(routine CPDYDDH) compared to the case LVERTFE=.F., since the fluxes remain defined and stored at half
levels. The former expressions can be rewritten as a difference of two fluxes (more exactly − g

[∆η]l
(flux

l
−flux

l−1
))

where:

flux
l

=
0.5(Xl +Xl+1)

g

[
0.5

([
r2

a2
η̇
∂Π

∂η

]
l

+

[
r2

a2
η̇
∂Π

∂η

]
l+1

)]

fluxtop =
Xtop

g

[
r2

a2
η̇
∂Π

∂η

]
top

fluxsurf =
Xsurf

g

[
r2

a2
η̇
∂Π

∂η

]
surf

The DDH package (routine CPDYDDH) stores these half level fluxes.

20.4.4 Term containing
[
dX
dt

]
ad

in the RHS.

Its discretisation writes: [
r2
]
l

a2

[∆Π]l
[∆η]l

[[
dX

dt

]
ad

]
l

20.4.5 Physical term containing FX in the RHS.

Its discretisation writes: [
r2
]
l

a2

[∆Π]l
[∆η]l

[FX]l
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20.4.6 Physical term containing
∂Fp

∂η in the RHS.

Its discretisation writes:

−gXl
[∆Fp]l
[∆η]l

20.4.7 Term −X ∂Π
∂t

∂

[
r2

a2

]
∂η in the RHS.

This term is non-zero only in the (WB1995) deep layer formulation.

∗ Vertical finite difference discretisation: Taking X = 1 in equation (519) yields:

∂
[
∂Π
∂t

r2

a2

]
∂η

= −
[
r

a
∇
] [

r

a
V
∂Π

∂η

]
−
∂
[
r2

a2 η̇
∂Π
∂η

]
∂η

− g ∂Fp

∂η
(523)

Discretisation of the RHS of this equation has been already studied in parts (20.4.2), (20.4.3) and (20.4.6) (take
X = 1).
Using the following properties:

[
∂Π
∂t

]
top

= 0 et [Fp]top = 0, equation (523) yields the following discretisations:[
r2

a2

∂Π

∂t

]
l=1

= −
[[
r

a
∇
] [

r

a
V∆Π

]]
l=1
−
[
r2

a2
η̇
∂Π

∂η

]
l=1

+

[
r2

a2
η̇
∂Π

∂η

]
top

− g [Fp]
l=1

(524)

[
r2

a2

∂Π

∂t

]
l

=

[
r2

a2

∂Π

∂t

]
l−1

−
[[
r

a
∇
] [

r

a
V∆Π

]]
l
−
[
r2

a2
η̇
∂Π

∂η

]
l

+

[
r2

a2
η̇
∂Π

∂η

]
l−1

− g [Fp]
l
+ g [Fp]

l−1
(525)

That yields:
[
r2

a2
∂Π
∂t

]
l
, and one assumes that:[

r2

a2

∂Π

∂t

]
l

=

[
r2

a2

]
l

[
∂Π

∂t

]
l

So discretisation of
[
∂Π
∂t

]
l

writes: [
∂Π

∂t

]
l

=

[
r2

a2
∂Π
∂t

]
l[

r2

a2

]
l

Term
∂
[
∂Π
∂t

r2

a2

]
∂η

can be rewritten into the following sum:

∂
[
∂Π
∂t

r2

a2

]
∂η

=
∂Π

∂t

∂
[
r2

a2

]
∂η

+
r2

a2

∂
[
∂Π
∂t

]
∂η

Hence:

∂Π

∂t

∂
[
r2

a2

]
∂η

=
∂
[
∂Π
∂t

r2

a2

]
∂η

− r2

a2

∂
[
∂Π
∂t

]
∂η

One makes the following additional assumption:[
r2

a2

∂
[
∂Π
∂t

]
∂η

]
l

=

[
r2

a2

]
l

[
∂
[
∂Π
∂t

]
∂η

]
l

which provides the following discretisation:[
r2

a2

∂
[
∂Π
∂t

]
∂η

]
l

=

[
r2

a2

]
l

[
∂Π
∂t

]
l
−
[
∂Π
∂t

]
l−1

[∆η]l

Summary:

• The discretisation of [∆η]l

[
∂Π
∂t

∂
[
r2

a2

]
∂η

]
l

is:
[
∂Π
∂t

∆
[
r2

a2

]]
l
.
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• For the layer number l:[
∂Π

∂t
∆

[
r2

a2

]]
l

=

[
r2

a2

]
l

[
∂Π

∂t

]
l
−
[
r2

a2

]
l−1

[
∂Π

∂t

]
l−1
−
[
r2

a2

]
l

[
∂Π

∂t

]
l
+

[
r2

a2

]
l

[
∂Π

∂t

]
l−1

=

[
r2

a2

∂Π

∂t

]
l

1−

[
r2

a2

]
l[

r2

a2

]
l

+

[
r2

a2

∂Π

∂t

]
l−1


[
r2

a2

]
l[

r2

a2

]
l−1

− 1


• For the layer number l = 1: [

∂Π

∂t
∆

[
r2

a2

]]
l=1

=

[
r2

a2

∂Π

∂t

]
l=1

1−

[
r2

a2

]
l=1[

r2

a2

]
l=1


∗ Vertical finite element discretisation: For the time being the above FD discretisation is also used
even if the VFE discretisation is switched on in the model.

20.4.8 Term X ∂Π
∂η

∂

[
r2

a2

]
∂t in the RHS.

This term is non-zero only in the deep layer formulation.

∗ Vertical finite difference discretisation: One uses the value Xl of X on the layer number l, and

for
[
∂Π
∂η

]
l
, the discretisation

[∆Π]l
[∆η]l

already used elsewhere in this documentation.

It remains to discretise the term
∂
[
r2

a2

]
∂t

. More generally, for any integer or real number n, one writes the following
relationship between Eulerian tendency and Lagrangian tendency:

∂
[
rn

an

]
∂t

=
d
[
rn

an

]
dt

−
[
a

r
V
] [

r

a
∇
] [

rn

an

]
− η̇

∂
[
rn

an

]
∂η

which is rewritten as follows:

∂
[
rn

an

]
∂t

= n

[
rn−1

an−1

]
∂
[
r
a

]
∂t

= n

[
rn−1

an−1

]
d
[
r
a

]
dt
− n

[
rn−1

an−1

] [
a

r
V
] [

r

a
∇
] [

r

a

]
− n

[
rn−1

an−1

]
η̇
∂
[
r
a

]
∂η

This formula can be written as it is for each layer l, provided that one uses values of r/a only at full levels and
never at half levels; that yields the following discretisation:[

∂
[
rn

an

]
∂t

]
l

= n

[
rn−1

]
l

an−1

[
d
[
r
a

]
dt

]
l

− n

[
rn−1

]
l

an−1

[
a

r
V
]
l

[[
r

a
∇
] [

r

a

]]
l
− n

[
rn−1

]
l

an−1

[
η̇
∂
[
r
a

]
∂η

]
l

with: [
d
[
r
a

]
dt

]
l

=
Wl

a[
η̇
∂
[
r
a

]
∂η

]
l

= 0.5

[
η̇ ∂Π
∂η

]
l

[
[r]l+1

a
− [r]l

a

]
+
[
η̇ ∂Π
∂η

]
l−1

[
[r]l
a
− [r]l−1

a

]
[∆Π]l

and:
[rn]l
an

=

[
[r]l
a

]n
Computation of

[r]l
a

and
[[
r
a
∇
] [

r
a

]]
l

has already been studied in part (5.3.1) (see equations (110), (112), (111)

and (113)).

It is to be here noticed that discretisations are written showing the quantities
[[
r
a
∇
] [

r
a

]]
l

and
[
d[ ra ]
dt

]
l

which are

available in the model; in the contrary the corresponding derivatives of
[
rn

an

]
are not available. For consistency, one

has to do the same thing in the vertical advections, because even if it is possible to compute directly the vertical

advection of
[
rn

an

]
, one does not obtain the identity

∂
[
rn

an

]
∂t

= n
[
rn−1

an−1

]
∂[ ra ]
∂t

if the identity
∂
[
rn

an

]
∂η

= n
[
rn−1

an−1

]
∂[ ra ]
∂η

is not used.
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∗ Vertical finite element discretisation: For the time being the above FD discretisation is also used
even if the VFE discretisation is switched on in the model.

20.4.9 Remarks.

∗ Vertical finite difference discretisation: Discretisation of the flux form of the evolution equation
of a variable X, that has been described in this documentation, is valid for any variable X known at full levels;
this is in particular the case for X =

[
r
a

]n
at full levels. So, for X =

[
r
a

]n
, the vertical divergence term has the

following discretisation:

−0.5

[
r2

a2 η̇
∂Π
∂η

]
l

[[
[r]l
a

]n
+
[

[r]l+1

a

]n]
−
[
r2

a2 η̇
∂Π
∂η

]
l−1

[[
[r]l−1

a

]n
+
[

[r]l
a

]n]
[∆η]l

Quantity r
a

must not be put in factor before the discretisation. More generally, when X =
[
r
a

]n
Y , the vertical

divergence term has the following discretisation:

−0.5

[
r2

a2 η̇
∂Π
∂η

]
l

[[
[r]l
a
Yl

]n
+
[

[r]l+1

a
Yl+1

]n]
−
[
r2

a2 η̇
∂Π
∂η

]
l−1

[[
[r]l−1

a
Yl−1

]n
+
[

[r]l
a
Yl

]n]
[∆η]l

This remark is valid in particular for some variables like X = V + 2Ω ∧ r or X = M = r ∧ (V + Ω ∧ r).

∗ Vertical finite element discretisation: The current formulation of DDH is not fully consistent
with VFE for flux vertical divergences (use of a mixed FD-VFE discretisation). This point is still an issue which
requires a specific study.

∗ Non advected pseudo-historical GFL variables: The calculations previously done are valid
for advected variables. For non advected pseudo-historical GFL variables, all the previous calculations must be
done again with replacing the advections by zero.

∗ Semi-Lagrangian advection: The calculations previously done are fully consistent with the Eulerian
discretisation of the equations, but not with the semi-Lagrangian discretisation of the equations.

20.5 The discretisation of the “(WS2003) deep layer” flux form of the
equation of a variable X.

20.5.1 Term containing the horizontal divergence in the RHS.

This term is rewritten under a sum of 4 terms, in order to show the quantities
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Discretisation shows the quantities
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, [X]l, [∆B]l, rl. For the second term one uses the

definition of the hybrid vertical coordinate, showing ∂B
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and Π̃s. So the discretised form of the sum of 4 terms
writes:
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easily available in the model.

20.5.2 Other terms, and additional remarks.

See part 20.3 (replace Π by Π̃). For the time being vertical variations of g are always ignored in the
∂Fp

∂η
term.
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21 Organigramme for the setup and control routines (direct
code).

∗ General architecture under CNT0: The organigramme will not be detailed (that will be too long),
but it is possible to give some basics of its organisation:

CNT0 ->

* SU0YOMA ->

- setup before geometry (call tree not detailed)

- SUGEOMETRY (call tree not detailed)

- setup after geometry (call tree not detailed)

* SU0YOMB -> (call tree not detailed)

* some other routines not detailed here

* CNT1 ->

- SU1YOM -> (call tree not detailed)

- CNT2 -> CNT3 ->

* some routines not detailed here

* CNT4 ->

- some routines not detailed here

- STEPO -> (see below for more details)

• CNT0, CNT1, CNT2, CNT3, CNT4 control respectively the zero, first, second, third and fourth level
of the set-up.

• STEPO controls one time-step of the model integration.

∗ General architecture under STEPO:

STEPO ->

* Management of read/write: IOPACK

* Inverse spectral transforms: TRANSINVH -> TRANSINV_MDL

* Grid point computations: SCAN2M

* Grid-point coupling in LAM models: ECOUPL1 and ECOUPL2 (see below)

* Direct spectral transforms: TRANSDIRH -> TRANSDIR_MDL

* Spectral computations: (E)SPCM (see below), SPC2M.

The sequences of call to STEPO are controlled by a variable (often called CDCONF or CLCONF)
containing 9 letters or zeros [L1][L2][L3][L4][L5][L6][L7][L8][L9]

• L1 controls the file write/read.

• L2+L3 controls the inverse transforms.

• L4 controls the grid-point computations for dynamics and physics.

• L5 controls the grid-point computations for some diagnostics.

• L6 controls the grid-point computations for assimilation.

• L7 controls the coupling in LAM models.

• L8 controls the direct transforms.

• L9 controls the spectral computations.

For example a model integration time-step is defined by the sequence [L1]AAA00AAA.
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22 Organigramme under STEPO for the direct Eulerian 2D
model.

STEPO -> SCAN2M -> GP_MODEL ->

* CPG2 ->

- GPTF2

* CPG2LAG ->

- GPTF1

• CPG2: unlagged grid-point computations.

• CPG2LAG: lagged grid-point computations.

• GPTF1: first part of the Asselin temporal filter.

• GPTF2: second part of the Asselin temporal filter.

Communications between unlagged grid-point computations and lagged grid-point computations need a buffer
using pointers of module PTRSLB2.

∗ Basic description of the data flow under routine STEPO: No detail will be given, one can
read the part 24 with the following changes:

• There is no GFL field.

• The distinction between GMV and GMVS does not exist any longer, all fields can be considered as GMV or
GMVS ones. The current way of coding considers the wind components as GMV fields, and the equivalent
height as a GMVS field, but this way of coding is not satisfactory and has to be changed in the future.

• In the GMV fields, there are no thermodynamic variables.

• The model is purely adiabatic, so there is no surface field for physics.

• The structure of the code has not been completely updated relatively to the equivalent one of the 3D model.
There are only two blocks in the grid-point calculations: a non-lagged block (CPG2) which is the equivalent
of CPG in the 3D model; a lagged block (CPG2LAG) which is the equivalent of CALL SL+CPGLAG
in the 3D model.
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23 Organigramme under STEPO for the direct Eulerian 3D
model.

∗ Organigramme:

STEPO -> SCAN2M -> GP_MODEL_HEAP or GP_MODEL_STACK -> GP_MODEL ->
* CPG_DRV -> CPG ->
- CPG_GP ->

* GPTF2
* GPMPFC
* GP_SPV
* surface_fields_mix.F90/GPPOPER
* some GP.. and GNH.. routines computing intermediate grid-point quantities.
* GPINISLB
* CP_FORCING (RHS of equations for 1D model with LSFORC=T)

- GPINIDDH
- EC_PHYS or EC_PHYS_LSLPHY (organigramme not detailed)
- MF_PHYS_PREP
- MF_PHYS (organigramme not detailed)
- CPG_DIA -> (routines for some diagnostics, organigramme not detailed)
- CPG_DYN ->

* CPEULDYN ->
- some GP.. routines computing intermediate g.p. quantities.
- some SI.. routines computing some linear terms used in SI scheme.
- VERDER (vertical derivatives for vertical finite elements scheme)

* VDIFLCZ (organigramme not detailed)
- CPG_END ->

* surface_fields_mix.F90/GPPOPER
* WRPHTRSF (organigramme not detailed)
* GPMPFC

* RADDRV (radiation scheme used at ECMWF, organigramme not detailed)
* EC_PHYS_DRV (organigramme not detailed)
* CPGLAG ->
- GPTF1
- GPRCP

∗ List of routines:
• CPG DRV: driver for unlagged grid-point computations.

• CPG: unlagged grid-point computations.

• CPG GP: beginning of unlagged grid-point computations; reads t −∆t data in buffers, computes some
diagnostic grid-point quantities (call to some GP... and GNH... routines), does multiplications by the
mapping factor, applies the second part of the temporal filter.

• CPG DIA: interface for diagnostics (DDH,CFU,XFU) in the unlagged grid-point computations.

• CPG DYN: interface routine for unlagged part of the Eulerian dynamics and simplified Buizza physics.

• CPG END: end of unlagged grid-point computations; writes data in buffer, first part of the temporal
filter, divisions by the mapping factor.

• CPGLAG: lagged grid-point computations and final filling of t+ ∆t arrays.

• GPTF1: first part of the Asselin temporal filter.

• GPTF2: second part of the Asselin temporal filter.

• GPPOPER: Asselin temporal filter and some memory transfers for prognostic surface fields.

• GPMPFC: multiplications or divisions by the mapping factor or a power of the mapping factor to convert
reduced quantities into geographical quantities or the inverse.

• GPINIDDH: some initialisation for DDH diagnostics; a subset of data computed by this routine may be
modified by the unlagged physics.

• GPINISLB: initialisation of the buffer SLB2....

• EC PHYS: calls unlagged physics used at ECMWF.

• EC PHYS LSLPHY: calls split physics used at ECMWF.

• MF PHYS: calls unlagged physics used at METEO-FRANCE.

• MF PHYS PREP: preparation of input data for MF PHYS.

• VDIFLCZ: simplified Buizza physics.

• CPEULDYN: computes the RHS of Eulerian equations.

• CP FORCING: computes the RHS of Eulerian equations for 1D model with LSFORC=T.

• RADDRV: radiation scheme used at ECMWF.

• WRPHTRSF: write out the trajectory for surface arrays to work file.
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∗ Part 3.1 of CPG GP: calculations done at instant t: The following quantities are computed
in the following order:

• Hydrostatic pressure and quantities derivated from hydrostatic pressure:

– GPHPRE:

∗ computes half level hydrostatic pressure Π.

∗ computes ∆Π, 1
∆Π

, δ and α at full levels; the ratio between
[
r
a
∇
]

Π/Π at full levels and
[
r
a
∇
]

Πs;
1
Π

at half levels and 1
Π
l
Π
l−1

.

∗ computes full level hydrostatic pressure Π.

– GPGRXYB:
[
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a
∇
]
δ,
[
r
a
∇
]
α and

[
r
a
∇
]
α+ log Π at full levels.

• Dynamical quantities:

– GPRCP: R, cp and κ = R/cp at full levels.

– GPRT: RT and its horizontal derivatives at full levels.

– GPVC...: some specific quantities for LVERCOR=.T. .

– GNHPRE (NH only): p, p−Π, p
Π

and Π
p

at full levels.

– GNHPREH (NH only): p at half levels and ∆p at full levels.

– GNHGRPRE (NH only):
[
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]
p,

[ ra∇]p
p

and
[
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]
Q̂ at full levels.

– GNHDLR (NH only): r if (WS2003) deep-layer equations.

– GNHGRDLR (NH only):
[
r
a
∇
]
r if (WS2003) deep-layer equations.

– GPCTY: vertical velocities η̇ ∂Π
∂η

(at half levels) and ω/Π (at full levels); the divergence integral
term.

– GPCTY FORC: the same vertical velocities but for 1D model with LSFORC=.T. .

– GPGEO: gz at full levels and half levels.

– GPGRGEO: horizontal gradient of gz at full levels and half levels.

– Kinetic energy at full levels.

– GPHLWI: weights for interpolation of winds to model half levels.

– GPHLUV: horizontal wind components at half levels (needs some weights computed in GPHLWI).

– GPUVS: Usurf and Vsurf .

– GPGRP: pressure gradient force term used in the RHS of the horizontal wind equation.

– GPXX: X at full levels.

– d and its horizontal gradient at full levels.

– GPGW: gw at full levels and half levels.

– GNHGRGW (NH only): horizontal gradient of gw at full levels and half levels.

– GNHD3 (NH only): D3 at full levels.

• Adiabatic tendencies:

– GP TNDLAGADIAB UV: explicit adiabatic Lagrangian tendency of the horizontal wind.

– GNH TNDLAGADIAB UVS (NH only): explicit adiabatic Lagrangian tendency of the surface
horizontal wind.

– GNH TNDLAGADIAB GW (NH only): explicit adiabatic Lagrangian tendency of gw.

– GNH TNDLAGADIAB SPD (NH only): explicit adiabatic Lagrangian tendency of the pressure
departure variable.

– GNH TNDLAGADIAB SVD (NH only): explicit adiabatic Lagrangian tendency of the vertical
divergence variable.

We can do some remarks:

• Some of these calculations are required also at t−∆t (this is not the case for adiabatic tendencies).

• The order of these calculations is more stringent in the NH model than in the hydrostatic model.

• For (WS2003) deep-layer equations, this is Π̃ (and quantities based on Π̃) which is computed, instead of
Π.
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24 Basic description of the data flow under routine STEPO.

24.1 Introduction about OOPS-oriented structures.
Data are put into big structures, for example for the following items:

• Geometry: type GEOMETRY, variable YRGEOMETRY in CNT0.

• Model object: type MODEL, variable YRMODEL in CNT0.

• Fields: type FIELDS, variable YRFIELDS in CNT0.

• Trajectory: type MTRAJ, variable YRMTRAJ in CNT0.

Variables referenced below are generally attributes of such structures. For simplification:

• One writes for example NPROMA (stands for YRGEOMETRY%YRDIM%NPROMA).

• One writes for example NFLEVG (stands for YRGEOMETRY%YRDIMV%NFLEVG).

• One writes for example NGPBLKS (stands for YRGEOMETRY%YRDIM%NGPBLKS).

• One writes for example GMV (stands for YRFIELDS%YRGMV%GMV).

• One writes for example NDIMGMV (stands for YRFIELDS%YRGMV%NDIMGMV).

• One writes for example YT0%MT (stands for YRFIELDS%YRGMV%YT0%MT).

• One writes for example GFL (stands for YRFIELDS%YRGFL%GFL).

• One writes for example SP SB (stands for YRFIELDS%YRSURF%SP SB).

Prognostic variables can be split into different classes:

• GMV variables.

• GFL variables.

• GMVS variables.

• 2D surface variables used in the physics.

A more detailed description of these classes has already been given in part 8.1. The GMV, GMVS, and a subset
of GFL variables, require spectral and grid-point arrays. The 2D surface variables used in the physics require only
grid-point arrays. Additional buffers are required to transmit data between the different parts of the grid-point
calculations.

24.2 The GMV structure data.
Most grid-point space “GMV” variables referenced below are attributes of YRFIELDS%YRGMV.

∗ Treatment of t − ∆t and t data in grid-point space: In grid-point space, the
t − ∆t and t GMV data are stored in the array GMV which is an allocatable array allocated with
(NPROMA,NFLEVG,NDIMGMV,NGPBLKS). Attribute NDIMGMV is the number of t − ∆t and
t GMV fields. It is always above or equal to the number of GMV prognostic variables; the number of
GMV prognostic variables is NFTHER+2, where NFTHER is the number of thermodynamic variables.
Calculation of NDIMGMV and allocation of GMV are done in routine SETUP GMV (encapsulated in
gmv subs mod.F90). To identify each variable (for example T at instant t), one needs a pointer (in our
example it is YT0%MT). Note that GMV contains not only prognostic variables (such as U , V , T ) but also
horizontal derivatives, divergence, vorticity, and also some additional diagnostic quantities.

For quantities at instant t, pointers are YT0%M[X] for a quantity [X], and YT0%M[X]L, YT0%M[X]M for
zonal and meridian derivatives. Attribute YT0 is a variable of type TYPE T0 (this type is defined in module
TYPE GMVS). Pointers are computed in routine SETUP T0 (encapsulated in gmv subs mod.F90) and
these calculations determine the order of storing the t GMV fields in the array GMV.

For quantities at instant t−∆t, pointers are YT9%M[X] for a quantity [X], and YT9%M[X]L, YT9%M[X]M
for zonal and meridian derivatives. Attribute YT9 is a variable of type TYPE T9 (this type is defined in module
TYPE GMVS). Pointers are computed in routine SETUP T9 (encapsulated in gmv subs mod.F90) and
these calculations determine the order of storing the t−∆t GMV fields in the array GMV.

∗ Treatment of t + ∆t data in grid-point space: In grid-point space, the t +
∆t GMV data are stored in the array GMVT1 which is an allocatable array allocated with
(NPROMA,NFLEVG,YT1%NDIM,NGPBLKS). YT1%NDIM is the number of t + ∆t GMV fields. It
is always above or equal to the number of GMV prognostic variables. Calculation of YT1%NDIM is done in
routine SETUP T1 (encapsulated in gmv subs mod.F90). To identify each variable (for example T at instant
t+ ∆t), one needs a pointer (in our example it is YT1%MT).

For quantities at instant t + ∆t, pointers are YT1%M[X] for a quantity [X]. Attribute YT1 is a variable of
type TYPE T1 (this type is defined in module TYPE GMVS). Pointers are computed in routine SETUP T1
(encapsulated in gmv subs mod.F90) and these calculations determine the order of storing the t + ∆t GMV
fields in the array GMVT1.
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∗ Spectral GMV data: Individual GMV fields are attributes of variable YRFIELDS%YRSPEC.

• Attributes VOR, DIV, T, SPD, SVD, NHX: contain spectral data respectively for vorticity, divergence,
temperature, pressure departure variable, vertical divergence variable, X.

• Attribute HV: collective array for thermodynamic variables. The “standard order” in this array is
temperature, pressure departure variable, vertical divergence variable.

• Attribute SP3D: collective array for all 3D variables.

Features about the SPECTRAL FIELD structure can be found in some “algor/module” modules, the name
starts by “spectral fields”.

∗ Number of variables: sum-up.
• Number of GMV prognostic variables: NFTHER+2.

• Number of thermodynamic GMV prognostic variables: NFTHER.

• Number of fields in the array GMV: NDIMGMV.

• Number of fields in the array GMVT1: YT1%NDIM.

• Position of a field X at the instant t in the array GMV: YT0%M[X].

• Position of the zonal derivative of a field X at the instant t in the array GMV: YT0%M[X]L.

• Position of the meridian derivative of a field X at the instant t in the array GMV: YT0%M[X]M.

• Position of a field X at the instant t−∆t in the array GMV: YT9%M[X].

• Position of the zonal derivative of a field X at the instant t−∆t in the array GMV: YT9%M[X]L.

• Position of the meridian derivative of a field X at the instant t−∆t in the array GMV: YT9%M[X]M.

• Position of a field X at the instant t+ ∆t in the array GMVT1: YT1%M[X].

24.3 The GMVS structure data.
Most grid-point space “GMVS” variables referenced below are attributes of YRFIELDS%YRGMV.

∗ Treatment of t − ∆t and t data in grid-point space: In grid-point space, the t −
∆t and t GMVS data are stored in the array GMVS which is an allocatable array allocated with
(NPROMA,NDIMGMVS,NGPBLKS). Attribute NDIMGMVS is the number of t − ∆t and t GMVS
fields. It is always above or equal to the number of GMVS prognostic variables. Calculation of NDIMGMVS
and allocation of GMVS are done in routine SETUP GMV (encapsulated in gmv subs mod.F90). To
identify each variable (for example log Πs at instant t), one needs a pointer (in our example it is YT0%MSP).
Note that GMVS contains not only prognostic variables (such as log Πs) but also horizontal derivatives.

Pointers YT0%M[X], YT0%M[X]L, YT0%M[X]M, YT9%M[X], YT9%M[X]L, YT9%M[X]M (see part
24.2) are also used to determine the order of storing the GMVS fields in the array GMVS.

∗ Treatment of t + ∆t data in grid-point space: In grid-point space, the t +
∆t GMVS data are stored in the array GMVT1S which is an allocatable array allocated with
(NPROMA,YT1%NDIMS,NGPBLKS). YT1%NDIMS is the number of t+ ∆t GMVS fields. It is always
above or equal to the number of GMVS prognostic variables. Calculation of YT1%NDIMS is done in routine
SETUP T1 (encapsulated in gmv subs mod.F90). To identify each variable (for example log Πs at instant
t+ ∆t), one needs a pointer (in our example it is YT1%MSP).

Pointers YT1%M[X] (see part 24.3) are also used to determine the order of storing the GMVT1S fields in the
array GMVT1S.

∗ Spectral GMVS data: Individual GMVS fields are attributes of array YRFIELDS%YRSPEC.

• Attribute SP: contains spectral data for log Πs.

• Attribute SP2D: collective array for all GMVS variables; also contains additional spectral data, such as
the surface orography.

∗ Number of variables: sum-up.
• Number of GMVS prognostic variables: 1.

• Number of fields in the array GMVS: NDIMGMVS.

• Number of fields in the array GMVT1S: YT1%NDIMS.

• Position of a field X at the instant t in the array GMVS: YT0%M[X].

• Position of the zonal derivative of a field X at the instant t in the array GMVS: YT0%M[X]L.

• Position of the meridian derivative of a field X at the instant t in the array GMVS: YT0%M[X]M.

• Position of a field X at the instant t−∆t in the array GMVS: YT9%M[X].

• Position of the zonal derivative of a field X at the instant t−∆t in the array GMVS: YT9%M[X]L.

• Position of the meridian derivative of a field X at the instant t−∆t in the array GMVS: YT9%M[X]M.

• Position of a field X at the instant t+ ∆t in the array GMVT1S: YT1%M[X].
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24.4 The GFL structure data.
Most grid-point space “GFL” variables referenced below are attributes of YRFIELDS%YRGFL.

∗ Treatment of t − ∆t and t data in grid-point space: In grid-point space, the
t − ∆t and t GFL data are stored in the array GFL which is an allocatable array allocated with
(NPROMA,NFLEVG,YGFL%NDIM,NGPBLKS). Not that the array GFL contains not only prognostic
variables (such as q), but also horizontal derivatives, and non advectable pseudo-historic grid-point GFL variables
(such as qCPF).

YGFL%NDIM is the number of t − ∆t and t GFL fields in grid-point space. It is always above or equal
to the number of GFL prognostic variables; the number of GFL prognostic variables is YGFL%NUMFLDS.
Calculation of YGFL%NDIM is done in routines DEFINE GFL COMP and SET GFL ATTR (these
routines are encapsulated in gfl subs mod.F90). Allocation of GFL is done in routine SUSC2C.

To identify each variable (for example q at instant t), one needs a pointer (in our example it is YGFL%YQ%MP;
variable YGFL is in YOM YGFL). Note that GFL contains not only prognostic variables (such as q, ql, qi, qa,
O3) but also horizontal derivatives.

For quantities at instant t, pointers are YGFL%Y[X]%MP for a quantity [X], and YGFL%Y[X]%MPL,
YGFL%Y[X]%MPM for zonal and meridian derivatives. Attribute Y[X] is a variable of type
TYPE GFL COMP declared in module yom ygfl.F90; the attributes of this type are defined in the part
TYPE GFL COMP of module YOM YGFL. Pointers YGFL%Y[X]%MP, YGFL%Y[X]%MPL and
YGFL%Y[X]%MPM are computed in routine DEFINE GFL COMP (encapsulated in gfl subs mod.F90)
called by SUGFL2, and these calculations determine the order of storing the t GFL fields in the array GFL.
The “SUGFL2-standard order” of storing the different variables [X] is defined in routine SUGFL2. The purely
grid-point GFL variables (including the non advected pseudo-historic GFL variables) are stored first (in the
“SUGFL2-standard order”), then the GFL variables with a spectral representation are stored (in the “SUGFL2-
standard order”). Note that no horizontal derivative is available for purely grid-point GFL variables.

For quantities at instant t − ∆t, pointers are YGFL%Y[X]%MP9 for a quantity [X] (no zonal nor meridian
derivative is required for GFL variables at t − ∆t). Pointers YGFL%Y[X]%MP9 are computed in routine
SET GFL ATTR (encapsulated in gfl subs mod.F90) called by SUGFL3. The GFL variables are stored
in the “SUGFL3-standard order” (no distinction between spectral and purely grid-point variables) and this
“SUGFL3-standard order” defined in routine SUGFL3 can be different from the “SUGFL2-standard order”.
Note that no t−∆t variable is available for the non advected pseudo-historic GFL variables (because in this case
the discretisation always writes X(t+ ∆t)−X(t) = ∆tFX, even in a leap-frog scheme).

∗ Treatment of t + ∆t data in grid-point space: In grid-point space, the t +
∆t GFL data are stored in the array GFLT1 which is an allocatable array allocated with
(NPROMA,NFLEVG,YGFL%NDIM1,NGPBLKS). YGFL%NDIM1 is the number of t+ ∆t GFL fields
in grid-point space. It is always above or equal to the number of GFL prognostic variables. Allocation of
GFLT1 is done in routine GP MODEL in the direct code. Calculation of YGFL%NDIM1 is done in
routines DEFINE GFL COMP and SET GFL ATTR (encapsulated in gfl subs mod.F90). To identify
each variable (for example q at instant t + ∆t), one needs a pointer (in our example it is YGFL%YQ%MP1;
variable YGFL is in YOM YGFL). Note that GFLT1 contains prognostic variables at t+ ∆t.

For quantities at instant t + ∆t, Pointers are YGFL%Y[X]%MP1 for a quantity [X]. YGFL%Y[X]%MP1
is computed in DEFINE GFL COMP (encapsulated in gfl subs mod.F90) called by SUGFL2. The purely
grid-point GFL variables (including the non advected pseudo-historic GFL variables) are stored first (in the
“SUGFL2-standard order”), then the GFL variables with a spectral representation are stored (in the “SUGFL2-
standard order”).

∗ Spectral GFL data: There are individual arrays, and also a collective array for all GFL variables
(attributes of variable YRFIELDS%YRSPEC).

• Attribute GFL: collective array for GFL variables. In GFL, the spectral GFL variables are stored in the
“SUGFL2-standard order”.

• Attributes Q, L, I, O3: contain spectral data respectively for humidity, liquid water, ice and ozone.

Dimension of YRFIELDS%YRSPEC%GFL is (NFLSUR,NSPEC2,YGFL%NUMSPFLDS). The
number of spectral GFL prognostic variables is YGFL%NUMSPFLDS. The total number of GFL prognostic
variables is YGFL%NUMFLDS. The following relationship is always true:
YGFL%NUMSPFLDS ≤ YGFL%NUMFLDS ≤ YGFL%NDIM.
For example, if the GFL variables are q and ql and if we assume additionally:

• q is treated in spectral space and is advected, its horizontal derivatives are required.

• ql is treated as a purely grid-point data and is not advected, its horizontal derivatives are not required.

• the advection scheme is an Eulerian one.

In this case, the three above integer numbers have the following value: YGFL%NUMSPFLDS=1,
YGFL%NUMFLDS=2, YGFL%NDIM=6 (the last one corresponding to q(t), zonal and meridian derivatives
of q(t), q(t−∆t), ql(t), ql(t−∆t)).

YGFL%NUMSPFLDS and YGFL%NUMFLDS are computed in the sequence SU0YOMA − > SUGFL2
− > DEFINE GFL COMP (encapsulated in gfl subs mod.F90).
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In spectral space, GFL variables can be accessed by each individual YRFIELDS%YRSPEC%[X] array, but
also via the collective array YRFIELDS%YRSPEC%GFL. In this case one needs to know the location of the
variable [X] which is searched for.

• If jnum is the numbering of the GFL field among the YGFL%NUMFLDS fields, the index
jnumsp among the subset of GFL fields which have a spectral representation is given by
YGFL%COMP(jnum)%MPSP (variable YGFL%COMP is in module YOM YGFL); jnumsp
always matches jnumsp ≤ jnum. In our above example, for q, jnum and jnumsp are equal to 1.

• If we want to know, for a specific variable [X], its location in YRFIELDS%YRSPEC%GFL, the answer
is given by YGFL%Y[X]%MPSP. In our above example, for q, YGFL%Y[X]%MPSP is equal to 1.

∗ Ordering of the GFL data: As seen previously, there are two standard orders, the first one defined
by SUGFL3 and the other one defined by SUGFL2. See code sources of SUGFL2 and SUGFL3 to know
about GFL orderings. The purpose of having two different standard orders is only to limit the chance of hidden
bugs. The important rule to be kept in mind is the following: No reference to the ordering of the GFL
variables must appear elsewhere than in:

• the sequence of calls to SET GFL ATTR in SUGFL3 .

• the sequence of calls to DEFINE GFL COMP in SUGFL2 .

No hard coded explicit reference to this order must appear elsewhere in the code, the other parts
must work for an indifferent order of the GFL variables and must use the pointers defined by the
attributes of the variables YGFL%COMP and YGFL%Y[X] .

∗ Groups of GFL variables: Some generic names (like AERO) contain several variables: extra-GFL
variables, qFORC, qEZDIAG, qGHG, qTRAC, qCHEM, qAERO, qERA40, qAEROUT, qUVP, qPHYS, qNOGW, qSLDIA, qCRM.
It is possible to add some new GFL variables in these groups without deeply modifying the code, but with some
minor modifications in the namelist (and also in the files to be read).

• The number of variables in each group is respectively NGFL EXT, NGFL FORC, NGFL EZDIAG,
NGHG, NTRAC, NCHEM, NAERO, NERA40, NAEROUT, NUVP, NGFL PHYS,
NNOGW, NSLDIA, NCRM (namelist NAMGFL). In YOM YGFL, these variables are attributes
of YGFL.

• Some information for TFP GFL(jgfl)%CLNAME (extra-GFL), TFP GHG(jgfl)%CLNAME
(greenhouse gases), TFP CHEM(jgfl)%CLNAME (chemistry), TFP AERO(jgfl)%CLNAME
(aerosols), can be required in NAMAFN to give the name of the fields which appear in the files.

• Some modifications of the attributes of YEXT NL, YFORC NL, YEZDIAG NL, YGHG NL,
YTRAC NL, YCHEM NL, YAERO NL, YERA40 NL, YAEROUT NL, YUVP NL,
YPHYS NL, YNOGW NL, YSLDIA NL, YCRM NL, can be required in NAMGFL.

• The numbering of these GFL is included in YGFL%NUMSPFLDS and YGFL%NUMFLDS.

• About extra-GFL, some variables in the code have kept the letters SV or SCVA (for scalar variables).

∗ Number of variables: sum-up.
• Number of GFL variables (spectral and grid-point, including the non advected pseudo-historic ones):

YGFL%NUMFLDS.

• Number of spectral GFL variables: YGFL%NUMSPFLDS.

• Number of purely grid-point GFL variables: YGFL%NUMGPFLDS.

• Number of advectable GFL variables (spectral and grid-point): YGFL%NUMFLDS SL1.

• Number of advectable GFL variables (spectral and grid-point) which require a spline cubic vertical
interpolation in the semi-Lagrangian scheme: YGFL%NDIM SPL.

• Number of GFL variables having a time t−∆t representation: YGFL%NUMFLDS9.

• Number of GFL variables having a time t+ ∆t representation: YGFL%NUMFLDS1.

• Number of spectral GFL variables having a time t+ ∆t representation: YGFL%NUMSPFLDS1.

• Number of extra-GFL variables: YGFL%NGFL EXT.

• Number of forcing variables: YGFL%NGFL FORC.

• Number of easy diagnostics variables: YGFL%NGFL EZDIAG.

• Number of greenhouse gases: YGFL%NGHG.

• Number of tracers: YGFL%NTRAC.

• Number of chemistry components: YGFL%NCHEM.

• Number of aerosols: YGFL%NAERO.

• Number of ERA40 fields: YGFL%NERA40.

• Number of output aerosol fields: YGFL%NAEROUT.

• Number of output fields from UV processor: YGFL%NUVP.
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• Number of GFL variables for physics diagnostics: YGFL%NGFL PHYS.

• Number of diagnostic fields for NORO GWD scheme: YGFL%NNOGW.

• Number of SL dynamics diagnostic fields: YGFL%NSLDIA.

• Number of CRM extra fields: YGFL%NCRM.

• Number of fields in the array GFL: YGFL%NDIM.

• Number of fields at time t in the array GFL: YGFL%NDIM0.

• Number of fields at time t−∆t in the array GFL: YGFL%NDIM9.

• Number of fields in the array GFLT1: YGFL%NDIM1.

• Number of fields in the array GFL, associated to variables which require a spline cubic vertical interpolation
in the semi-Lagrangian scheme: YGFL%NDIM SPL.

• Position of a field X at the instant t in the array GFL: YGFL%Y[X]%MP.

• Position of the zonal derivative of a field X at the instant t in the array GFL: YGFL%Y[X]%MPL.

• Position of the meridian derivative of a field X at the instant t in the array GFL: YGFL%Y[X]%MPM.

• Position of a field X at the instant t−∆t in the array GFL: YGFL%Y[X]%MP9.

• Position of a field X at the instant t+ ∆t in the array GFLT1: YGFL%Y[X]%MP1.

• Position of an advectable field X in an array of dimension YGFL%NUMFLDS SL1:
YGFL%Y[X]%MP SL1.

• Position of a spectral field X in the array SPGFL: YGFL%Y[X]%MPSP.

Note that some other dimensioning and logical variables are available in yom ygfl.F90.

∗ How to add new GFL variables or new GFL attributes. A specific user’s guide (IDNGFL)
has been written.

24.5 The 2D surface variables used in the physics structure data.

∗ Introduction: These fields are never transformed in spectral space and they are never advected (they
concern the inner soil or the surface where the wind is assumed to be zero). They describe mainly surface or soil
2D data, but some of them can describe an upper-air 2D data (for example 2 meter temperature, total convective
cloudiness), an upper-air 3D data, or a total atmospheric content (for example total column water vapour). Even
if these data are not always 2D surface data, we keep the generic name “2D surface data” for simplification.

The 2D surface variables are divided into two main classes: the prognostic surface variables and the diagnostic
surface variables. The class of diagnostic surface variables includes a couple of pseudo-prognostic variables which
need some care. The main code features describing these variables are in SURFACE FIELDS MIX and in
SU SURF FLDS.

All the variables SP .., YSP .., SD .., YSD .. referenced below are attributes of variable
YRFIELDS%YRSURF (type TSURF). Denotations SP .., YSP .., SD .., YSD .. respectively stand
for YRFIELDS%YRSURF%SP .., YRFIELDS%YRSURF%YSP .., YRFIELDS%YRSURF%SD ..,
YRFIELDS%YRSURF%YSD ...

∗ Prognostic surface variables: This class of variables can be divided into several groups, each group
has a short two-letter code and a long 3 to 5-letter code.

• SB=SOILB: soil quantities for the different reservoirs.

• SG=SNOWG: quantities linked to surface snow.

• SL=LAKEB: quantities linked to lake (FLAKE model).

• RR=RESVR: soil quantities for the surface and sometimes the first (upper) reservoir.

• CL=CLS : surface boundary layer prognostic quantities.

• OM=OML : prognostic quantities for ocean mixed layer model (KPP).

• EP=EXTRP: extra 3D prognostic fields.

• X2=XTRP2: extra 2D prognostic fields.

• CI=CANRI: 2D fields used in CANARI.

The comprehensive list of variables is not detailed here and one can find it in SURFACE FIELDS MIX.
Ordering the individual variables inside each group is given by the content of SU SURF FLDS. It is desirable
that the ordering of the declarations in SURFACE FIELDS MIX match the ordering of SU SURF FLDS.
No reference to variable ordering should appear elsewhere than in SU SURF FLDS and
SURFACE FIELDS MIX.

Buffers, pointers and number of variables in each group: sum-up:
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• Group variables containing the data are SP [group two-letter code].

• Variable YSP [group two-letter code]D contains some dimensions. For example, there are
YSP [group two-letter code]D%NDIM fields in the above group variable.

• Variable YSP [group two-letter code] contains pointers and some other attributes. For example, if
[X] is the generic name of an individual variable in the current group, the pointer allowing to retrieve the
t-value (resp. t −∆t-value, t + ∆t-value) of [X] is YSP [group two-letter code]%Y[X]%MP0 (resp.
YSP [group two-letter code]%Y[X]%MP9, YSP [group two-letter code]%Y[X]%MP1).

• Some other dimensioning variables and some other attributes can be found in routine
SURFACE FIELDS MIX.

∗ Diagnostic surface variables: This class of variables can be divided into several groups, each group
has a short two-letter code and a long 5-letter code or 6-letter code.

• VF=VARSF : climatological/geographical parameters.

• VP=VCLIP : deep soil parameters.

• VV=VCLIV : vegetation parameters.

• VN=VCLIN : cloudiness predictors.

• VH=VCLIH : convective cloud parameters.

• VK=VCLIK : convective cloud pseudo-historic fields.

• VA=VCLIA : aerosols parameters.

• VG=VCLIG : ice-coupler parameters.

• VC=VO3ABC : climatological ozone profiles.

• V2=VDIAGO2: 2-D climatological/diagnostic fields for an ocean mixed layer model (KPP).

• V3=VDIAGO3: 3-D climatological/diagnostic fields for an ocean mixed layer model (KPP).

• VD=VDIAG : diagnostic fields (generally used only at ECMWF).

• SM=SATSIM : (ECMWF) simulated satellite images.

• WS=WAVES : surface quantities over sea (used by IFS).

• WW=WAM : surface quantities over sea (used by WAM).

• VX=VCLIX : auxiliary climatological parameters.

• XA=VEXTRA : extra 3D fields.

• DI=VEXTRDI: targeted 3D fields.

• XR=VEXTRR : extra 3D fields for radiation.

• X2=VEXTR2 : extra 2D fields.

• SFL=SFLUX : surface flux for EDKF.

• SFO=SFORC : surface forcing for 1D model (MUSC).

• PF : precipitation fraction.

The comprehensive list of variables is not detailed here and one can find it in SURFACE FIELDS MIX.
Ordering the individual variables inside each group is given by the content of SU SURF FLDS. It is desirable
that the ordering of the declarations in SURFACE FIELDS MIX match the ordering of SU SURF FLDS.
No reference to variable ordering should appear elsewhere than in SU SURF FLDS and
SURFACE FIELDS MIX.

Note that we can also divide these variables into 3 sub-classes:

• Constants: they have no time-evolution and they are always input data in the model dynamics and physics:
for example the land-sea mask.

• Diagnostics: they are generally diagnosed by the physics and kept at the current time-step only: they
are computed for diagnostics (XFU, DDH for example). The content is not conserved at the following
timestep. Example: the total convective cloudiness.

• Pseudo-prognostic variables: they are generally diagnosed by the physics and conserved until the following
timestep where they are used as input data by the physics. For MF purpose there are currently 7 pseudo-
prognostic variables:

– VF=VARSF: variable Z0F (gravity ∗ surface roughness length).

– VV=VCLIV: variable HV (resistance to evapotranspiration).

– VV=VCLIV: variable Z0H (gravity ∗ surface roughness length for heat).

– VH=VCLIH: variable PBLH (PBL height).

– VH=VCLIH: variable SPSH (variable for ALARO prognostic convection scheme).

– VH=VCLIH: variable QSH (surface moisture historic variable, used by TOUCANS).

– VK=VCLIK: variable UDGRO (convective cloud updraught top position).
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Buffers, pointers and number of variables in each group: sum-up:

• Group variables containing the data are SD [group two-letter code].

• Variable YSD [group two-letter code]D contains some dimensions. For example, there are
YSD [group two-letter code]D%NDIM fields in the above group variable.

• Variable YSP [group two-letter code] contains pointers and some other attributes. For example, if [X]
is the generic name of an individual variable in the current group, the pointer allowing to retrieve its value
is YSD [group two-letter code]%Y[X]%MP.

• Some other dimensioning variables and some other attributes can be found in routine
SURFACE FIELDS MIX.

∗ Set-up:
• Pointer calculations, allocations are done in SU SURF FLDS.

• Some of the buffers (initial value of the prognostic variables, and input constants) are read on files via
SUGRIDA (ARPEGE files) or SUGRIDG (GRIB files). SUGRIDA and SUGRIDG directly fill the
surface buffers.

∗ Data flow under CPG: The buffers SP... and SD... are filled (they currently appear as dummy
arguments PSP... and PSD..., although YDSURF is passed too), without any intermediate local variable.

• In CPG GP, when leap-frog scheme, t data of SP... are copied in the t −∆t part of SP... via routine
GPPOPER.

• In CPG GP, when required, t−∆t part of SP... is copied in the t+ ∆t part of SP....

• In MF PHYS the t data (SL2TL) or t−∆t data (leap-frog) of SP... is used as input data of the physics.
Constants of SD... are used as input data. Diagnostics of SD... are diagnosed via the physics output.
Pseudo-historic variables of SD... enter the physics (input value is used) and are updated by the physics.
In some cases (MF PHYS called for only diagnostic purpose, without temporal evolution), it is necessary
to restore the input data at the end of MF PHYS. The t + ∆t part of SP... is updated via routine
CPTENDS.

• In CPG END the t + ∆t part of SP... is copied into the t part, with a temporal filter for leap-frog
schemes (call to GPPOPER).

∗ Other groups of surface variables: There are groups which have not been reported in the new
surface data scheme:

• VU=VCLIU: reference variables for nudging: stored in arrays XVU[X] of YOMNUD.

• VR=VRADF: radiation fields: stored in some arrays of YOMRADF.

• VT=VTILE: tile surface scheme fields (ECMWF only): stored in arrays R[X]TI of YOE TILE PROP.

∗ Additional remarks:
• ECMWF clearly makes a difference between the soil reservoirs (4 reservoirs) and the surface. The soil

reservoirs prognostic variables are always in the group SOILB, and the surface prognostic variables are
always in the group RESVR (this is not a very logical choice!).

• METEO-FRANCE does not always a distinction between the surface (“skin” variables) and the superficial
reservoir (there are 2 reservoirs: a superficial reservoir and a deep reservoir): the distinction is done for the
water content but not for temperature. The deep reservoir prognostic variables are always in the group
SOILB, and the surface (“skin”) and superficial reservoir prognostic variables are always in the group
RESVR.

• The surface buffer GPARBUF which is used in the externalised surface (SURFEX) still exists.

• The generic term “surface” is applied to several topics and the reader has to keep in mind the following
definitions in order to avoid confusions between the different topics called “surface”. The different topics
called “surface” are:

– The surface fields previously described, mainly stored in the buffers SP ... and SD ....

– The externalised surface projects SURFEX and MSE, using the array GPARBUF to communicate
surface data between the ARP/ALD routines and the SURFEX+MSE routines: it is currently used
in the AROME physics.

– The externalised ECMWF surface (project SUR) for ECMWF physics.

For example, to deallocate some buffers used in the ECMWF surface package one calls the
routine SURFDEALLO and to deallocate the SP ... and SD ... buffers one calls the routine
surface fields mix.F90/DEALLO SURF.

∗ How to add new surface variables or new surface attributes. A specific user’s guide
(IDNSUR) has been written.
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24.6 Treatment of the data flow under routine STEPO.
∗ Introduction: The purpose is now to describe all the steps done under STEPO (one timestep) and
what are the different arrays involved. We give an overview of the data flow for GMV, GMVS, GFL and
grid-point surface fields under STEPO. One focusses on the Eulerian direct model but a short reference of the
semi-Lagrangian scheme will be also done.

The time where arrays were frequently reallocated and deallocated is now behind us, computers provide enough
memory to keep them allocated during all the model integration. Most of the variables among YRGFL,
YRGMVS, YRGMV, YRSURF, YRSPEC, remain allocated during all the model integration.

These arrays, generally encapsulated, are now passed via dummy arguments to STEPO and callees.

We recall that a timestep integration under STEPO has the following steps:

• I/O in spectral space.

• Inverse transforms.

• Grid-point calculations.

• Grid-point coupling for LAM models.

• Direct transforms.

• Spectral calculations.

∗ Spectral space: YRFIELDS%YRSPEC is passed as dummy argument to STEPO and its callees,
in particuliar to (E)SPCM. Dummy argument name is generally YDSPEC or YDSP. Individual quantities
YDSPEC%[X] or YDSP%[X] may appear in deeper pieces of the call-tree.

∗ Inverse spectral transformation: It is done under the routine TRANSINVH (ETRANSINVH
in LAM models) for the variable at instant t. The input spectral data is YDSPEC. The output grid-point data
(also containing derivatives) are YDGMV%GMV, YDGMV%GMVS and YDGFL%GFL.

∗ Grid-point space: Dummy argument of STEPO is YDFIELDS, with attributes YRGMV,
YRGMVS, YRGFL, YRSURF.

∗ Grid-point computations: It is done under GP MODEL (called under SCAN2M). The code is
organized into several loops on NPROMA-blocks (each unit of the loop does calculations for one NPROMA-
block). These different loops are:

• CPG DRV − > CPG: unlagged grid-point calculations.

• The ECMWF radiation scheme.

• The semi-Lagrangian interpolations (under CALL SL.. routines).

• The lagged physics.

• Some final lagged grid-point calculations (CPGLAG) (including the phase “1” of the Asselin temporal
filter).

Additional arrays are necessary to communicate data between the different parts of the grid-point calculations.

• For quantities to be interpolated in the semi-Lagrangian scheme: ZSLBUF1 in GP MODEL (more
details will be given later about how it is used under CPG and CALL SL).

• For other quantities to be transmitted: ZSLBUF2.

• For specific applications (PC schemes in particular) some specific arrays can be used: buffer GPPCBUF
and local array ZGPPC.

For more details:

• The array ZSLBUF1 (the dimensions of which are (YRSL%NASLB1;NFLDSLB1)) is allocated or
declared in GP MODEL HEAP or GP MODEL STACK. It is needed to store all data which will be
used in the semi-Lagrangian interpolations. This array has the name PB1 under CPG.

• The array ZSLBUF2 is allocated or declared in GP MODEL HEAP or GP MODEL STACK (name
PB2 under CPG).

• Under CPG some local arrays are used. The collective arrays are ZGPPC (used in the predictor-corrector
scheme), ZSLBUF1AU (intermediate array, the data of which will be transferred in PB1 for semi-
Lagrangian interpolations).

• In CPG, input dummy or global arrays are PGMV (GMV fields at instants t − ∆t and t), PGMVS
(GMVS fields at instants t − ∆t and t), PGFL (GFL fields at instants t − ∆t and t), and the surface
buffers PSP .. and PSD .. (surface fields for unlagged MF physics at instant t or t−∆t).

• CPG GP:

– does the part two of the Asselin temporal filter (GPTF2).
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– converts the reduced variables into geographical variables via a multiplication by a power of the
mapping factor (GPMPFC); the output becomes semi-reduced data in the deep layer equations.

– computes some intermediate variables linked with the hydrostatic surface pressure (routine
GP SPV).

– does memory transfers in the surface buffer PSP ...

– computes some intermediate grid point variables like δ, α, RT , cp, gz, Φ, etc..., which are used as
input of the physics, the dynamics and some diagnostics.

– computes adiabatic RHS of equations.

– calls GPINISLB which puts some results in PGMVT1, PGMVT1S, PGFLT1, PB2.

When exiting CPG GP: in the semi-Lagrangian scheme PGMVT1, PGMVT1S and PGFLT1 contain
0; in the Eulerian scheme these arrays contains X(t−∆t) after modification by the phase two of the Asselin
filter.

• Unlagged physics: it is the MF physics (managed by MF PHYS). It uses as input the t variables for a
SL2TL scheme and the t −∆t variables for a leap-frog scheme. After computation of the physical fluxes
and divergences of fluxes the physical tendencies are computed and added to the RHS of the equations; the
physical tendencies are put in the interpolation buffer in a SL scheme and in PGMVT1, PGMVT1S and
PGFLT1 in an Eulerian scheme. At the end of this stage: for an Eulerian scheme, these T1-arrays contain
X(t−∆t) +FX(t−∆t); for a SL3TL scheme, ZSLBUF1AU then PB1 contains X(t−∆t) +FX(t−∆t);
for a SL2TL scheme, ZSLBUF1AU then PB1 contains X(t) + FX(t). The current physics has a vertical
dependency but no horizontal dependency (the only horizontal dependency is the computation of the
moisture convergence as input to the MF convection scheme, the moisture convergence needs the horizontal
derivatives of the moisture). Some diagnostics can be done after the physics (CFU, XFU, DDH).

• Adiabatic dynamics: done under CPG DYN: it includes the calculation of advections, linear terms.

– Eulerian scheme: adds 2∆t [A− βL] at time t to the arrays PGMVT1, PGMVT1S and PGFLT1;
stores ∆tβL time t−∆t in the array P[X]SI.

– SL3TL scheme: increments the buffer (ZSLBUF1AU in CPG) with data which will be interpolated
at the origin point O, and PGMVT1, PGMVT1S and PGFLT1 with data which will be evaluated
at the final point. For more details, see the documentation about the semi-Lagrangian scheme.

– SL2TL scheme: does roughly the same thing as in the SL3TL scheme, and also updates the part of
PGMV and PGMVS corresponding to the pointers YDGMV%YT9%M[X]NL.

• CPG END: end of the unlagged grid-point calculations.

– calls GPPOPER: updates the prognostic surface buffers with the t+ ∆t surface variables.

– redivides some quantities by a power of the mapping factor in order to retrieve reduced variables
(GPMPFC).

• CALL SL: called in a semi-Lagrangian scheme only; does the trajectory research, the interpolations,
and adds the interpolated quantities. At the end of this stage, the arrays PGMVT1, PGMVT1S and
PGFLT1 contain a “provisional” value of X(t + ∆t) equal to the true X(t + ∆t) (to be computed after
resolution of the semi-implicit scheme) plus an increment equal to β∆tL(t+∆t)−β∆tL(t); the “provisional”
value of X(t+ ∆t) will be used as input data for the lagged physics.

• Lagged physics (currently ECMWF physics only): It uses as input the “provisional” value of X(t + ∆t).
After computation of the physical fluxes and divergences of fluxes the physical tendencies are computed
and added to the RHS of the equations (arrays PGMVT1, PGMVT1S and PGFLT1).

• CPGLAG:

– does the part “one” of the Asselin temporal filter via GPTF1.

– adds β∆tL(t) in order to get X(t+ ∆t) + β∆tL(t+ ∆t).

– divides the wind components by M in order to retrieve the reduced wind components.

at the end of CPGLAG:

– the t data have been moved in the t−∆t part of PGMV, PGMVS and PGFL.

– the t+ ∆t data are in PGMVT1, PGMVT1S and PGFLT1.

• At the end of GP MODEL, ZSLBUF2
is deallocated. YRGMV%GMVT1 and YRGMV%GMVT1S contain X(t + ∆t) + β∆tL(t + ∆t)
for GMV and GMVS variables. YRGFL%GFLT1 contains X(t + ∆t) for GFL variables. Note that
X(t+ ∆t) is a provisional value on which the horizontal diffusion has not still been applied.

∗ Direct spectral transformation: It is done under the routine TRANSDIRH (ETRANSDIRH in
LAM models) for the variable X(t+∆t)+β∆tL(t+∆t) (GMV and GMVS variables) or X(t+∆t) (GFL variables).
The grid-point input array are YDGMV%GMVT1, YDGMV%GMVT1S and YDGFL%GFLT1, the
output spectral data is YDSPEC.
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∗ Spectral computations: They are done under routine SPCM (ESPCM for LAM models) on
attributes of YRFIELDS%YRSPEC. Some array copies are necessary for some applications, especially in
distributed mode on several processors.

∗ Lateral boundary coupling in LAM models: It is done just before the direct Fourier transforms
by the routine ECOUPL1 called by STEPO on variables YDGMV%GMVT1, YDGMV%GMVT1S and
YDGFL%GFLT1.

STEPO -> ECOUPL1 ->
* ESC2R (temporal interpolation to get coupler at current timestep)
* ESEIMPLS (add linear terms to coupler)
* ESRLXT1 (grid-point relaxation)

Upper boundary coupling is done in grid-point calculations:

STEPO -> ECOUPL2 ->
* ESC2R (temporal interpolation to get coupler at current timestep)
* ESEIMPLS (add linear terms to coupler)
* ESURLXT1 (grid-point relaxation)

Spectral nudging is done in spectral calculations:

STEPO -> ESPCM ->
* ESPSC2R (temporal interpolation to get coupler at current timestep)
* ESPCPL (spectral relaxation)

Reading coupling files, and transferring couplers in specific buffers is done in ELSRW.

CNT4 or DFI3 -> ELSRW -> ERLBC ->
* SUEINIF (read coupler in file)
* ELSWA3 ->
- inverse transforms to get grid-point coupler.
- intermediate memory transfers.
- EPAK3W and EPAK3WSP (memory transfers in specific buffers).

24.7 Restriction to a dry model.

The implementation of the GFL structure data would allow, in theory, to run a dry adiabatic model (with physics
it is more problematic, since the physical package uses the moisture in several parts; at least the radiation scheme,
the gravity wave drag scheme and the vertical diffusion scheme could be used in a dry model). This configuration
has indeed never been validated, and there probably remains some parts of the code where the use of moisture is
hard coded (in some GP... routines especially).
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25 List of GP... and GNH... routines computing intermediate
dynamical quantities (direct code).

∗ GP... routines:

• GPCTY: computes the vertical velocities η̇ ∂Π
∂η

(at half levels) and ω/Π (at full levels).

• GPCTY FORC: the same vertical velocities but for 1D model with LSFORC=.T. .

• GPEPT: computes the equivalent potential temperature at full levels.

• GPGEO: computes geopotential height gz at full levels and half levels.

• GPGRGEO: computes the horizontal gradient of the geopotential height gz at full levels and half levels.

• GPGRP: computes the pressure gradient force term used in the RHS of the horizontal wind equation.

• GPGRXYB: computes the horizontal gradient of α and δ.

• GPGW: computes gw at full levels and half levels.

• GPHLUV: computes the horizontal wind components at half levels (needs some weights computed in
GPHLWI).

• GPHLWI: computes weights for interpolation of winds to model half levels.

• GPIET: computes the isobaric equivalent temperature at full levels.

• GP KAPPA: computes the quantity κ depending on deformation, which is used for example in the SLHD
diffusion (see documentation (IDSL)).

• GP KAPPAT: alternate way to compute κ (SLHD applied to “thermic” variables).

• GP STDDIS: computes the quantity STDDIS used to compute COMAD interpolation weights in the
semi-Lagrangian scheme (see documentation (IDSL)).

• GPNOX: computes NO2 concentration at full levels.

• GPHPRE: computes hydrostatic pressure at full levels and half levels; computes different quantities linked
to hydrostatic pressure, like α, δ, 1/Π.

• GPPRS0D: computes simulated reflectivities at full levels.

• GPPVO: computes the potential temperature and potential vorticity at full levels.

• GPPWC: computes the total content of specific humidity in columns bounded by the top and half levels.

• GPRCP: computes cp, R and κ = R/cp at full levels.

• GPRH: computes relative humidity at full levels.

• GPRH 2D: cf. GPRH but for specific applications.

• GPRT: computes RT and its horizontal derivatives at full levels.

• GP SPV: computes Πs and its horizontal derivatives.

• GPTCO3: computes total column ozone mass per surface unit.

• GPTET: computes the potential temperature at full levels.

• GPUVS: computes Usurf and Vsurf .

• GPVCMUS: computes µs at full levels (and optionally its horizontal gradient).

• GPVCRS: computes the ratio r/a and its inverse at full levels and half levels (and optionally its horizontal
gradient).

• GPVCTS: computes the reference profile of temperature used in the definition of r/a.

• GPVCW: computes the pseudo vertical velocity W at full levels.

• GPXX: computes X at full levels.

Most of these routines have tangent linear and adjoint versions.
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∗ GP TNDLAGADIAB... and GNH TNDLAGADIAB... routines:

• GP TNDLAGADIAB UV: explicit adiabatic Lagrangian tendency of the horizontal wind.

• GNH TNDLAGADIAB GW: computes the explicit adiabatic Lagrangian tendency of gw.

• GNH TNDLAGADIAB SPD: computes the explicit adiabatic Lagrangian tendency of the pressure
departure variable.

• GNH TNDLAGADIAB SVD: computes the explicit adiabatic Lagrangian tendency of the vertical
divergence variable.

• GNH TNDLAGADIAB UVS: computes the explicit adiabatic Lagrangian tendency of the surface
horizontal wind.

∗ Other GNH... routines:

• GNHD3: computes D3 at full levels.

• GNHDLR: computes r/a and a/r at full and half levels.

• GNHDLRA: computes r/a and a/r at full and half levels, with additional preliminary calculations (hat
routine for GNHDLR).

• GNHDLRA STA: computes standard atmosphere r/a and a/r.

• GNHDLRB: computes r/a and a/r at full and half levels, and converts Π̃ based quantities into Π based
quantities.

• GNHGRDLR: computes
[
r
a
∇
]
r at full and half levels.

• GNHGRGW: computes the horizontal gradient of gw at full levels and half levels.

• GNHGRPRE: computes
[
r
a
∇
]
p,

[ ra∇]p
p

and
[
r
a
∇
]
Q̂ at full levels.

• GNHGW2SVD: retrieves the vertical divergence d from gw.

• GNHGW2SVDAROME: special version of GNHGW2SVD called after the AROME physics.

• GNHPRE: computes p, p−Π, p
Π

and Π
p

at full levels.

• GNHPREH: computes p at half levels and ∆p at full levels.

• GNHSVD2GW: cf. GPGW but with additional intermediate calculations.

• GNHX: cf. GPXX but with additional intermediate calculations.
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26 Tangent linear code.

26.1 Basics about TL code.

The coded linearised formulae will not be detailed in this documentation: the tangent linear code is taken line
by line, thus it depend on the way the direct code is written. The main features of the tangent linear code are
roughly the following ones:

• the tangent linear code looks like the direct code but with a differentiated shape. For example if the direct
code contains an instruction like

Z = XY

the tangent linear code will contain at the same place the instruction

Z = XY5 +X5Y

using some trajectory variables subscripted by index “5”. In the tangent linear code, X is a perturbation.

• There is additionally a “trajectory” code which is a copy of the direct code, but applied to the trajectory
variables subscripted by index “5”.

The tangent linear code performs the evolution of a “linear” perturbation; for example if the direct model
discretizes the scalar 2D equation:

dX

dt
= KX2

where K is a constant, the tangent linear model discretizes the equation:

d[δX]

dt
= 2KX[δX]

One can see that the evolving variable is now [δX] and that the “trajectory” information provided by the direct
model (here X) is also required. In our case [δX] is assumed to be small enough to match the identity:

K[X + ∆X]2 −KX2 ' 2KX[δX]

which means that [δX] has to remain negligible compared to 2X. At each time step the matrix defining the linear
transformation is in our case [2KX].

26.2 Tangent linear code for the 2D model: organigramme under STEPOTL
for the Eulerian 2D model.

STEPOTL -> SCAN2MTL -> GP_MODEL_TL ->

* CPG2TL ->

- GPTF2

* CPG2LAGTL ->

- GPTF1

• CPG2TL: TL of unlagged grid-point computations.

• CPG2LAGTL: TL of lagged grid-point computations.

• GPTF1: first part of the Asselin temporal filter.

• GPTF2: second part of the Asselin temporal filter.

Communications between unlagged grid-point computations and lagged grid-point computations need a buffer
using pointers of module PTRSLB2.
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26.3 Tangent linear code for the 3D model: organigramme under STEPOTL
for the Eulerian 3D model.

STEPOTL -> SCAN2MTL -> GP_MODEL_TL ->

* CPG_DRV_TL -> CPGTL ->

- Allocations

- CPG5_GP (for trajectory) ->

* some routines reading trajectory (RDPHTRAJM)

* GPMPFC5 (for trajectory)

* GP_SPV (for trajectory)

* some GP.. routines computing intermediate grid-point quantities for trajectories.

- CPG_GP_TL ->

* GPTF2

* GPMPFC (for model variables)

* some GP..TL routines computing intermediate grid-point quantities for model variables.

* GPINISLB

- MF_PHYSTL (organigramme not detailed)

- CPG_DYN_TL ->

* CPEULDYNTL ->

- some SI.. routines computing some linear terms used in SI scheme.

* VDIFLCZTL (organigramme not detailed)

- CPG_END_TL ->

* GPMPFC (for model variables)

- GPMPFC5 (for trajectory)

- Deallocations

* EC_PHYS_TL (organigramme not detailed)

* CPGLAGTL ->

- GPTF1

• CPG DRV TL: driver for TL of unlagged grid-point computations.

• CPGTL: TL of unlagged grid-point computations.

• CPG GP TL: TL of beginning of unlagged grid-point computations; reads t−∆t data in buffers, computes
some diagnostic grid-point quantities (call to some GP... routines), does multiplications by the mapping
factor, applies the second part of the temporal filter.

• CPG DYN TL: TL of interface routine for unlagged part of the Eulerian dynamics and simplified Buizza
physics.

• CPG END TL: TL of end of unlagged grid-point computations; writes data in buffer, first part of the
temporal filter, divisions by the mapping factor.

• CPGLAGTL: TL of lagged grid-point computations.

• GPMPFC: multiplications/divisions by the mapping factor.

• GPMPFC5: trajectory version of GPMPFC.

• GPTF1: first part of the Asselin temporal filter.

• GPTF2: second part of the Asselin temporal filter.

• VDIFLCZTL: TL of simplified Buizza physics.

• EC PHYS TL: calls TL of lagged physics used at ECMWF.

• MF PHYSTL: calls TL of unlagged physics used at METEO-FRANCE.

• CPEULDYNTL: computes the RHS of TL of Eulerian equations.

Communications between unlagged grid-point computations and lagged grid-point computations need a buffer
using pointers of module PTRSLB2.
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26.4 Testing the tangent linear code: configurations 501, 521 and 522.

∗ Aim, and configurations: The aim is to test that the tangent linear code provided in the code, is the
genuine tangent linear code of the direct code and that there is no bug in it. Configuration 501 performs this test
for the 3D primitive equation model or the 3D non-hydrostatic model. Configurations 521 and 522 perform this
test respectively for the 2D shallow water model and for the 2D “vorticity” equation model.

∗ Algorithm: The algorithm will be described for a “generic” 2D variableX (that can be for example log(Πs))
but it can extend to a vector of variables containing all layers of different 3D variables and some additional 2D
variables. The number of timesteps run is denoted by Nstop.

• The test configuration reads two files and computes a perturbation. The two files can be identical. One of
these files contains the initial state; for our generic 2D variable X the initial state is denoted by X0. An
initial perturbation [δX]0 is also computed.

• First the model performs a direct integration of Nstop timesteps, like in the configurations 1, 201 or 202.
That provides the different forecast steps of X: X1, X2, ..., XNstop . This trajectory is stored in a buffer;
it will be used to run the tangent linear model.

• The model then performs a tangent linear integration to compute the evolution of the perturbation [δX];
this integration uses the trajectory X0 to XNstop and provides [δX]1 to [δX]Nstop .

• The model then does a loop (index jλ from 0 to 10); for each value of jλ the model runs a direct integration
with an initial state of Y0 = [X + 10−jλδX]0 and forecasts Y1 to YNstop . In spectral space, for each couple
of wavenumbers (m,n), the following ratio is computed:

RNstop(m,n) =
YNstop(m,n)−XNstop(m,n)

10−jλ [δX]Nstop(m,n)

(what is printed on the listing is a subset of RNstop(m,n) taken at random). The test must show that
RNstop(m,n) converges towards 1 when jλ increases.

∗ Organigramme: Only the basic features of the organigramme of configurations 501, 521 and 522 is given
here (for example the canonical injections and the printing routines are omitted); for details about STEPO and
STEPOTL see above.

• From CNT0 to TESTLI: CNT0 − >

– SU0YOMA − > (0-level setup; organigramme not detailed)

– SU0YOMB − > (0-level setup; organigramme not detailed)

– CTL1 − > SU1YOM − >
∗ SUVAZX − > SUSPEC − > (reads the second file (name ICMSH[.]IMIN))

∗ SUSPEC − > (reads the initial conditions file (name ICMSH[.]INIT))

– TESTLI − > (see below; controls all the algorithm of testing the tangent linear code)

• Under TESTLI:

– SUPERT − > (computes the perturbation [δX]0).

– CNT3 − > CNT4 − > STEPO − > (direct model integration which computes X1, X2, ...,
XNstop).

– CNT3TL − > CNT4TL − >
∗ STEPO − > TRANSINVH − > (converts the trajectory X1 to XNstop into grid-point space).

∗ STEPOTL − > (runs the tangent linear model to provide [δX]1 to [δX]Nstop).

– in a loop on jλ from 0 to 10:

∗ CNT3 − > CNT4 − > STEPO − > (direct model integration which computes Y1, Y2, ...,
YNstop from the perturbed initial state Y0 = [X + 10−jλδX]0)

∗ computes the ratio RNstop and prints it for a subset of wavenumbers (m,n).
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27 Adjoint code.

27.1 Basics about AD code.

One starts from the linear tangent code and “adjoints” the code: for example a matricial expression of the
following type

Y = MX

leads to the expression
X = X + tMY

in the adjoint code.

27.2 Adjoint code for the 2D model: organigramme under STEPOAD for
the Eulerian 2D model.

STEPOAD -> SCAN2MAD -> GP_MODEL_AD ->

* CPG2LAGAD ->

- GPTF1AD

* CPG2AD ->

- GPTF2AD

• CPG2AD: AD of unlagged grid-point computations.

• CPG2LAGAD: AD of lagged grid-point computations.

• GPTF1AD: AD of first part of the Asselin temporal filter.

• GPTF2AD: AD of second part of the Asselin temporal filter.

Communications between unlagged grid-point computations and lagged grid-point computations need a buffer
using pointers of module PTRSLB2.

27.3 Adjoint code for the 3D model: organigramme under STEPOAD for
the Eulerian 3D model.

STEPOAD -> SCAN2MAD -> GP_MODEL_AD ->

* CPGLAGAD ->

- GPTF1AD

* EC_PHYS_AD (organigramme not detailed)

* CPG_DRV_AD -> CPGAD ->

- Allocations

- CPG5_GP (for trajectory) ->

* some routines reading trajectory (RDPHTRAJM).

* GPMPFC5 (for trajectory)

* GP_SPV (for trajectory)

* some GP.. routines computing intermediate grid-point quantities for trajectories.

- CPG_END_AD ->

* GPMPFC

- CPG_ZERO_AD

- CPG_DYN_AD ->

* VDIFLCZAD (organigramme not detailed)

* CPEULDYNAD ->

- some SI.. routines computing some linear terms used in SI scheme.

- MF_PHYSAD (organigramme not detailed)

- CPG_GP_AD ->

* some GP..AD routines computing intermediate grid-point quantities for model variables.

* GPMPFC (for model variables)

* GPTF2AD

- GPMPFC5 (for trajectory)
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• CPG DRV AD: driver of AD of unlagged grid-point computations.

• CPGAD: AD of unlagged grid-point computations.

• CPG GP AD: AD of beginning of unlagged grid-point computations; reads t − ∆t data in buffers,
computes some diagnostic grid-point quantities (call to some GP... routines), does multiplications by
the mapping factor, applies the second part of the temporal filter.

• CPG DYN AD: AD of interface routine for unlagged part of the Eulerian dynamics and simplified Buizza
physics.

• CPG END AD: AD of end of unlagged grid-point computations; writes data in buffer, first part of the
temporal filter, divisions by the mapping factor.

• CPG ZERO AD: zeroing some arrays before adjointing.

• CPGLAGAD: AD of lagged grid-point computations.

• GPMPFC: multiplications/divisions by the mapping factor.

• GPMPFC5: trajectory version of GPMPFC.

• GPTF1AD: AD of first part of the Asselin temporal filter.

• GPTF2AD: AD of second part of the Asselin temporal filter.

• VDIFLCZAD: AD of simplified Buizza physics.

• EC PHYS AD: calls AD of lagged physics used at ECMWF.

• MF PHYSAD: calls AD of unlagged physics used at METEO-FRANCE.

• CPEULDYNAD: computes the RHS of AD of Eulerian equations.

Communications between unlagged grid-point computations and lagged grid-point computations need a buffer
using pointers of module PTRSLB2.

27.4 Testing the adjoint code: configurations 401, 421 and 422.

∗ Aim, and configurations: The aim is to test that the adjoint code provided in the code, is the genuine
adjoint code of the tangent linear code and that there is no bug in it. Configuration 401 performs this test for
the 3D primitive equation model or the 3D non-hydrostatic model. Configurations 421 and 422 perform this test
respectively for the 2D shallow water model and for the 2D “vorticity” equation model.

∗ Algorithm: The algorithm will be described for a “generic” 2D variableX (that can be for example log(Πs))
but it can extend to a vector of variables containing all layers of different 3D variables and some additional 2D
variables. The number of timesteps run is denoted by Nstop.

• The test configuration reads two files and computes two perturbations. The two files can be identical. One
of these files contains the initial state; for our generic 2D variable X the initial state is denoted by X0. An
initial perturbation [δX]0 and a “final” perturbation [δY ]Nstop are also computed.

• First the model performs a direct integration of Nstop timesteps, like in the configurations 1, 201 or 202.
That provides the different forecast steps of X: X1, X2, ..., XNstop . This trajectory is stored in a buffer;
it will be used to run the tangent linear and the adjoint models.

• The model then performs a tangent linear integration to compute the evolution of the perturbation [δX];
this integration uses the trajectory X0 to XNstop and provides [δX]1 to [δX]Nstop .

• The model then performs an adjoint integration to compute the “adjoint” evolution of the perturbation
[δY ]; this integration uses the trajectory X0 to XNstop , starts from [δY ]Nstop and provides [δY ]Nstop−1 to
[δY ]0.

• If one denotes by M the matricial operator verifying:

[δX]Nstop = M[δX]0

(this is a product of Nstop matrices), the two following scalar products are computed:

S1 =
〈
M[δX]0, [δY ]Nstop

〉
S2 =

〈
[δX]0, M

T [δY ]Nstop

〉
These scalar products are defined in spectral space. These scalar products are compared; they must be
identical if the provided adjoint code is correct relative to the tangent linear code.
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∗ Organigramme: Only the basic features of the organigramme of configurations 401, 421 and 422 is given
here (for example the canonical injections and the printing routines are omitted); for details about STEPO,
STEPOTL and STEPOAD see above.

• From CNT0 to TESADJ: CNT0 − >

– SU0YOMA − > (0-level setup; organigramme not detailed)

– SU0YOMB − > (0-level setup; organigramme not detailed)

– CAD1 − > SU1YOM − >
∗ SUVAZX − > SUSPEC − > (reads the second file (name ICMSH[.]IMIN))

∗ SUSPEC − > (reads the initial conditions file (name ICMSH[.]INIT))

– TESADJ − > (see below; controls all the algorithm of testing the adjoint code)

• Under TESADJ:

– SUPERT − > (computes the perturbations [δX]0 and [δY ]Nstop).

– CNT3 − > CNT4 − > STEPO − > (direct model integration which computes X1, X2, ...,
XNstop).

– CNT3TL − > CNT4TL − >
∗ STEPO − > TRANSINVH − > (converts the trajectory X1 to XNstop into grid-point space).

∗ STEPOTL − > (runs the tangent linear model to provide [δX]1 to [δX]Nstop).

– CNT3AD − > CNT4AD − >
∗ STEPO − > TRANSINVH − > (converts the trajectory X1 to XNstop into grid-point space).

∗ STEPOAD − > (runs the adjoint model from the perturbation [δY ]Nstop in order to provide
[δY ]Nstop−1 to [δY ]0).

– Checks comparing the two scalar products S1 and S2 that the adjoint code is really the adjoint of
the tangent linear code.
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28 Some distributed memory features.

Note that some variables referenced below may be attributes of structures.

28.1 Message passing division into processors, structure of grid-point data.

The total number of processors is NPROC. There are two levels of parallelisation. Distribution on these two
levels is different in the different spaces of calculations.

NPROC=NPRGPNS∗NPRGPEW. The total number of processors involved in the A-level parallelisation is
NPRGPNS. The total number of processors involved in the B-level parallelisation is NPRGPEW.

One 2D model field has NGPTOTG points divided into NPRGPNS*NPRGPEW sets of NGPTOT points
treated by each processor. NGPTOT may be processor-dependent (with very small variations): the maximum
value of NGPTOT is NGPTOTMX. A processor treats complete columns in grid-point space.

For one given processor, the NGPTOT points are divided into packets of length NPROMA (the useful number
of values in each packet is lower or equal than NPROMA). NPROMA is identical for all processors. There are
NGPBLKS blocks of NPROMA packets:

NGPBLKS = int[(NGPTOT + NPROMA− 1)/NPROMA]

A NPROMA-packet does not always contain a set of complete latitudes.

There are necessary transpositions (reorganisation of data) between grid point computations and Fourier
transforms because Fourier transforms need complete latitudes.

28.2 Transmission of data used in several “JKGLO” blocks in the grid-point
computations.

There are several “JKGLO” blocks in the grid-point calculations. Calculations start for the first block, for the
NGPBLKS packets of NPROMA points. Calculations for the second block follow then, and so on. Some data
may be needed in more than one block.

Some of these data can be stored in the arrays GMVT1, GMVT1S, GFLT1, GMV, GMVS, GFL, but
some other more specific data require a special buffer, allocated and deallocated in GP MODEL (local name is
ZSLBUF2, dummy name is generally PB2 under CPG, CALL SL and CPGLAG). This array is used both
in the Eulerian and semi-Lagrangian schemes. Each individual quantity stored in ZSLBUF2 can be retrieved
by a pointer with a name looking like MSLB2... (in PTRSLB2). Pointers starting by letters MSLB2... are
pre-computed in the set-up routine SUSLB.

For example the “t” linear contribution which is used in the semi-implicit scheme and which appears in the RHS of
temperature equation, can be stored in ZSLBUF2(.,MSLB2TSI:MSLB2TSI+NFLEVG-1,.); it is currently
computed under CPG DYN, and needed for example under CPGLAG which is in a different JKGLO block.
No halo computation is necessary for this buffer.

28.3 Case LEQ REGIONS=T.

This case is relevant only when NPRGPEW>1 (B-level parallelisation at least in the grid-point calculations),
and use a global model with a reduced Gaussian grid. This is an optimised version of the LEQ REGIONS=F case
which is well designed for reduced Gaussian grid and it improves the load balance in this case. A comprehensive
description can be found in (Mozdzynski, 2006). To sum-up, we can say that:

• the A-level grid-point distribution splits the Earth into N REGIONS NS bands. N REGIONS NS
can be slightly different from NPRGPNS.

• for each band jroca, the B-level grid-point distribution splits the band into N REGIONS(jroca) zones:
the minimum value of N REGIONS is at the poles of the computational sphere (equal to 1 in the examples
provided by Mozdzynski); the maximum value of N REGIONS is at the equator of the computational
sphere and this maximum is equal to N REGIONS EW. The meridian variations of N REGIONS are
highly correlated to those of NLOENG.

• In the examples provided by Mozdzynski, NPRGPNS=NPRGPEW=NPRTRW=NPRTRV and we
notice that N REGIONS NS is slightly below NPRGPNS, and that N REGIONS EW is slightly
below 2∗NPRGPEW.

When LEQ REGIONS=F, variables N REGIONS NS, N REGIONS and N REGIONS EW are still
used but in this case:

• N REGIONS NS=NPRGPNS.

• N REGIONS=NPRGPEW everywhere.

• N REGIONS EW=NPRGPEW.
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29 Specific Eulerian model variables in modules and namelists.

These modules are auto-documented so description of each variable is provided in the code source. We can recall
here the most important variables to know for each module:

• PARDIM (parameter dimensions).

• PTRSLB2 (pointers for arrays to communicate information between the different blocks in the grid-point
calculations).

• PTRGPPC (pointers for grid point array (GPPC) for PC schemes).

• ELBC.. modules for lateral or vertical coupling and spectral nudging: all variables. Some of these variables
are in namelists NEMELBC0A and NEMELBC0B.

• YEMDYN (LAM model dynamics): LESIDG, RTHRESIDG. RTHRESIDG is in namelist NEMDYN.

• YOMARG (0-level control, former command line) and YOMCT0 (0-level control):

– All NAMARG variables: for ex. NCONF, LELAM, LECMWF, UTSTEP, LSLAG, NSUPERSEDE.

– LR3D, LR2D, LRSHW, LRVEQ.

– LTWOTL.

– LREGETA, LVFE REGETA.

– LNHDYN.

– LRPLANE.

– LAROME.

– LCALLSFX, LSFXLSM.

– LSFORC, LSFORCS.

Some of these variables are in namelist NAMCT0.

• YOMCVER (vertical finite element discretisation keys). Some of these variables are in namelist
NAMCVER.

• YOMDIM, YOMDIMV and YOMDIMF (dimensioning): most of variables. Some of these variables
are in namelist NAMDIM.

• YOMDYNA (adiabatic dynamics: first part):

– LAPRXPK, NDLNPR, RHYDR0 (vertical discretisation).

– L3DTURB (3D turbulence).

– LSLDIA, LRPRSLTRJ (diagnostics).

– LRUBC.

– NPDVAR, NVDVAR, ND4SYS, LNH PDVD, LNHX, LNHXDER, RC PD1 (NH model).

– LGWADV, NGWADVSI, LRDBBC (treatment of vertical divergence equation in NH model).

– LVERCOR, LRWSDLW, LRWSDLR, LRWSDLR2, LRWSDLG, LCURVW (deep layer models).

Some of these variables are in namelist NAMDYNA.

• YOMDYN (adiabatic dynamics: second part):

– REPS1, REPS2, REPSM1, REPSM2, REPSP1 (Asselin filter).

– RKRF, NMAXLEVRF, RRFZ1, RRFPLM (Rayleigh friction).

– RTEMRB, NRUBC (upper radiative boundary condition).

– LSIDG, BETADT, RBT, RBTS2, NITERHELM, LIMPF (semi-implicit scheme).

– REFGEO, SIPR, SITR, SITRA, SITRUB, SIPRUB, SITIME, SIRPRG, SIRPRN (reference values
used in the semi-implicit scheme).

– NSITER, NCURRENT ITER, LRHDI LASTITERPC (predictor-corrector scheme).

– NCOMP CVGQ, LDRY ECMWF.

– LRFRIC, LRFRICISOTR (Rayleigh friction).

– VCPR, VCTR, VCAK, LADVFW, NITPRHS (deep-layer equations formulations).

Some of these variables are in namelist NAMDYN.

• YOMGPPCB (contains buffer for gridpoint workfile needed for PC schemes).

• YOMGPPB (contains buffer for the externalised SURFEX surface scheme).

• YOMMP0 and YOMMP (distributed memory environment, see documentation (IDDM) for more
details).

• YOMRIP0 (model date). Some of these variables are in namelist NAMRIP0.
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• YOMRIP (timestep dependent variables), in particuliar TSTEP, TDT and NSTOP. Some of these
variables are in namelist NAMRIP.

• YOMSTA (constants for standard atmosphere).

• YOMSTADLR (additional quantities for standard atmosphere used in WS2003 formulation of NH deep-
layer equations).

• TYPE FADS (to define the Field Arpege Descriptors).

• Modules for trajectory stored for TL and AD models:

– TRAJECTORY MOD (manages trajectory for TL and AD runs in a unified way).

– TRAJ MAIN MOD (manages main trajectory).

– TRAJ PHYSICS MOD (manages physics trajectory).

– TRAJ SEMILAG MOD (manages semi-Lagrangian trajectory).

– TRAJ SURFACE MOD (manages surface trajectory).

• Modules for geometry:

– YOMGSGEOM (geographic space grid-point geometry)

– YOMCSGEOM (computational space grid-point geometry)

– YOMOROG (orography)

– YOMGEM (horizontal geometry): some variables are in namelist NAMGEM.

– SPGEOM MOD (spectral geometry).

– YOMVERT (vertical geometry and VFE operators).

– YOMVV1 (namelist variables for vertical geometry): variables are in namelist NAMVV1.

– YEMGEO (LAM model geometry): some variables are in namelist NEMGEO.

– YEMGEOLBC (LAM model geometry for LBC).

– TYPE GEOMETRY, TYPE SPGEOM.

• Modules for GMV dataflow:

– YOMGMV (grid-point arrays for GMV fields).

– TYPE GMVS (derived types for GMV).

– GMV SUBS MOD (contains encapsulated routines for GMV management).

• Modules for GFL dataflow:

– YOMGFL (grid-point arrays for GFL fields).

– YOM YGFL (descriptors of GFL arrays). Some of these variables are in namelist NAMGFL.

– GFL SUBS MOD (contains encapsulated routines for GFL management).

• Modules for surface dataflow:

– SURFACE FIELDS MIX (surface dataflow).

• YOMSP and YOMSP5 (spectral arrays).

We give there a sum-up of the main modules and structures belonging to ifs init part, geometry part, and model
structures. This is important to understand what is OOPS-compliant.

• Part ifs init: the set-up is done before calling SUGEOMETRY; content of these modules should not be
modified by SUGEOMETRY or after calling SUGEOMETRY. List contains at least:

– YOMMP0

– YOMGSTATS

– YOMLUN

– YOMMSC

– YOMCST

– YOMARG

– YOMCT0 and YEMCT0

– ENKF MIX

– YOMJFH

– YOMDYNA

– YOMCVER
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– YOMDYNCORE

– ELBC0A MOD

– YOMVAR

– YOMRIP0

– YOMINI

– YOMIOP

– YOMTIM

– YOMVWRK

– YOMNUD

– YOMTRANS

– INTDYN MOD

• Geometry: sets-up the following structures and modules; some of these variables are attributes of variable
YRGEOMETRY; content of these variables should not be modified after the call to SUGEOMETRY.

– YOMVV1: not encapsulated, vertical geometry only

– YOMDIM

– YOMDIMV

– YEMDIM

– YOMVERT

– YOMGEM

– YEMGEO

– YEMGEOLBC

– YOMMP

– YEMMP

– YOMLEG

– YOMLAP

– YEMLAP

– YOMSTA

– YOMSTADLR

– SPGEOM MOD

– YOMCSGEOM

– YOMGSGEOM

– YOMVSPLIP

– YOMVSLETA

– YOMHSLMER

• Model structures and fields structures: all what is computed after SUGEOMETRY. For example, content
of the following modules:

– YOMGMV

– YOMGFL

– SURFACE FIELDS MIX

– YOMSP

– YOMSP5

– YOMTRAJ

– ELBC0B MOD

– ELBC0C MOD

– FIELDS MOD

To be OOPS-compliant, the code should pass these variables via dummy arguments (and never via use of
modules) in routines called under STEPO/AD/TL.
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30 An example of namelist.

∗ Introduction: In order to avoid to have to recompile all the code when changing the value of a variable
(for example a dimension), as it was the case in the old PERIDOT/EMERAUDE system, some variables are
provided in different namelists, so it is possible to change the value in the namelist without recompiling the code.
All variables which have to be modified compared to the default value can be specified in the namelist, but there is
also an option where the model retrieves some data (date and geometry) by reading the frame of some ARPEGE
files.

∗ Example of namelist for an ARPEGE Eulerian forecast: The example provided below is
coming from the forecast namelist “namelistfc” which has been used in the ARPEGE (TL1198L105c2.2 stretched
version) operational suite on 01/07/2016, with minor modifications (use the Eulerian advection scheme and reduce
the timestep, no VFE, adapt the namelist for cycle 45, remove activation of FULL-POS diagnostics, reduce the
number of processors, no IO server). This suite used the cycle 41t1 op1. The namelist is:

&NACIETEO
/
&NACOBS
/
&NACTAN
/
&NACTEX
/
&NACVEG
/
&NADOCK
/
&NAEAEM7
/
&NAEAER
/
&NAECOAPHY
/
&NAEPHLI
/
&NAEPHY
/
&NAERAD

LRRTM=.TRUE.,
LSRTM=.FALSE.,
NMCICA=0,
NRADFR=-1,
NSW=6,
RLWINHF=0.9,

/
&NAERCLI
/
&NAETLDIAG
/
&NAEVOL
/
&NAIMPO
/
&NALORI
/
&NAMAERDET
/
&NAMAFN

TFP_I%LLGP=.TRUE.,
TFP_L%LLGP=.TRUE.,

/
&NAMARG

CNMEXP=’ARPE’,
NCONF=1,
LELAM=.FALSE.,
LECMWF=.FALSE.,
CUSTOP=’h102’,
UTSTEP=60.,
LSLAG=.FALSE.,
NSUPERSEDE=1,

/
&NAMARPHY
/
&NAMCA
/
&NAMCAPE
/
&NAMCFU

LCUMFU=.TRUE.,
LFDUTP=.TRUE.,
LFPLC=.TRUE.,
LFPLS=.TRUE.,
LFR=.TRUE.,
LFSF=.TRUE.,
LFSOIL=.TRUE.,
LMOON=.TRUE.,
LNEBPAR=.TRUE.,
LSTRD=.TRUE.,
LSTRT=.TRUE.,
LFRRC=.TRUE.,
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LRAYD=.TRUE.,
/
&NAMCHEM
/
&NAMCHET
/
&NAMCHK
/
&NAMCLA
/
&NAMCLDP
/
&NAMCLI
/
&NAMCLOP15
/
&NAMCLTC
/
&NAMCOK
/
&NAMCOM
/
&NAMCOMPO
/
&NAMCOSJO
/
&NAMCT0

LFBDAP=.TRUE.,
LFDBOP=.FALSE.,
LTWOTL=.FALSE.,
NDHFZTS(0)=-9,
NDHFZTS(1:9)=-6,-12,-18,-24,-36,-48,-60,-72,-96,
NFRDHFZ=1,
NFRHIS=1,
NFRPOS=1,
NFRSDI=1,
NHISTS(0)=-28,
NHISTS(1:10)=-0,-3,-6,-9,-12,-15,-18,-21,-24,-27,
NHISTS(11:20)=-30,-33,-36,-39,-42,-45,-48,-51,-54,-60,
NHISTS(21:28)=-66,-72,-78,-81,-84,-90,-96,-102,
NSDITS(0)=-1,
NSDITS(1)=0,
NSPPR=1,
LREGETA=.FALSE.,
LVFE_REGETA=.FALSE.,
NFRGDI=1,
NGDITS(0)=-1,
NGDITS(1)=0,
NUNDEFLD=-99999999,

/
&NAMCT1

LRFILAF=.FALSE.,
N1POS=0,
N1RES=0,

/
&NAMCUMF
/
&NAMCUMFS
/
&NAMCVER

LVERTFE=.FALSE.,
NVSCH=0,

/
&NAMCVMNH

OTADJS=10800.,
XCDEPTH=1.,
XCDEPTH_D=4000.,
XDTPERT=0.3,
XENTR=0.013,

/
&NAMDDH

LHDEFZ=.TRUE.,
LHDHKS=.TRUE.,
LHDZON=.TRUE.,
NDHKD=30,

/
&NAMDFI
/
&NAMDIM

NPROMA=-3582,
/
&NAMDIMO
/
&NAMDIM_TRAJ
/
&NAMDPHY
/
&NAMDYN

RDAMPDIV=2.,
/
&NAMDYNA

LAPRXPK=.FALSE.,
NDLNPR=0,

/
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&NAMDYNCORE
/
&NAMEMIS_CONF
/
&NAMENKF
/
&NAMFA

NBITCS=30,
NBITPG=30,
NSTRON=-1,
YFAL%NBITS=16,
YFAI%NBITS=16,
YFAR%NBITS=16,
YFAS%NBITS=16,
YFALRAD%NBITS=16,
YFAIRAD%NBITS=16,
YFACLF%NBITS=6,
YFATKE%NBITS=16,

/
&NAMFAINIT
/
&NAMFPC
/
&NAMFPD
/
&NAMFPDY2
/
&NAMFPDYF
/
&NAMFPDYH
/
&NAMFPDYI
/
&NAMFPDYP
/
&NAMFPDYS
/
&NAMFPDYT
/
&NAMFPDYV
/
&NAMFPF
/
&NAMFPG
/
&NAMFPIOS
/
&NAMFPMOVE
/
&NAMFPPHY
/
&NAMFPSC2
/
&NAMFPSC2_DEP
/
&NAMGEM
/
&NAMGFL

YI_NL%LGPINGP=.TRUE.,
YI_NL%LGP=.TRUE.,
YI_NL%LT1=.TRUE.,
YI_NL%LPHY=.FALSE.,
YI_NL%NREQIN=1,
YI_NL%LREQOUT=.TRUE.,
YI_NL%LADV=.FALSE.,
YI_NL%LQM=.FALSE.,
YL_NL%LGPINGP=.TRUE.,
YL_NL%LGP=.TRUE.,
YL_NL%LT1=.TRUE.,
YL_NL%LPHY=.FALSE.,
YL_NL%NREQIN=1,
YL_NL%LREQOUT=.TRUE.,
YL_NL%LADV=.FALSE.,
YL_NL%LQM=.FALSE.,
YR_NL%LGPINGP=.TRUE.,
YR_NL%LGP=.TRUE.,
YR_NL%LT1=.TRUE.,
YR_NL%LPHY=.FALSE.,
YR_NL%NREQIN=1,
YR_NL%LREQOUT=.TRUE.,
YR_NL%LADV=.FALSE.,
YR_NL%LQM=.FALSE.,
YS_NL%LGPINGP=.TRUE.,
YS_NL%LGP=.TRUE.,
YS_NL%LT1=.TRUE.,
YS_NL%LPHY=.FALSE.,
YS_NL%NREQIN=1,
YS_NL%LREQOUT=.TRUE.,
YS_NL%LADV=.FALSE.,
YS_NL%LQM=.FALSE.,
YTKE_NL%LGPINGP=.TRUE.,
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YTKE_NL%LGP=.TRUE.,
YTKE_NL%LT1=.TRUE.,
YTKE_NL%NREQIN=1,
YTKE_NL%LREQOUT=.TRUE.,
YTKE_NL%NCOUPLING=0,
YTKE_NL%LADV=.FALSE.,
YTKE_NL%LQM=.FALSE.,
YIRAD_NL%LGP=.TRUE.,
YIRAD_NL%NREQIN=0,
YIRAD_NL%LREQOUT=.TRUE.,
YLRAD_NL%LGP=.TRUE.,
YLRAD_NL%NREQIN=0,
YLRAD_NL%LREQOUT=.TRUE.,
YA_NL%LGP=.TRUE.,
YA_NL%NREQIN=0,
YA_NL%LREQOUT=.TRUE.,

/
&NAMGRIB
/
&NAMGWD
/
&NAMGWDIAG
/
&NAMGWWMS
/
&NAMIAU
/
&NAMICE
/
&NAMINI

LDFI=.FALSE.,
/
&NAMINTFLEX
/
&NAMIOMI
/
&NAMIOS
/
&NAMIO_SERV
/
&NAMJBCODES
/
&NAMJG
/
&NAMLCZ
/
&NAMLSFORC
/
&NAMMARS
/
&NAMMCC
/
&NAMMCUF
/
&NAMMETHOX
/
&NAMMKODB
/
&NAMMODERR
/
&NAMMTS
/
&NAMMWAVE
/
&NAMNPROF
/
&NAMNUD
/
&NAMOBS
/
&NAMOOPS
/
&NAMOPH

CFNHWF=’ECHIS’,
LINC=.TRUE.,

/
&NAMOPTCMEM
/
&NAMPAR0

NOUTPUT=1,
NPROC=2,
NPRGPNS=2,
NPRGPEW=1,
NPRTRW=2,
NPRTRV=1,
MP_TYPE=2,
MBX_SIZE=128000000,
LOPT_SCALAR=.FALSE.,

/
&NAMPAR1

LSPLIT=.TRUE.,
NSTRIN=2,
NSTROUT=2,
NCOMBFLEN=1638400,
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LEQ_REGIONS=.FALSE.,
/
&NAMPARAR
/
&NAMPHMSE
/
&NAMPHY

CGMIXLEN=’AY’,
LAERODES=.TRUE.,
LAEROLAN=.TRUE.,
LAEROSEA=.TRUE.,
LAEROSOO=.TRUE.,
LCONDWT=.TRUE.,
LDIFCONS=.TRUE.,
LFPCOR=.TRUE.,
LNEWD=.TRUE.,
LNOIAS=.TRUE.,
LO3ABC=.TRUE.,
LPROCLD=.TRUE.,
LRAY=.FALSE.,
LRAYFM=.TRUE.,
LRAYLU=.TRUE.,
LRNUMX=.TRUE.,
LSSD=.TRUE.,
LSTRA=.FALSE.,
LVGSN=.TRUE.,
LCVPPKF=.TRUE.,
LECDEEP=.TRUE.,
LECSHAL=.TRUE.,
LECT=.TRUE.,
LFLUSO=.TRUE.,
LNEBECT=.FALSE.,
LO3FL=.TRUE.,
LECTFL=.TRUE.,
LECTFL0=.TRUE.,
LZ0HSREL=.TRUE.,
LADJCLD=.TRUE.,
LSMITH_CDEV=.TRUE.,
NCALLRAD=2,
LGLACIERS=.TRUE.,
NDPSFI=0,

/
&NAMPHY0

EDD=1.,
EDK=1.,
GCVNU=5.E-05,
GCVPSI=1.,
GCVPSIE=1.,
GWDCD=5.4,
GWDSE=0.005,
GWDVALI=0.5,
QSNEBC=-1.,
QSSUSC=5.,
RCVEVAP=0.25,
REVASX=2.E-07,
RICRLM=0.5,
TDDGP=0.6,
TUDGP=0.6,
USURIC=0.175,
USURICL=1.,
USURID=0.1,
VZ0CM=1.0E-4,
XBLM=8.5,
XMAXLM=5000.,
XMINLM=10.,
ALMAVX=1000.,
GCVHMIN=30000.,
RFACNSM=1.2,
RFLCHCE=0.25,
RKFBTAU=7200.,
RPRTH=1.,
RQICRT2=0.,
RQICVMIN=1.E-5,
SXNBCO=1.,
ALMAVE=0.,
RQCRNS=0.,
RQICRSN=1.,
TFVI=0.08,
TFVL=0.02,
TFVS=1.5,
GCVOMGE=1.0,
ECTMAX=35.,
AECLS4=3.,
GDDEVA=0.2,
GCVOMGQ=-1.0,
REFLKUO=5000.,

/
&NAMPHY1

ALBMIN=0.65,
ALCRIN=0.81,
EMMGLA=0.98,
EMMMER=0.99,
ALRCN1=0.01,

/
&NAMPHY2

FACRAF=4.5,
XMULAF=0.,
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LRAFTKE=.TRUE.,
HTKERAF=20.0,

/
&NAMPHY3
/
&NAMPHYDS
/
&NAMPPC
/
&NAMPRE
/
&NAMRAD15
/
&NAMRADCMEM
/
&NAMRCF
/
&NAMRCOEF
/
&NAMRES
/
&NAMRGRI
/
&NAMRINC
/
&NAMRIP
/
&NAMRIP0
/
&NAMRLX
/
&NAMSATS
/
&NAMSCC
/
&NAMSCEN
/
&NAMSCM
/
&NAMSEKF
/
&NAMSENS
/
&NAMSIMPHL
/
&NAMSPNG
/
&NAMSPP
/
&NAMSPSDT
/
&NAMSTA
/
&NAMSTOPH
/
&NAMSWE
/
&NAMTESTVAR
/
&NAMTHLIM
/
&NAMTOPH

ETCVIM=5000.,
ETNEBU=5000.,
ETPLUI=5000.,
XDRMTK=2.E-08,
XDRMTP=800.,
XDRMTX=4.E-07,
XDRMUK=1.E-07,
XDRMUP=800.,
XDRMUX=2.E-06,

/
&NAMTRAJP
/
&NAMTRANS

LUSEFLT=.FALSE.,
LUSERPNM=.TRUE.,
LKEEPRPNM=.TRUE.,

/
&NAMTRANS0
/
&NAMTS
/
&NAMVAR
/
&NAMVARBC
/
&NAMVARBC_AIREP
/
&NAMVARBC_ALLSKY
/
&NAMVARBC_GBRAD
/
&NAMVARBC_RAD
/
&NAMVARBC_SFCOBS
/
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&NAMVARBC_TCWV
/
&NAMVARBC_TO3
/
&NAMVAREPS
/
&NAMVDF
/
&NAMVDOZ
/
&NAMVOLCANO
/
&NAMVRTL
/
&NAMVV0
/
&NAMVV1
/
&NAMVWRK
/
&NAMWAVELETJB
/
&NAMXFU

LXCLP=.TRUE.,
LXCLS=.TRUE.,
LXFU=.TRUE.,
LXHHCLS=.TRUE.,
LXICV=.TRUE.,
LXNEBPA=.TRUE.,
LXNEBTT=.TRUE.,
LXQCLS=.TRUE.,
LXSOIL=.TRUE.,
LXTGST=.TRUE.,
LXTTCLS=.TRUE.,
LXXGST=.TRUE.,

/
&NAM_CANAPE
/
&NAM_DISTRIBUTED_VECTORS
/
&NAPHLC
/
&NEMCT0
/
&NEMDIM
/
&NEMDYN
/
&NEMELBC0A
/
&NEMELBC0B
/
&NEMFPEZO
/
&NEMGEO
/
&NEMJK
/
&NEMVAR
/
&NEMWAVELET
/

Explanation of some elements of this namelist:

• NAMARG:

– CNMEXP=ARPE: four letters code of the job, which appears in the local name of some files; for
example the local name of the initial conditions file in this case has the name ICMSHARPEINIT.

– NCONF=1: means that the job runs in configuration 1.

– LELAM=.FALSE.: means that the model is the global one.

– LECMWF=.FALSE.: means that the job runs with the default METEO-FRANCE options and
not the ECMWF options.

– CUSTOP=’h102’: means that the forecasts has a range of 102 h.

– UTSTEP=60.: means that the timestep is 60 s.

– LSLAG=.FALSE.: means that the advection scheme is an Eulerian one.
– NSUPERSEDE=1: means that geometry and date are read from initial file frame.

• NAMCFU: LCUMFU=.TRUE. means that the CFU diagnostics are activated.

• NAMCT0: in this namelist one finds some information about the temporal advance scheme and the
frequency of some outputs. For example LTWOTL=.FALSE. means that the advection scheme is a leap-
frog one; NFRHIS=1, NHISTS(0)=-28, NHISTS(1)=-0, NHISTS(2)=-3, ... NHISTS(28)=-102,
means that the output of historical files is asked for 28 times during this 102h range model integration,
and that the occurrence number 1 (resp. 2, ..., 28) is at range 0h (resp. 3h, ..., 102h).

• NAMDYN: in this namelist one finds information about horizontal diffusion coefficients, Asselin temporal
filter, some options of the semi-Lagrangian scheme. In our case we use the default values and this namelist
can remain empty.
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• NAMINI: in this namelist one finds information relative to the initialisation; LDFI=.FALSE. means that
there is no initialisation.

• NAMPAR0 and NAMPAR1: in this namelist one finds information relative to the distributed memory
architecture. In our case there are 2 processors in the first level of distribution and one processor in the
second one.

• NAMPHY, NAMPHY0, NAMPHY1, NAMPHY2, NAMPHY3, NAMTOPH give information
about the set of physical parameterizations and the coefficients used in the physics, NAERAD is designed
for the “ECMWF” FMR-radiation scheme.

• NAMXFU: LXFU=.TRUE. means that the XFU diagnostics are activated.

The reader will remark that some information does not appear in the above namelist: the truncation, the geometry
(stretching, high resolution pole, type (reduced or not) of Gaussian grid), the number of latitudes of the Gaussian
grid, the maximum number (and also the number for each latitude) of longitudes of the Gaussian grid, the number
of layers and the definition of these layers. In our example where NSUPERSEDE is set to 1, all this information
is read in the frame of the initial conditions file.

∗ ALADIN and AROME: The namelist looks like the one used in ARPEGE, with some additional
elements, the name of them generally starting by NEM. For example in the forecast namelist “namel previ” of
AROME which was operational on 01/07/2016, the reader will find additional elements starting by NEM... and
some additional information about the lateral coupling (for example the information TEFRCL=3600. present
in NEMELBC0B means that the coupling frequency is 1h).
In NAMARG, LELAM=.TRUE. means that the model is now a LAM model.
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Appendix 1: expressions for
[
r
a∇

]
α and

[
r
a∇

]
δ at full levels.

a) Expressions for
[
r
a
∇
]
α and

[
r
a
∇
]
δ at full levels if LVERTFE=.F. and

NDLNPR=0.

∗ For δ:[[
r

a
∇
]
δ

]
l

=

[
r

a
∇
]

log

(
Π
l

Π
l−1

)
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Π
l

)
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Π
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)
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Π
]
l

Π
l
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Π
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Π
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B
l

Π
l

−
B
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a
∇
]

Πs

Thus: [[
r

a
∇
]
δ
]
l

=

[
B
l

Π
l

−
B
l−1

Π
l−1

] [
r

a
∇
]

Πs (526)

This formula can be rewritten as follows:[[
r

a
∇
]
δ
]
l

= −
A
l
B
l−1
−A

l−1
B
l

Π
l
Π
l−1

[
r

a
∇
]

Πs (527)

This is the last formula (527) which is coded in the model.

∗ For α: [[
r

a
∇
]
α
]
l

= −
Π
l−1

Π
l
−Π

l−1
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a
∇
]
δ
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[
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Expressions 1
(Π
l
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l−1
)2

and
[
r
a
∇
]

Πs are put in factor. The term containing
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r
a
∇
]
δ
]
l

yields:
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The sum of terms containing δl writes:
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From the previous equations,
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r
a
∇
]
α
]
l

can be rewritten:
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a
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Πs (528)

∗ For α+ log Π: Horizontal gradient of this term is used in the discretization of the pressure gradient term
in the RHS of momentum equation: it expression is in fact significantly simpler than the ones of the horizontal

gradients of α and δ taken separately. Starting from formulae giving
[ ra∇]Π

Π
and

[
r
a
∇
]
α (formula (528)) at full

levels one can see that:

• the sum of terms containing B
l
δl is zero.

• the sum of terms containing B
l−1

δl is zero.

• the sum of the other terms containing B
l−1

is zero.

• (Π
l
−Π

l−1
)2 can be eliminated at the numerator and denominator of the other terms containing B

l−1
.

The consequence is that
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a
∇
]

(α+ log Π)
]
l

can be rewritten:[[
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a
∇
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(α+ log Π)
]
l

=
B
l

Π
l

[
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Πs (529)
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b) Expressions for
[
r
a
∇
]
α and

[
r
a
∇
]
δ at full levels if LVERTFE=.F. and

NDLNPR=1.

∗ For δ:
δl =

∆Πl

Πl
=

∆Πl√
Π
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Π
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(530)

One applies operator
[
r
a
∇
]

to equation (530):[[
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which can be rewritten:[[
r

a
∇
]
δ
]
l

=
[

1

Π

]
l

(
[∆B]l

[
r

a
∇
]

Πs −
(
Π
l
−Π

l−1

)[[ r
a
∇
]

Π

Π

]
l

)
(531)

Expression of
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]
δ
]
l

contains the two quantities
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]
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and
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Π
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, the equations of which (equations (264)

and (257)) have to be used. That yields:
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The sum of terms containing [∆B]l is zero, so the previous equation can be rewritten as:[[
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Πs (532)

If the hydrostatic pressure at the top of the model is zero:[[
r

a
∇
]
δ
]
l=1

= 0

∗ For α:
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One applies operator
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∇
]

to equation (533):[[
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Expression of
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l

contains the two quantities
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Π
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If the hydrostatic pressure at the top of the model is zero:[[
r

a
∇
]
α
]
l=1

= 0

c) Expression for
[
r
a
∇
]
δ at full levels if LVERTFE=.T. and NDLNPR=0.

Equation:

δl =
[∆Π]l
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can be rewritten:
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Appendix 2: modified formulation of continuity equation in the
(WB1995) deep layer system of equations.

a) Introduction.

This equation is significantly modified by the deep layer formulation. One has to start from the pressure-coordinate
expression of continuity equation, which is not modified too much by deep layer formulation. Formula (4.17) of
(White and Bromley, 1995) writes:

∇ΠV +
1

r2

∂(r2ω)

∂Π
= 0 (536)

Compared to the thin layer formulation of this equation, there is an additional term ω
r2

∂(r2)
∂Π

which means that
when a particle goes up, its horizontal section increases. One multiplies equation (536) by r and one uses property
∇Πr = 0, that yields:

∇Π(rV) +
1

r

∂(r2ω)

∂Π
= 0 (537)

b) Adiabatic Eulerian formulation.

∗ Treatment of term containing 1
r
∂(r2ω)
∂Π : One develops ω = dΠ

dt
in vertical coordinate η:

dΠ

dt
=
∂Π

∂t
+ V∇Π + η̇
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∂η
(538)

That yields, using property ∂X
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∂Π

)
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(539)

∗ Treatment of term containing ∇Π(rV): One uses the following coordinate-transformation
formulae, between to vertical coordinate η1 and η2 for a variable X:(

∂X

∂x

)
η2

=
(
∂X

∂x

)
η1
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(
∂X

∂η1

)(
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(540)

for x = Λ, Θ or t. (
∂X

∂η2

)
=

(
∂X

∂η1

)(
∂η1

∂η2

)
(541)

In our case, η1 = η, η2 = Π, X = rV. That yields:

∇Π(rV) = ∇(rV) +
∂(rV)

∂η
∇Πη (542)

Applying transformation formula (540) to X = Π yields:(
∂Π

∂x

)
Π

=
∂Π
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+
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∂η
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∂η
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)
Π

(543)
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for x = Λ or Θ, what can be written in a vectorial way:

0 = ∇Π +
∂Π

∂η
∇Πsη (544)

or:

∇Πsη = − 1(
∂Π
∂η

)∇Π (545)

Equation (542) can be rewritten:

∇Π(rV) = ∇(rV)− 1(
∂Π
∂η

) ∂(rV)

∂η
∇Π (546)

∗ Final calculations: The sum of terms containing ∂(rV)
∂η

is zero. Thus expression
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Multiplying by ∂Π
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r, expression (
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The operator (r∇) can be inverted with the vertical derivative operator; thus one can write:

(rV) ∂((r∇)Π)
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+
(
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rV ∂Π
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(547)

Thus the η-coordinate form of continuity equation writes:

∂
(
r2 ∂Π

∂t

)
∂η

+ r∇
(
rV

∂Π

∂η

)
+
∂
(
r2η̇ ∂Π

∂η

)
∂η

= 0 (548)

One can notice that not any of the properties of the vertical coordinate η has been still used.

∗ Vertically integrated formulation of continuity equation. One has to integrate vertically
this equation on dη from η = 0 (top) to η = 1 (ground). Equation (548) becomes:[

r2 ∂Π

∂t

]
η=1
−
[
r2 ∂Π
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]
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∫ η=1
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−
[
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∂η

]
η=0

= 0 (549)

One uses the following properties:
[
∂Π
∂t

]
η=0

= 0 (this is one of the properties of the η-vertical coordinate), η-

coordinate vertical velocity zero at the top and the bottom (true if variables NDPSFI=0 and LRUBC=F).
Equation can be rewritten, after a normalisation by the mean Earth radius a:[
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]
η=1

∂Πs
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[
r

a
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](
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a
V
∂Π

∂η

)
dη (550)

which can be rewritten:
∂Πs

∂t
= −

[
a2

r2

]
η=1

∫ η=1

η=0

[
r

a
∇
](

r

a
V
∂Π

∂η

)
dη (551)
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c) Adding a physical contribution (case “δm = 1”) and an upper radiative
condition.

∗ Non vertically integrated formulation of continuity equation: One adds a physical
contribution F to equation (536) in pressure coordinate, that yields:

∇ΠV +
1

r2

∂(r2ω)

∂Π
= F (552)

Doing the same calculations than in the adiabatic case, equation (548) yields:

∂
(
r2 ∂Π

∂t

)
∂η

+ r∇
(
rV

∂Π

∂η

)
+
∂
(
r2η̇ ∂Π

∂η

)
∂η

=
∂Π

∂η
r2F (553)

The physical tendency F involves the diabatic flux Fm (assumed to be zero at the top of the model) via formula:

∂Π

∂η
F = −g a

2

r2

∂Fm

∂η
(554)

Thus equation (548) can be rewritten:

∂
(
r2 ∂Π

∂t

)
∂η

+ r∇
(
rV

∂Π

∂η

)
+
∂
(
r2η̇ ∂Π

∂η

)
∂η

= −a2g
∂Fm

∂η
(555)

∗ Vertically integrated formulation of continuity equation: The vertically integrated
formulation of continuity equation shows additional terms related to physics and to the fact that η̇ ∂Π

∂η
can be

non-zero at the top and the bottom. Equation (550) becomes:[
r2

a2

]
η=1

∂Πs

∂t
= −

∫ η=1

η=0

[
r

a
∇
](

r

a
V
∂Π

∂η

)
dη −

[
r2

a2
η̇
∂Π

∂η

]
η=1

+

[
r2

a2
η̇
∂Π

∂η

]
η=0

− g
(
[Fm]η=1 − [Fm]η=0

)
(556)

Dividing by
[
r2

a2

]
η=1

, and considering that [Fm]η=0 is zero, this equation becomes:

∂Πs
∂t

= −
[
a2

r2

]
η=1

∫ η=1

η=0

[
r
a
∇
] (

r
a
V ∂Π

∂η

)
dη

−
[
η̇ ∂Π
∂η

]
η=1

+
[
a2

r2

]
η=1

[
r2

a2

]
η=0

[
η̇ ∂Π
∂η

]
η=0
− g [Fm]η=1

[
a2

r2

]
η=1

(557)

It can be transformed into an evolution equation of log Πs.

∂ log(Πs)
∂t

= −
[
a2

r2

]
η=1

1
Πs

∫ η=1

η=0

[
r
a
∇
] (

r
a
V ∂Π

∂η

)
dη

− 1
Πs

[
η̇ ∂Π
∂η

]
η=1

+ 1
Πs

[
a2

r2

]
η=1

[
r2

a2

]
η=0

[
η̇ ∂Π
∂η

]
η=0
− 1

Πs
g [Fm]η=1

[
a2

r2

]
η=1

(558)

d) Semi-Lagrangian formulation.

For a variable X2D which does not depend on η, vertical advection is zero, so relationship between Lagrangian
derivative and Eulerian derivative writes:

dX2D

dt
=
∂X2D

∂t
+
a

r
V
[
r

a
∇
]
X2D (559)

Equation (123) is valid for all 2D variables, even for the deep layer formulation. In particular it is valid for the
following variables:

• X2D = log(Πs).

• X2D = log Πs + δTR
Φs

RdTst
.

When vertically integrating this equation, one obtains:∫ η=1

η=0

r2

a2

∂B

∂η

dX2D

dt
dη =

∫ η=1

η=0

r2

a2

∂B

∂η

∂X2D

∂t
dη +

∫ η=1

η=0

r2

a2

∂B

∂η

a

r
V
[
r

a
∇
]
X2Ddη (560)

The introduction of r2

a2 in the vertical integrals is due to the fact that one has to take an air volume in the vertical
integration.
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Appendix 3: discretisation of
[
r
a∇

]
µs at full levels for spherical

geometry (WB1995 formulation of deep-layer equations).

Expression of
[
r
a
∇
]
µs is:[
r

a
∇
]
µs = −2Ω

g

[
r

a
∇
]

(UGnordm cos θ − V Gnordl cos θ)− 1

g

[
r

a
∇
](

U2 + V 2

r

)
This expression can be written as a sum of several terms:[

r

a
∇
]
µs =

−2Ω

g
Gnordm cos θ

[
r

a
∇
]
U +

2Ω

g
Gnordl cos θ

[
r

a
∇
]
V − 2Ω

g
U
[
r

a
∇
]

(Gnordm cos θ) +
2Ω

g
V
[
r

a
∇
]

(Gnordl cos θ)

+
U2 + V 2

gr2

[
r

a
∇
]
r − 1

rg

(
2U
[
r

a
∇
]
U + 2V

[
r

a
∇
]
V
)

In this sum there are three different types of quantities, the horizontal gradient of which has to be computed.

• Horizontal wind components: meridian derivatives are eliminated, and the expression is rewritten using
divergence, vorticity and some curvature terms containing tan θbne.[
r
a
∇
]
U writes: (

1
a cos θbne

∂U
∂λbne

1
a

∂U
∂θbne

= −a
r
ζ + 1

a cos θbne

∂V
∂λbne

+ U
a

tan θbne

)
[
r
a
∇
]
V writes: (

1
a cos θbne

∂V
∂λbne

1
a

∂V
∂θbne

= a
r
D − 1

a cos θbne

∂U
∂λbne

+ V
a

tan θbne

)
One transforms these formulae in order to use the system of computational sphere coordinates (Λ,Θ) and
the reduced components of the wind: that allows to write formulae with some quantities easily available
in the model.[
r
a
∇
]
U writes:  M2

[
1

a cos Θ
∂U
′

∂Λ

]
M2
[
−ζ
′

+ 1
a cos Θ

∂V
′

∂Λ

]
+
[
MU
′

2

(
2 tan θbne

a

)]


[
r
a
∇
]
V writes:  M2

[
1

a cos Θ
∂V
′

∂Λ

]
M2
[
D
′
− 1

a cos Θ
∂U
′

∂Λ

]
+
[
MV
′

2

(
2 tan θbne

a

)]


• The pseudo-radius r: see formulae (110) and (112) for the computation of its horizontal gradient.

• The geometrical quantities Gnordl cos θ and Gnordm cos θ.

Equation (22) can be rewritten as:

Gnordl cos θ = − cos θpe sin Λ (561)

Applying the reduced horizontal gradient operator ∇
′

yields:

∇
′
(Gnordl cos θ) =

(
− 1
a cos Θ

cos θpe cos Λ
0

)
(562)

Multiply by the mapping factor M :[
r

a
∇
]

(Gnordl cos θ) =

(
− M
a cos Θ

cos θpe cos Λ
0

)
(563)

This gradient is zero when the computational sphere geometry is untilted (high resolution pole = true
North pole).
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Equation (23) can be rewritten as:

Gnordm cos θ =
2c sin θpe cos Θ− ((c2 − 1) + (c2 + 1) sin Θ) cos θpe cos Λ

((c2 + 1) + (c2 − 1) sin Θ)
(564)

The reduced zonal derivative is simple to compute:

1

a cos Θ

∂(Gnordm cos θ)

∂Λ
=

1

a cos Θ

(
(c2 − 1) + (c2 + 1) sin Θ

)
((c2 + 1) + (c2 − 1) sin Θ)

cos θpe sin Λ (565)

Multiply by M to obtain the semi-reduced zonal derivative. This quantity is zero when the computational
sphere geometry is untilted (high resolution pole = true North pole).

The reduced meridian derivative is more difficult to compute, one has to develop the formula and remove
some terms, the sum of which is zero:

1
a
∂(Gnordm cos θ)

∂Θ
=

− (c2−1) cos Θ

a((c2+1)+(c2−1) sin Θ)2

(
2c sin θpe cos Θ−

(
(c2 − 1) + (c2 + 1) sin Θ

)
cos θpe cos Λ

)
+ 1

a((c2+1)+(c2−1) sin Θ)

(
−2c sin θpe sin Θ− (c2 + 1) cos Θ cos θpe cos Λ

)
(566)

Developing this expression yields:

– denominator: a
(
(c2 + 1) + (c2 − 1) sin Θ

)2
.

– Terms containing sin θpe in the numerator:(
−(c2 − 1) cos Θ2c cos Θ− 2c sin Θ(c2 + 1)− 2c(c2 − 1) sin2 Θ

)
sin θpe

=
(
−2c(c2 − 1) cos2 Θ− 2c(c2 − 1) sin2 Θ− 2c(c2 + 1) sin Θ

)
sin θpe

=
(
−2c(c2 − 1)− 2c(c2 + 1) sin Θ

)
sin θpe

=
(
−2c((c2 − 1) + (c2 + 1) sin Θ)

)
sin θpe

– Terms containing cos θpe cos Λ in the numerator:(
(c2 − 1)2 cos Θ + (c2 − 1)(c2 + 1) cos Θ sin Θ− (c2 + 1)2 cos Θ− (c2 − 1)(c2 + 1) cos Θ sin Θ

)
cos θpe cos Λ

=
(
(c2 − 1)2 cos Θ− (c2 + 1)2 cos Θ

)
cos θpe cos Λ

=
(
−4c2 cos Θ

)
cos θpe cos Λ

Thus:
1

a

∂(Gnordm cos θ)

∂Θ
=

(
−2c((c2 − 1) + (c2 + 1) sin Θ) sin θpe − 4c2 cos Θ cos θpe cos Λ

)
a ((c2 + 1) + (c2 − 1) sin Θ)2

(567)

Multiply by M to obtain the semi-reduced zonal derivative. When the computational sphere geometry is
untilted (high resolution pole = true North pole) formula (567) becomes significantly simpler but gives a
quantity which remains non-zero.

One finally obtains for
[
r
a
∇
]

(Gnordm cos θ) the vector of coordinates: M 1
a cos Θ

((c2−1)+(c2+1) sin Θ)
((c2+1)+(c2−1) sin Θ)

cos θpe sin Λ

M
(−2c((c2−1)+(c2+1) sin Θ) sin θpe−4c2 cos Θ cos θpe cos Λ)

a((c2+1)+(c2−1) sin Θ)2


These formulae become simpler when rewritten with the mapping factor M at the numerator and the
denominator. Vector

[
r
a
∇
]

(Gnordm cos θ) writes: M 1
2ca cos Θ

((c2−1)+(c2+1) sin Θ)
M

cos θpe sin Λ

M
(−((c2−1)+(c2+1) sin Θ) sin θpe−2c cos Θ cos θpe cos Λ)

aM((c2+1)+(c2−1) sin Θ)


i.e.: (

1
2ca cos Θ

(
(c2 − 1) + (c2 + 1) sin Θ

)
cos θpe sin Λ

− 1
a

(((c2−1)+(c2+1) sin Θ) sin θpe+2c cos Θ cos θpe cos Λ)
((c2+1)+(c2−1) sin Θ)

)
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Concerning the second element of this vector, one can notice that:

sin θbne =
(c2 − 1) + (c2 + 1) sin Θ

(c2 + 1) + (c2 − 1) sin Θ
(568)

cos θbne =
2c cos Θ

(c2 + 1) + (c2 − 1) sin Θ
(569)

thus the second element can still write:

M

a

∂(Gnordm cos θ)

∂Θ
=

1

a
(sin θbne sin θpe + cos θbne cos θpe cos Λ) (570)

When the geometry of the computational sphere is untilted, θbne becomes equal to θ and the vector
(sin θpe; cos θpe) becomes equal to the unit vector (1,0), thus the second element writes in this case − 1

a
sin θ:

this result can be easily retrieved using property M
a
∂X
∂Θ

= 1
a
∂X
∂θ

with X = cos θ. One can furthermore notice
that formula (564) writes:

Gnordm cos θ = cos θbne sin θpe − sin θbne cos θpe cos Λ (571)

M
a
∂(Gnordm cos θ)

∂Θ
can be reformulated as 1

a
∂(Gnordm cos θ)

∂θbne
, what provides the previous formula in a simpler

way.

About the first element of this vector, it can be also written as tan θbne
a

cos θpe sin Λ.
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Appendix 4: inertial Coriolis/centrifugal terms in a 3D primitive
equation model, deep layer formulation, for spherical geometry.

Equations are written with the vertical velocity w: replace w by W for the (WB1995) formulation of deep-layer
equations.

a) Coriolis and inertial terms.

There are four terms, one of them which does not appear in equations because it is “hidden” in the gravity
constant g.

• The centrifugal force due to the Earth rotation: this term involving Ω2r is omitted in the equations because
it is “hidden” in the gravity constant g.

• The Coriolis force due to the Earth rotation.

• A mixed Coriolis/centrifugal inertial term due to the zonal displacement of the particle on an apparent
latitude of the computational (tilted and stretched) sphere.

• A mixed Coriolis/centrifugal inertial term due to the meridian displacement of the particle on an apparent
latitude of the computational (tilted and stretched) sphere.

One will now detail the computation of the three terms which appear in equations. These terms appear not only
in the horizontal components of the momentum equation, but also in the diagnostic relationship which allows to
compute the total geopotential Φ.

b) Coriolis force due to the Earth rotation.

Earth rotation has an angular velocity Ω directed from the geographical South pole towards the geographical North
pole, the modulus of which is Ω. Its coordinates are (0,Ω cos θ,Ω sin θ) in a local system of coordinates linked to
the geographical sphere. Its coordinates become (Ωx cos θ,Ωy cos θ,Ω sin θ) in a local system of coordinates linked
to the computational sphere. To compute Ωx and Ωy one has to take the horizontal matricial transformation which
allows to go from one to the other one of these two systems. This transformation is defined from the unit vector
directed towards the geographical North pole; the apparent coordinates of this unit vector in the computational
sphere are (Gnordl,Gnordm). Applying equations (24) and (25) to Xapp = Ωx, Yapp = Ωy, Xgeo = 0, Ygeo = Ω, that
yields Ωx = ΩGnordl and Ωy = ΩGnordm. So, in a local system of coordinates linked to the computational sphere,
term −2Ω ∧ (U, V,w) has the following coordinates:

−2

( GnordlΩ cos θ
GnordmΩ cos θ

Ω sin θ

)
∧

(
U
V
w

)
=

( − [2GnordmΩ cos θw − 2Ω sin θV ]
− [2Ω sin θU − 2GnordlΩ cos θw]

− [2GnordlΩ cos θV − 2GnordmΩ cos θU ]

)
(572)

Vertical component −[2GnordlΩ cos θV −2GnordmΩ cos θU ] appears in the relationship giving the total geopotential
Φ. Introducing the deep layer formulation brings the following new terms:

• −[2GnordmΩ cos θw] in the zonal component of momentum equation.

• −[−2GnordlΩ cos θw] in the meridian component of momentum equation.

• −[2GnordlΩ cos θV − 2GnordmΩ cos θU ] in the relationship giving the total geopotential Φ.

c) Inertial mixed centrifugal/Coriolis force due to the zonal displacement of
the particle.

The angular velocity which is responsible of this force is directed from the low resolution pole towards the high
resolution pole; its modulus is:

| U |
r cos θbne

Its coordinates in a local system of coordinates linked to the computational sphere geometry is:(
0;

U

r cos θbne
cos θbne;

U

r cos θbne
sin θbne

)
i.e.: (

0;
U

r
;
U

r
tan θbne

)
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The latitude which appears in this vector is the one on a tilted unstretched sphere. So, in a local system of
coordinates linked to the computational sphere, term:

−
(

0;
U

r
;
U

r
tan θbne

)
∧ (U, V,w)

has the following coordinates:

−

(
0
U
r

U
r

tan θbne

)
∧

(
U
V
w

)
=


−
[
Uw
r
− UV

r
tan θbne

]
−
[
U2

r
tan θbne

]
−
[
−U

2

r

]
 (573)

Vertical component −
[
−U

2

r

]
appears in the relationship giving the total geopotential Φ. Introducing the deep

layer formulation brings the following new terms:

• the curvature term −[Uw
r

] in the zonal component of momentum equation.

• −[−U
2

r
] in the relationship giving the total geopotential Φ.

For the other terms, the mean Earth radius a is replaced by the pseudo-radius r in the denominator.

d) Inertial mixed centrifugal/Coriolis force due to the meridian displacement
of the particle.

The angular velocity which is responsible of this force is directed towards the apparent western direction (on the
computational sphere); its modulus is:

| V |
r

Its coordinates in a local system of coordinates linked to the computational sphere geometry is:(
−V
r

; 0; 0
)

So, in a local system of coordinates linked to the computational sphere, term:

−
(
−V
r

; 0; 0
)
∧ (U, V,w)

has the following coordinates:

−

( −V
r

0
0

)
∧

(
U
V
w

)
=

 0

−
[
V w
r

]
−
[
−V

2

r

]
 (574)

Vertical component −
[
−V

2

r

]
appears in the relationship giving the total geopotential Φ. Introducing the deep

layer formulation brings the following new terms:

• the curvature term −[V w
r

] in the meridian component of momentum equation.

• −[−V
2

r
] in the relationship giving the total geopotential Φ.

e) Horizontal advection term.

Considering a geographical wind and geographical derivatives, the horizontal advection of the horizontal wind
writes as follows, in the coordinate system (λbne, θbne):(

− 1
r cos θbne

U ∂U
∂λbne

− 1
r
V ∂U
∂θbne

− 1
r cos θbne

U ∂V
∂λbne

− 1
r
V ∂V
∂θbne

)
(575)
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f) Combination of advection terms with the curvature terms.

Curvature terms containing tan θbne are combined with horizontal advection terms; the meridian derivatives of
the wind are eliminated and rewritten using the divergence, vorticity, zonal derivative and some curvature terms.
Formulae (57) and (58) are used. These formulae are applied to geographical variables, and written in the system
of coordinates (λbne, θbne); that yields:

D =
1

r cos θbne

∂U

∂λbne
+

1

r cos θbne

∂(V cos θbne)

∂θbne
(576)

et:

ζ =
1

r cos θbne

∂V

∂λbne
− 1

r cos θbne

∂(U cos θbne)

∂θbne
(577)

These two relationships yield the meridian derivatives of the horizontal wind, knowing the zonal derivatives of
the horizontal wind, the divergence and the vorticity:

−1

r
V

∂V

∂θbne
= −V D +

1

r cos θbne
V

∂U

∂λbne
− V 2

r
tan θbne (578)

and:

−1

r
V

∂U

∂θbne
= V ζ − 1

r cos θbne
V

∂V

∂λbne
− UV

r
tan θbne (579)

The “horizontal advection + curvature terms” sum vector(
− 1
r cos θbne

U ∂U
∂λbne

− 1
r
V ∂U
∂θbne

+ UV
r

tan θbne − Uw
r

− 1
r cos θbne

U ∂V
∂λbne

− 1
r
V ∂V
∂θbne

− U2

r
tan θbne − V w

r

)
(580)

becomes, after elimination of the meridian derivatives of the wind and after summing together the curvature
terms: (

V ζ − 1
r cos θbne

U ∂U
∂λbne

− 1
r cos θbne

V ∂V
∂λbne

− Uw
r

−V D − 1
r cos θbne

U ∂V
∂λbne

+ 1
r cos θbne

V ∂U
∂λbne

− U2+V 2

r
tan θbne − V w

r

)
(581)

Note the additional relationships: U = MU
′
, V = MV

′
, D = a

r
M2D

′
, ζ = a

r
M2ζ

′
,

1

r cos θbne

∂U

∂λbne
=
a

r
M2

(
1

a cos Θ

∂U
′

∂Λ

)
1

r cos θbne

∂V

∂λbne
=
a

r
M2

(
1

a cos Θ

∂V
′

∂Λ

)
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Appendix 5: transformation in the plane of the contribution
“horizontal advection + horizontal curvature terms”, in plane
geometry.

a) Vector to transform.

The components of the vector “horizontal advection + horizontal curvature terms” write (see part (6.2.1)):

• first element:

−C2U
′
∇uU − CSV

′
∇uU +

CSU
′

cos θ
∇v(U cos θ)− C2V

′

cos θ
∇v(U cos θ)

+CSU
′
∇uV + S2V

′
∇uV − S2U

′

cos θ
∇v(V cos θ) +

CSV
′

cos θ
∇v(V cos θ)

+MS
U
′2 + V

′2

r
tan θ

• second element:

−CSU
′
∇uU − S2V

′
∇uU +

S2U
′

cos θ
∇v(U cos θ)− CSV

′

cos θ
∇v(U cos θ)

−C2U
′
∇uV − CSV

′
∇uV +

CSU
′

cos θ
∇v(V cos θ)− C2V

′

cos θ
∇v(V cos θ)

−MC
U
′2 + V

′2

r
tan θ

The aim is to rewrite this vector using ∂
′
xU
′
, ∂
′
yU
′
, ∂
′
xV
′
, ∂
′
yV
′

instead of ∇uU , ∇uV , ∇v(U cos Θ) and
∇v(V cos Θ).

b) Expressions of ∇uU , ∇uV , ∇v(U cos Θ) and ∇v(V cos Θ).

• Computation of ∇uU :

∇uU = ∇u(MCU
′

+MSV
′
) = U

′
∇u(MC) + V

′
∇u(MS) + (MC)∇uU

′
+ (MS)∇uV

′

One uses the following relationships:

∇u(MC) = − 1

r cos θ
MKLS

∇u(MS) =
1

r cos θ
MKLC

∇uU
′

=
a

r
MC∂

′
xU
′

+
a

r
MS∂

′
yU
′

∇uV
′

=
a

r
MC∂

′
xV
′

+
a

r
MS∂

′
yV
′

So expression of ∇uU becomes:

∇uU = − 1

r cos θ
MKLSU

′
+

1

r cos θ
MKLCV

′
+
a

r
M2C2∂

′
xU
′
+
a

r
M2CS∂

′
yU
′
+
a

r
M2CS∂

′
xV
′
+
a

r
M2S2∂

′
yV
′

• Computation of ∇uV :

∇uV = ∇u(−MSU
′

+MCV
′
) = −U

′
∇u(MS) + V

′
∇u(MC)− (MS)∇uU

′
+ (MC)∇uV

′

The same method already applied to ∇uU is now applied to ∇uV , that yields:

∇uV = − 1

r cos θ
MKLCU

′
− 1

r cos θ
MKLSV

′
− a
r
M2CS∂

′
xU
′
− a
r
M2S2∂

′
yU
′
+
a

r
M2C2∂

′
xV
′
+
a

r
M2CS∂

′
yV
′
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• Computation of ∇v(U cos Θ):

∇v(U cos θ) = ∇v(MCU
′
cos θ +MSV

′
cos θ)

C and S do not depend on θ, so they can be put out of the meridian derivative:

∇v(U cos θ) = C∇v(MU
′
cos θ) + S∇v(MV

′
cos θ)

= CU
′
∇v(M cos θ) + SV

′
∇v(M cos θ) +MC cos θ∇vU

′
+MS cos θ∇vV

′

One uses the following relationships:

∇v(M cos θ) = −KLM

r

∇vU
′

= −a
r
MS∂

′
xU
′

+
a

r
MC∂

′
yU
′

∇vV
′

= −a
r
MS∂

′
xV
′

+
a

r
MC∂

′
yV
′

So expression of ∇v(U cos Θ) becomes:

∇v(U cos θ) = −1

r
MKLCU

′
− 1

r
MKLSV

′
− a

r
M2CS∂

′
xU
′
+
a

r
M2C2∂

′
yU
′
− a

r
M2S2∂

′
xV
′
+
a

r
M2CS∂

′
yV
′

• Computation of ∇v(V cos Θ):

∇v(V cos θ) = ∇v(−MSU
′
cos θ +MCV

′
cos θ)

C and S do not depend on θ, so they can be put out of the meridian derivative:

∇v(V cos θ) = −S∇v(MU
′
cos θ) + C∇v(MV

′
cos θ)

= −SU
′
∇v(M cos θ) + CV

′
∇v(M cos θ)−MS cos θ∇vU

′
+MC cos θ∇vV

′

The same method already applied to ∇v(U cos θ) is now applied to ∇v(V cos Θ), that yields:

∇v(V cos θ) = +
1

r
MKLSU

′
− 1

r
MKLCV

′
+
a

r
M2S2∂

′
xU
′
− a

r
M2CS∂

′
yU
′
− a

r
M2CS∂

′
xV
′
+
a

r
M2C2∂

′
yV
′

One now do substitutions in both elements of the vector “horizontal advection + horizontal curvature terms”,
that yields, putting a

r
in factor:

• first element:

−
a

r
C2U

′
[
−

1

a cos θ
MKLSU

′
+

1

a cos θ
MKLCV

′
+M2C2∂

′
xU
′

+M2CS∂
′
yU
′

+M2CS∂
′
xV
′

+M2S2∂
′
yV
′
]

−
a

r
CSV

′
[
−

1

a cos θ
MKLSU

′
+

1

a cos θ
MKLCV

′
+M2C2∂

′
xU
′

+M2CS∂
′
yU
′

+M2CS∂
′
xV
′

+M2S2∂
′
yV
′
]

+
a

r cos θ
CSU

′
[
−

1

a
MKLCU

′
−

1

a
MKLSV

′
−M2CS cos θ∂

′
xU
′

+M2C2 cos θ∂
′
yU
′
−M2S2 cos θ∂

′
xV
′

+M2CS cos θ∂
′
yV
′
]

−
a

r cos θ
C2V

′
[
−

1

a
MKLCU

′
−

1

a
MKLSV

′
−M2CS cos θ∂

′
xU
′

+M2C2 cos θ∂
′
yU
′
−M2S2 cos θ∂

′
xV
′

+M2CS cos θ∂
′
yV
′
]

+
a

r
CSU

′
[
−

1

a cos θ
MKLCU

′
−

1

a cos θ
MKLSV

′
−M2CS∂

′
xU
′
−M2S2∂

′
yU
′

+M2C2∂
′
xV
′

+M2CS∂
′
yV
′
]

+
a

r
S2V

′
[
−

1

a cos θ
MKLCU

′
−

1

a cos θ
MKLSV

′
−M2CS∂

′
xU
′
−M2S2∂

′
yU
′

+M2C2∂
′
xV
′

+M2CS∂
′
yV
′
]

−
a

r cos θ
S2U

′
[

1

a
MKLSU

′
−

1

a
MKLCV

′
+M2S2 cos θ∂

′
xU
′
−M2CS cos θ∂

′
yU
′
−M2CS cos θ∂

′
xV
′

+M2C2 cos θ∂
′
yV
′
]

+
a

r cos θ
CSV

′
[

1

a
MKLSU

′
−

1

a
MKLCV

′
+M2S2 cos θ∂

′
xU
′
−M2CS cos θ∂

′
yU
′
−M2CS cos θ∂

′
xV
′

+M2C2 cos θ∂
′
yV
′
]

+MS
U
′2 + V

′2

r
tan θ
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• second element:

−
a

r
CSU

′
[
−

1

a cos θ
MKLSU

′
+

1

a cos θ
MKLCV

′
+M2C2∂

′
xU
′

+M2CS∂
′
yU
′

+M2CS∂
′
xV
′

+M2S2∂
′
yV
′
]

−
a

r
S2V

′
[
−

1

a cos θ
MKLSU

′
+

1

a cos θ
MKLCV

′
+M2C2∂

′
xU
′

+M2CS∂
′
yU
′

+M2CS∂
′
xV
′

+M2S2∂
′
yV
′
]

+
a

r cos θ
S2U

′
[
−

1

a
MKLCU

′
−

1

a
MKLSV

′
−M2CS cos θ∂

′
xU
′

+M2C2 cos θ∂
′
yU
′
−M2S2 cos θ∂

′
xV
′

+M2CS cos θ∂
′
yV
′
]

−
a

r cos θ
CSV

′
[
−

1

a
MKLCU

′
−

1

a
MKLSV

′
−M2CS cos θ∂

′
xU
′

+M2C2 cos θ∂
′
yU
′
−M2S2 cos θ∂

′
xV
′

+M2CS cos θ∂
′
yV
′
]

−
a

r
C2U

′
[
−

1

a cos θ
MKLCU

′
−

1

a cos θ
MKLSV

′
−M2CS∂

′
xU
′
−M2S2∂

′
yU
′

+M2C2∂
′
xV
′

+M2CS∂
′
yV
′
]

−
a

r
CSV

′
[
−

1

a cos θ
MKLCU

′
−

1

a cos θ
MKLSV

′
−M2CS∂

′
xU
′
−M2S2∂

′
yU
′

+M2C2∂
′
xV
′

+M2CS∂
′
yV
′
]

+
a

r cos θ
CSU

′
[

1

a
MKLSU

′
−

1

a
MKLCV

′
+M2S2 cos θ∂

′
xU
′
−M2CS cos θ∂

′
yU
′
−M2CS cos θ∂

′
xV
′

+M2C2 cos θ∂
′
yV
′
]

−
a

r cos θ
C2V

′
[

1

a
MKLSU

′
−

1

a
MKLCV

′
+M2S2 cos θ∂

′
xU
′
−M2CS cos θ∂

′
yU
′
−M2CS cos θ∂

′
xV
′

+M2C2 cos θ∂
′
yV
′
]

−MC
U
′2 + V

′2

r
tan θ

One obtains very long mathematical expressions, but one can show that they can be rearranged in a considerably
simpler way.

c) Simplification of the first element.

• Sum of terms containing U
′2: MU

′2

r cos θ

[
KL(C2S − C2S − C2S − S2S) + S sin θ

]
Using C2 + S2 = 1 this expression becomes: MU

′2S
r cos θ

[sin θ −KL]

• Sum of terms containing V
′2: MV

′2

r cos θ

[
KL(−C2S + C2S − S2S − C2S) + S sin θ

]
Using C2 + S2 = 1 this expression becomes: MV

′2S
r cos θ

[sin θ −KL]

• Sum of terms containing U
′
V
′
: MU

′
V
′
KL

r cos θ

[
−C3 + CS2 − CS2 + C3 − CS2 − CS2 + CS2 + CS2

]
= 0

• Sum of terms containing U
′
∂
′
xU
′
:

M2U
′
∂
′
xU
′

r

[
−C4 − C2

S
2 − C2

S
2 − S4

]
=
M2U

′
∂
′
xU
′

r

[
(C

2
)
2

+ 2C
2
S

2
+ (S

2
)
2
]

=
M2U

′
∂
′
xU
′

r

[
C

2
+ S

2
]2

=
M2U

′
∂
′
xU
′

r

• Sum of terms containing U
′
∂
′
yU
′
:
M2U

′
∂
′
yU
′

r

[
−C3S + C3S − CS3 + CS3

]
= 0

• Sum of terms containing U
′
∂
′
xV
′
:
M2U

′
∂
′
xV
′

r

[
−C3S − CS3 + C3S + CS3

]
= 0

• Sum of terms containing U
′
∂
′
yV
′
:
M2U

′
∂
′
yV
′

r

[
−C2S2 + C2S2 + C2S2 − C2S2

]
= 0

• Sum of terms containing V
′
∂
′
xU
′
:
M2V

′
∂
′
xU
′

r

[
−C3S + C3S − CS3 + CS3

]
= 0

• Sum of terms containing V
′
∂
′
yU
′
:

M2V
′
∂
′
yU
′

r

[
−C2

S
2 − C4 − S4 − C2

S
2
]

= −
M2V

′
∂
′
yU
′

r

[
(C

2
)
2

+ 2C
2
S

2
+ (S

2
)
2
]

= −
M2V

′
∂
′
yU
′

r

[
C

2
+ S

2
]2

= −
M2V

′
∂
′
yU
′

r

• Sum of terms containing V
′
∂
′
xV
′
:
M2V

′
∂
′
xV
′

r

[
−C2S2 + C2S2 + C2S2 − C2S2

]
= 0

• Sum of terms containing V
′
∂
′
yV
′
:
M2V

′
∂
′
yV
′

r

[
−CS3 − C3S + CS3 + C3S

]
= 0

• Total:
a

r

[
M(U

′2 + V
′2)S

a cos θ
(sin θ −KL)−M2U

′
∂
′
xU
′
−M2V

′
∂
′
yU
′
]
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d) Simplification of the second element.

• Sum of terms containing U
′2: MU

′2

r cos θ

[
KL(CS2 − CS2 + C2C + S2C)− C sin θ

]
Using C2 + S2 = 1 this expression becomes: −MU

′2C
r cos θ

[sin θ −KL]

• Sum of terms containing V
′2: MV

′2

r cos θ

[
KL(−S2C + S2C + S2C + C2C)− C sin θ

]
Using C2 + S2 = 1 this expression becomes: −MV

′2C
r cos θ

[sin θ −KL]

• Sum of terms containing U
′
V
′
: MU

′
V
′
KL

r cos θ

[
−C2S + S3 − S3 + C2S + C2S + C2S − C2S − C2S

]
= 0

• Sum of terms containing U
′
∂
′
xU
′
:
M2U

′
∂
′
xU
′

r

[
−C3S − CS3 + C3S + CS3

]
= 0

• Sum of terms containing U
′
∂
′
yU
′
:
M2U

′
∂
′
yU
′

r

[
−C2S2 + C2S2 + C2S2 − C2S2

]
= 0

• Sum of terms containing U
′
∂
′
xV
′
:

M2U
′
∂
′
xV
′

r

[
−C2

S
2 − S4 − C4 − C2

S
2
]

= −
M2U

′
∂
′
xV
′

r

[
(C

2
)
2

+ 2C
2
S

2
+ (S

2
)
2
]

= −
M2U

′
∂
′
xV
′

r

[
C

2
+ S

2
]2

= −
M2U

′
∂
′
xV
′

r

• Sum of terms containing U
′
∂
′
yV
′
:
M2U

′
∂
′
yV
′

r

[
−CS3 + CS3 − C3S + C3S

]
= 0

• Sum of terms containing V
′
∂
′
xU
′
:
M2V

′
∂
′
xU
′

r

[
−S2C2 + S2C2 + S2C2 − S2C2

]
= 0

• Sum of terms containing V
′
∂
′
yU
′
:
M2V

′
∂
′
yU
′

r

[
−CS3 − C3S + CS3 + C3S

]
= 0

• Sum of terms containing V
′
∂
′
xV
′
:
M2V

′
∂
′
xV
′

r

[
−CS3 + CS3 − C3S + C3S

]
= 0

• Sum of terms containing V
′
∂
′
yV
′
:

M2V
′
∂
′
yV
′

r

[
−S4 − C2

S
2 − C2

S
2 − C4

]
= −

M2V
′
∂
′
yV
′

r

[
(C

2
)
2

+ 2C
2
S

2
+ (S

2
)
2
]

= −
M2V

′
∂
′
yV
′

r

[
C

2
+ S

2
]2

= −
M2V

′
∂
′
yV
′

r

• Total:

−a
r

[
M(U

′2 + V
′2)C

a cos θ
(sin θ −KL) +M2U

′
∂
′
xV
′

+M2V
′
∂
′
yV
′
]
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Appendix 6: expression of the horizontal gradient of µs in plane
geometry.

a) Vector to transform.

The way of calculation is different from the one used in sperical geometry, because it is not convenient to develop
the derivatives of C cos θ and S cos θ (too tricky to compute), but the derivatives of MC and MS for the zonal
part and of M cos θ for the meridian part. What has to be computed is the following vector:

1

M

(
C −S
S C

)[
r

a
∇
]
µs =

[
1
M
C
[
r
a
∇u
]
µs − 1

M
S
[
r
a
∇v
]
µs

1
M
S
[
r
a
∇u
]
µs + 1

M
C
[
r
a
∇v
]
µs

]
First

[
r
a
∇u
]
µs and

[
r
a
∇v
]
µs are developed, then one applies the matricial operator giving ∂

′
xµs and ∂

′
yµs.

b) Zonal derivative
[
r
a
∇u
]
µs.[

r

a
∇u
]
µs = −2Ω

g

[
r

a
∇u
] [
MU

′
C cos θ +MV

′
S cos θ

]
− 1

g

[
r

a
∇u
] [

M2U
′2 +M2V

′2

r

]
One has to make appear the following derivatives:

[
r
a
∇u
]

(MC),
[
r
a
∇u
]

(MS),
[
r
a
∇u
]
U
′

et
[
r
a
∇u
]
V
′
.[

r

a
∇u
]

(M2) =

[
r

a
∇u
]

(M2C2) +

[
r

a
∇u
]

(M2S2) = 2MC

[
r

a
∇u
]

(MC) + 2MS

[
r

a
∇u
]

(MS)

= 2MC

[
−

1

a cos θ
MKLS

]
+ 2MS

[
1

a cos θ
MKLC

]
=

2M2KL

a cos θ
[−CS + SC] = 0

Zonal derivative
[
r
a
∇u
]
µs can be rewritten:[

r

a
∇u

]
µs = −

2Ω

g

(
[MC cos θ]

[
r

a
∇u

]
U
′

+ U
′

cos θ

[
r

a
∇u

]
[MC] +MU

′
C

[
r

a
∇u

]
cos θ

)
−

2Ω

g

(
[MS cos θ]

[
r

a
∇u

]
V
′

+ V
′

cos θ

[
r

a
∇u

]
[MS] +MV

′
S

[
r

a
∇u

]
cos θ

)
−
M2

gr

(
2U
′
[
r

a
∇u

]
U
′

+ 2V
′
[
r

a
∇u

]
V
′
)

+
M2(U

′2 + V
′2)

gr2

[
r

a
∇u

]
r

On the sphere, θ has a gradient equal to zero (
[
r
a
∇u
]

cos θ = 0).
[
r
a
∇u
]

[MC] and
[
r
a
∇u
]

[MS] are replaced by
their expressions:[

r

a
∇u

]
µs = −

2Ω

g

(
[MC cos θ]

[
r

a
∇u

]
U
′

+ U
′

cos θ

[
−

1

a cos θ
MKLS

])
−

2Ω

g

(
[MS cos θ]

[
r

a
∇u

]
V
′

+ V
′

cos θ

[
1

a cos θ
MKLC

])
−
M2

gr

(
2U
′
[
r

a
∇u

]
U
′

+ 2V
′
[
r

a
∇u

]
V
′
)

+
M2(U

′2 + V
′2)

gr2

[
r

a
∇u

]
r

That can be rewritten:[
r

a
∇u
]
µs = −

2Ω

g

(
[MC cos θ]

[
r

a
∇u
]
U
′

+ [MS cos θ]

[
r

a
∇u
]
V
′
)
−

2ΩMKL

ga

(
CV
′
− SU

′)
−
M2

gr

(
2U
′
[
r

a
∇u
]
U
′

+ 2V
′
[
r

a
∇u
]
V
′
)

+
M2(U

′2 + V
′2)

gr2
∇ur

c) Meridian derivative
[
r
a
∇v
]
µs.[

r

a
∇v
]
µs = −2Ω

g

[
r

a
∇v
] [
MU

′
C cos θ +MV

′
S cos θ

]
− 1

g

[
r

a
∇v
] [

M2U
′2 +M2V

′2

r

]
One uses the following properties: [

r

a
∇v
]
C = 0[

r

a
∇v
]
S = 0
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[
r

a
∇v
]

[M cos θ] = −
KLM

a[
r

a
∇v
]

[cos θ] =
1

a

∂ cos θ

∂θ
= −

sin θ

a

and develops
[
r
a
∇v
]

[M cos θ]:[
r

a
∇v
]

[M cos θ] = cos θ
[
r

a
∇v
]
M +M

[
r

a
∇v
]

cos θ

That yields:

−KLM

a
= cos θ

[
r

a
∇v
]
M − M sin θ

a
Hence: [

r

a
∇v
]
M =

M

cos θa
(sin θ −KL)

One puts C and S out of
[
r
a
∇v
]

and one makes appear
[
r
a
∇v
]

[M cos θ] in the expression of µs, that yields:[
r

a
∇v

]
µs = −

2ΩC

g

(
U
′
[
r

a
∇v

]
[M cos θ] + [M cos θ]

[
r

a
∇v

]
U
′
)
−

2ΩS

g

(
V
′
[
r

a
∇v

]
[M cos θ] + [M cos θ]

[
r

a
∇v

]
V
′
)

−
M2

gr

(
2U
′
[
r

a
∇v

]
U
′

+ 2V
′
[
r

a
∇v

]
V
′
)

+
M2(U

′2 + V
′2)

gr2

[
r

a
∇v

]
r −

U
′2 + V

′2

gr

[
2M

[
r

a
∇v

]
M

]
= −

2ΩC

g

(
−U
′ KLM

a
+ [M cos θ]

[
r

a
∇v

]
U
′
)
−

2ΩS

g

(
−V
′ KLM

a
+ [M cos θ]

[
r

a
∇v

]
V
′
)

−
M2

gr

(
2U
′
[
r

a
∇v

]
U
′

+ 2V
′
[
r

a
∇v

]
V
′
)

+
M2(U

′2 + V
′2)

gr2

[
r

a
∇v

]
r −

U
′2 + V

′2

gr

[
2
M2

a cos θ
(sin θ −KL)

]
which can be rewritten as follows:[

r

a
∇v
]
µs = −

2Ω

g

(
[MC cos θ]

[
r

a
∇v
]
U
′

+ [MS cos θ]

[
r

a
∇v
]
V
′
)
−

2ΩMKL

ga

(
−CU

′
− SV

′)
−
M2

gr

(
2U
′
[
r

a
∇v
]
U
′

+ 2V
′
[
r

a
∇v
]
V
′
)

+
M2(U

′2 + V
′2)

gr2

[
r

a
∇v
]
r − 2

(U
′2 + V

′2)M2

gr

sin θ −KL

a cos θ

d) Writing derivatives in the plane.

One has now to apply the following operator:

1

M

(
C −S
S C

)
at the left and right of vector

[
r
a
∇
]
µs.

• Terms containing
[
r
a
∇u
]

and
[
r
a
∇v
]
: couple (

[
r
a
∇u
]

;
[
r
a
∇v
]
) has simply to be replaced by (∂

′
x; ∂

′
y).

• Terms containing (2ΩMKL)/(ga): they can be rewritten as follows:

1

M

(
C −S
S C

)(
2ΩMKL

ga

)(
CV
′
− SU

′

−CU
′
− SV

′

)
=

1

M

(
C −S
S C

)(
2ΩMKL

ga

)(
C S
−S C

)(
V
′

−U
′

)
=

(
2ΩKL

ga

)(
V
′

−U
′

)
• Terms containing sin θ −KL: they can be rewritten as follows:

1

M

(
C −S
S C

)
2
M2

gar

(
U
′2

+ V
′2
) sin θ −KL

cos θ

(
0
1

)
= 2

M2

gar

(
U
′2

+ V
′2
) sin θ −KL

cos θ

(
−S
C

)
Vector of coordinates (∂

′
xµs; ∂

′
yµs) finally writes:

• first element:

−
2Ω

g
[MC cos θ] ∂

′
xU
′
−

2Ω

g
[MS cos θ] ∂

′
xV
′
−

2M2

gr
U
′
∂
′
xU
′
−

2M2

gr
V
′
∂
′
xV
′

+
M2(U

′2 + V
′2)

gr2
∂
′
xr

−
2ΩKL

ga
V
′

+
2SM

gar
(U
′2 + V

′2)
sin θ −KL

cos θ

• second element:

−
2Ω

g
[MC cos θ] ∂

′
yU
′
−

2Ω

g
[MS cos θ] ∂

′
yV
′
−

2M2

gr
U
′
∂
′
yU
′
−

2M2

gr
V
′
∂
′
yV
′

+
M2(U

′2 + V
′2)

gr2
∂
′
yr

+
2ΩKL

ga
U
′
−

2CM

gar
(U
′2 + V

′2)
sin θ −KL

cos θ
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Appendix 7: expression of the vertical integration and of the
vertical derivative matricial operators (vertical finite element
scheme).

The content of this section is valid for the code provided by ECMWF in 2004 (LVFE INT ECMWF=T). New
formulations used if (LVFE INT ECMWF=F) are not described in detail (see (Smoĺıková and Vivoda, 2013),
(de Boor, 2001)); in this case set-up is done by routine SUVERTFEB.

a) Introduction.

The algorithm is described in (Untch and Hortal, 2001), (Untch and Hortal, 2004). A vertically-dependent field
X can be projected on a finite element basis ei, i being the layer numbering.

X(η) =

i=L∑
i=0

Xiei(η) (582)

Its vertical integral

S(η) =

∫ η

top

X(η
′
)dη
′

has the following finite element representation:

S(η) =

i=L+1∑
i=1

Sidi(η) (583)

The basis di is the same as ei excepted for some boundary values (top and bottom) where some differences can
occur. One can show that the discretisation of vertical integration is equivalent to write the matricial product:

A〈S〉 = B〈X〉 (584)

which is equivalent to write:
〈S〉 = A−1B〈X〉 = [Rinte](top)〈X〉 (585)

where 〈S〉 is the vector of components (S1, S2, ..., SL, SL+1) and 〈X〉 is the vector of components (X1, X2, ..., XL).
For i = 1 to i = L quantities Xi and Si are defined and computed at full levels. SL+1 is the vertical integral on
the whole atmosphere. The setup code of the model successively computes A, A−1, B and the product A−1B.
[Rinte](top) is a (L+ 1) ∗L matrix and [Rinte](top,l) is the vector containing the l-th line of [Rinte](top). Sl is given
by the scalar product:

Sl = [Rinte](top,l)〈X〉
The L+ 1-th line of [Rinte](top) contains [Rinte](top,surf) (discretisation of the integral on the whole atmosphere):

SL+1 = Ssurf = [Rinte](top,surf)〈X〉

One can also discretise an integral from the surface (for example to compute the geopotential height).∫ η

surf

X(η
′
)dη
′

can be rewritten: ∫ η

top

X(η
′
)dη
′
−
∫ surf

top

X(η
′
)dη
′

= S(η)− S(η = 1)

discretised by operator [Rinte](surf,l) = [Rinte](top,l) − [Rinte](top,surf).

b) Basis used in the vertical finite element scheme.

∗ Linear finite elements. For 0 ≤ i ≤ L+ 1: di(η) = ei(η). Definition of ei is:

• ei(η) = 0 for η < ηi−1.

• ei(η) = (η − ηi−1)/(ηi − ηi−1) for ηi−1 ≤ η ≤ ηi.
• ei(η) = (ηi+1 − η)/(ηi+1 − ηi) for ηi ≤ η ≤ ηi+1.

• ei(η) = 0 for η > ηi+1.
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∗ Hermite cubic finite elements. di(η) is generally equal to ei(η) excepted for i ≤ 2 and η < η1.
Definition of ei is:

• ei(η) = 0 for η < ηi−2.

• for ηi−2 ≤ η ≤ ηi, ei(η) is a third-order polynomial which matches with ei(ηi−2) = 0, ei(ηi) = 1,[
de
dη

]
i
(ηi−2) = 0,

[
de
dη

]
i
(ηi) = 0. After some long calculations which are not detailed in this documentation

that yields:

ei(η) =
1

[ηi − ηi−2]3

[
−2η3 + 3(ηi−2 + ηi)η

2 − 6(ηiηi−2)η + (η3
i−2 − 3η2

i−2ηi)
]

• for ηi ≤ η ≤ ηi+2, ei(η) is a third-order polynomial which matches with ei(ηi+2) = 0, ei(ηi) = 1,[
de
dη

]
i
(ηi+2) = 0,

[
de
dη

]
i
(ηi) = 0. After some long calculations which are not detailed in this documentation

that yields:

ei(η) =
1

[ηi − ηi+2]3

[
−2η3 + 3(ηi+2 + ηi)η

2 − 6(ηiηi+2)η + (η3
i+2 − 3η2

i+2ηi)
]

• ei(η) = 0 for η > ηi+2.

c) Vertical integration matricial operator.

∗ General expression of matrices A and B. After equation (4.3) of (Untch and Hortal, 2001),
(Untch and Hortal, 2004) and taking t = d (what is done in the code) one obtains:

A(i,j) =

∫ η=1

η=0

di(η)dj(η)dη (586)

B(i,j) =

∫ η=1

η=0

[
dj(η)

∫ η
′
=η

η
′
=0

di(η
′
)dη
′

]
dη (587)

A and B are (L+ 1) ∗ (L+ 1) matrices. A is a symmetric one.

∗ More details about matrices A and B for linear finite elements. The vertical integrals
of equations (586) and (587) can be analytically computed using formulae giving ei and di. For A that yields:

• A is a symmetric tridiagonal matrix.

• A(1,1) = η2
3

.

• A(i,i) =
ηi+1−ηi−1

3
for 2 ≤ i ≤ L− 1.

• A(L,L) =
1−ηL−1

3
.

• A(L+1,L+1) = 1−ηL
3

.

• A(i,i−1) = A(i−1,i) =
ηi−ηi−1

6
for 2 ≤ i ≤ L.

• A(L+1,L) = A(L,L+1) = 1−ηL
6

• The other coefficients are equal to zero.

For B that yields:

• B(1,1) = 5
24
η1

2 + 1
4
η1(η2 − η1)

• B(j,1) = 1
4
η1(ηj+1 − ηj−1) for 2 ≤ j ≤ L.

• B(L+1,j) = 1
4
(1− ηL)(ηj − ηj−2) for 2 ≤ j ≤ L.

• B(L+1,L+1) = 1
3
(1− ηL)2 + 1

4
(ηL − ηL−1)(1− ηL)

• B(L,L+1) = 1
8
(ηL − ηL−1)2 + 1

4
(ηL − ηL−1)(1− ηL) + 1

6
(1− ηL)2

• B(j,i) = 1
4
(ηi − ηi−2)(ηj+1 − ηj−1) for i < j.

• B(j,j) = 1
4
(ηj−1 − ηj−2)(ηj − ηj−1) + 5

24
(ηj − ηj−1)2 + 1

4
(ηj+1 − ηj)(ηj − ηj−2)

• B(j,j+1) = 1
8
(ηj − ηj−1)2 + 1

4
(ηj − ηj−1)(ηj+1 − ηj) + 1

8
(ηj+1 − ηj)2

• B(j,j+2) = 1
24

(ηj+1 − ηj)2

• B(j,i) = 0 for i > j + 2.
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∗ More details about matrices A and B for Hermite cubic finite elements. The vertical
integrals of equations (586) and (587) can be analytically computed using formulae giving ei and di. Expression
of the coefficients of B and A is rather tricky and is not detailed in this documentation; Matrix A is symmetric
with a non-zero main diagonal and three non-zero upper and lower side diagonals.

d) Vertical derivative matricial operator.

Not yet described.

e) Where to find the code?

∗ Vertical integral. The setup routines computing the matrix A−1B are SUVERTFE1 for the linear
finite elements and SUVERTFE3 for Hermite cubic finite elements. The product A−1B is stored after one
line shift in the array RINTE (module YOMVERT) which actually contains a matrix (L + 1) ∗ L. The
intermediate quantities A, A−1 and B are stored in the local arrays ZAMAT, ZAMATI and ZBMAT. The
vertical integration, giving 〈S〉 for layers 1 to L and the additional layer L matching with the surface, knowing 〈X〉
for layers 1 to L, is done by routine VERINT. One can notice that the matrix product A−1B is a full matrix,
contrary to the one which is used in the case LVERTFE=.F. which is triangular with some additional good
properties (currently the routine VERINT is used only in the case LVERTFE=.T.). For most applications and
uses of ARPEGE/IFS and ALADIN, the content of routines SUVERTFE1 and SUVERTFE3 can be seen as
a “black box”.

∗ Vertical derivative. The vertical derivative operator Rderi is stored in the array RDERI, or RDERB
if top and bottom boundary conditions are taken into account (module YOMVERT). RDERI is computed
in the setup routine SUVERTFE3D or SUNH VERTFE3D. RDERB is computed in the setup routine
SUNH VERTFE3DBC. The vertical derivation is done by routine VERDER. More details will be given in a
future version of this documentation.

f) Additional remark: operator Rinte for case LVERTFE=.F. .

If LVERTFE=.F. the vertical integration is also a matricial product but in this case the operator Rinte is
considerably simpler and tridiagonal. One can compute an operator Rinte giving integrals at half levels (from the
top), the matrix is L ∗ L and has the following content:

[∆η]1 0 ... 0 ... 0
[∆η]1 [∆η]2 ... 0 ... 0
[∆η]1 [∆η]2 ... 0 ... 0
[∆η]1 [∆η]2 ... [∆η]l ... 0
[∆η]1 [∆η]2 ... [∆η]l ... 0
[∆η]1 [∆η]2 ... [∆η]l ... [∆η]L


Since coefficients are constant on a column, but not temporally constant, the use of routine VERINT is not very
interesting in this case (mode multiplications) and the code can be let as it is currently, but VERINT and a
pre-computation of RINTE could be possible in the model set-up. The operator Rinte which provides integrals
at full levels (from the top) has the following shape:

[∆η]1
(
1− α1

δ1

)
0 ... 0 ... 0

[∆η]1 [∆η]2
(
1− α2

δ2

)
... 0 ... 0

[∆η]1 [∆η]2 ... 0 ... 0

[∆η]1 [∆η]2 ... [∆η]l

(
1− αl

δl

)
... 0

[∆η]1 [∆η]2 ... [∆η]l ... 0
[∆η]1 [∆η]2 ... [∆η]l ... [∆η]L

(
1− αL

δL

)


• In the linear model, replace αl

δl
by

α∗
l
δ∗
l

.

• αl
δl

=
Π
l
−Πl

Π
l
−Π

l−1

remains close to 1/2.

We can also provide the vertical integration matrix for integrations from the bottom:
[∆η]1

α1
δ1

[∆η]2 ... [∆η]l ... [∆η]L
0 [∆η]2

α2
δ2

... [∆η]l ... [∆η]L
0 0 ... [∆η]l ... [∆η]L
0 0 ... [∆η]l

αl
δl

... [∆η]L
0 0 ... 0 ... [∆η]L
0 0 ... 0 ... [∆η]L

αL
δL


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