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Abstract:

This documentation can be seen as a long introduction to modeling. The general purpose of this documentation
is to describe the set of equations used, and also the way to integrate the dynamics of the model. Two points
will be examined in detail in this documentation: the FEulerian dynamics and the discretisations used. For
some other aspects (semi-Lagrangian dynamics, physics, spectral transforms, horizontal diffusion, semi-implicit
scheme), this documentation will not provide any detailed description, since there are other documentations
describing these topics. The following points will be described: model geometry, different set of equations (non
hydrostatic, primitive, shallow-water), their Eulerian formulation and there Eulerian discretisation, calculation
and discretisation of some intermediate diagnosed quantities (like the geopotential height). An organigramme is
provided. An introduction to tangent linear and adjoint code is provided. There is a specific chapter for the flux
form of the Eulerian equation, which is the basis of the DDH diagnostics. An example of namelist is provided.

Résumé:

On peut voir cette documentation comme une longue introduction & la modélisation. Le but général de cette
documentation est de décrire les jeux d’équations utilisés, et aussi la maniere d’intégrer ces équations. On examine
plus particuliérement les deux points suivants: la dynamique eulérienne et les discrétisations utilisées. Sur d’autres
aspects (semi-lagrangien, physique, transformées spectrales, diffusion horizontale, schéma semi-implicite), cette
documentation ne fournit aucune description détaillée, car il y a d’autres documentations décrivant ces sujets.
Les points suivants sont abordés: géométrie, différents jeur d’équations (non hydrostatique, équations primitives,
modéle shallow-water), leur discrétisation avec un schéma d’advection eulérien, le calcul et la discrétisation de
certaines quantités diagnostiquées (comme la hauteur géopotentielle). On fournit un organigramme et un exemple
de namelist. Une introduction au code tangent linéaire et adjoint est également proposée. Il y a un chapitre
spécifique consacré a la forme flux des équations, qui sert de base aux diagnostics DDH.
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1 Introduction.

1.1 Content of this documentation.

The general purpose of this documentation is to describe the set of equations used, and also the way to integrate
the dynamics of the model. Two points will be examined in detail in this documentation: the Eulerian dynamics
and the discretisations used. For some other aspects (semi-Lagrangian dynamics, physics, spectral transforms,
horizontal diffusion, semi-implicit scheme), this documentation will not provide any detailed description, since
there are other documentations describing these topics.

This documentation can be seen as an updated version of some parts of documentations previously written
(Courtier et al., 1991; Joly, 1992; Bénard, 1998; Bénard, 2004). Additional features introduced in this
documentation are:

e the (White and Bromley, 1995) deep layer formulation of the primitive equations, abbreviated into
(WB1995).

e the (Wood and Staniforth, 2003) deep layer formulation of the NH model, abbreviated into (WS2003).

e alternate formulations of NH model.

The following sets of equations will be described in this documentation:

e The primitive equations hydrostatic model (configuration 1): thin layer and deep layer (White and Bromley,
1995) formulations.

e The fully compressible non-hydrostatic equations model with Q and d or d4 as prognostic variables, denoted
as NH-PDVD (configuration 1): thin layer and deep layer (Wood and Staniforth, 2003) formulations.

e The 2D shallow-water equations model (configuration 201).

e The 2D vorticity equation model (configuration 202).

1.2 Global models (ARPEGE/IFS).

ARPEGE/IFS is a spectral variable-mesh model. Geometry uses a conformal transformation defined by a high
resolution pole (which can be different from the true Northern pole in a tilted geometry) and a stretching
coefficient. That introduces a mapping factor M in the discretised form of the equations. M varies between
“c” at the high resolution pole and “1/¢” at the low resolution pole; “c” is the stretching coefficient. Expression
of M is given by equation (7). For more details about this conformal transformation, see (Courtier and Geleyn,
1988). For more details about the spectral technique, see (Rochas and Courtier, 1992).

1.3 Limited area models (LAM).

ALADIN and AROME are limited area spectral models. The domain is obtained after a projection of a part
of the sphere on a plane, according to a stereo-Lambert projection or a Mercator projection. For the Mercator
projection, additionally to the conventional projection, there is now a tilted-rotated Mercator projection. That
still defines a mapping factor M. For most applications, the limited area is not too large and M generally remains
close to 1.

Fields are bi-periodic in a “bi-periodic” domain defined by three zones:
e an inner “conservation” zone C'.
e an intermediate zone I.
e an extension zone E.

Transforms between grid-point space and spectral space are done by double-Fourier transforms. For more details
about LAM models geometry, see parts 2 and 5 of (Joly, 1992). The projection on a plane has been modified and
simplified so that the limited area domain is now defined by its centre and its dimensions. For more details see
(Janousek, 2001).



1.4 Eulerian advection scheme.

In Eulerian form of equations, the time dependency equation of a variable X writes:

0X

ot
where U is the 3D wind, V3 is the 3D gradient operator, X is the sum of the dynamical and physical contributions.
X (t+ At) is computed knowing X (¢ — At) at the same grid-point. Eulerian technique obliges to use a time-step
that matches the CFL (Courant Friedrich Levy) condition everywhere.

e For the variable-mesh spectral global model ARPEGE, the horizontal CFL condition writes:

kar
r o 2
where M is the mapping factor, Dt is the time-step at the first integration step and twice the time-step

otherwise (leap-frog scheme), | V | is the horizontal wind modulus, N is the truncation, r is the distance
between the point and the centre of the Earth.

=-UV3X +X (1)

N(N+1)<1 (2)

e For spectral LAM models, the horizontal CFL condition writes:

1
2

L3 + Ly

a2N32 azN,,QL

m

<1 (3)

For denotations M, Dt, | V |, a and r, see above. Ny, is the zonal truncation, IV, is the meridian truncation,
Ly (resp. Ly) is the zonal (resp. meridian) length of the LAM domain taken on a surface iso r = a.

The vertical CFL condition writes:
05|n|DtAn< 1 (4)

1.5 Semi-Lagrangian scheme.

In semi-Lagrangian form of equations, the time dependency equation of a variable X writes:

X .

- =X (5)
In a three-time level semi-Lagrangian scheme X (¢t + At) is computed at a grid-point F' knowing X (t — At) at
the point O (not necessary a grid-point) where the same particle is at the instant ¢ — At. In a two-time level
semi-Lagrangian scheme X (¢ + At) is computed at a grid-point F' knowing X (¢) at the point O (not necessary a
grid-point) where the same particle is at the instant ¢t. The semi-Lagrangian technique is more expensive for one
time-step than the Eulerian technique because it is necessary to compute the locations of the origin point O (and
in some options the medium point M) along the trajectory and to interpolate some quantities at these points.
But it allows to use larger time-steps: the stability condition is now the Lipschitz criterion (trajectories do not
cross each other) and is less severe than the CFL condition. For more details about the semi-Lagrangian scheme
and the Lipschitz criterion, see the corresponding documentation (IDSL).

1.6 Organisation of a timestep.

In equations (1) and (5), term X includes the effects of dynamics (for example the pressure gradient term and
Coriolis term in the momentum equation), physics (for example convection, rainfall, radiation, vertical diffusion,
soil interface, gravity wave drag), horizontal diffusion. One timestep has the different steps:

e inverse transforms from spectral to grid-point space: the horizontal derivatives necessary to compute the
horizontal advection term are computed during these transforms.

e grid-point calculations to compute the explicit part of the RHS of equation (1): dynamics, physics. The
temporal filter is done in the grid-point space.

e grid-point coupling for limited area models (LAM).
e direct transforms from grid-point to spectral space.

e spectral calculations: resolution of the Helmholtz equation to compute the semi-implicit correction for
linear terms, horizontal diffusion in spectral space, spectral nudging for LAM models.

This paper has for aim to describe the grid-point calculations to compute the dynamics in the RHS. The other
points are described in some other documentations. Description of tangent linear and adjoint codes have been
introduced for a subset of options.



2 Systems of horizontal coordinates.

2.1 Systems of horizontal spherical coordinates.

In the equations, and in particular in the momentum equation, three different coordinate systems are used:

e The geographical coordinate system (A, ) (which appears for example in the Coriolis term).
e In a tilted geometry, the coordinate system on a tilted unstretched sphere (Abne, Obne)-
e The coordinate system on the computational (tilted and stretched) sphere (A, ©).
Some relationships between these different systems of coordinates can be listed here:
e Relationship between Apne and A:
Abne = A
e Expression of the mapping factor M:
A+1 2-1

M=
2c * 2c

sin ©

(6)

(7)

At the equator of the computational sphere, @ = 0, so Mo—o = (¢* +1)/(2¢) = 1+ ((c — 1)*)/(2c). One
can see that, for ¢ > 1, this quantity is always > 1. That means that, in a stretched geometry, the equator
of the computational sphere is always in the high resolution part and is never identical to the iso-M =1
which separates the high resolution domain from the low resolution domain.

M can also be computed from ¢ and sin Oppe:

M =05 (C“L %) —05 (c - %) {Ei - 3 — Ei = B ZiEZ‘; )

Inverting this expression yields:

2

1 2

c” + _ c (9)
-1 (2-1)M
At the iso-M = 1 latitude, [sinOpne|pmr=1 = (¢ —1)/(c+1). For ¢ > 1, [sinOpne]rr=1 is always > 0: that
means that the geographical extension of the high resolution zone (M > 1) is smaller than the geographical
extension of the low resolution zone. The geographical extension of the high resolution zone diminishes
when c¢ increases, and converges towards zero when ¢ converges towards co.

sin Obne =

Relationships between pne and © (the content of array RATATH in spherical geometry is 2 tan fpne/a):

cos ©
M

(2 —=1)+(c*+1)sin®

oS Oppe =

(10)

in 6 ne — . 11
S (2+1)+ (2 —1)sin® (11)
(P =1)+(c°+1)sin©
ban Gone = 2ccos © (12)
0X 0xX
pualal 13
89 8ebne ( )
Equation (11) can be inverted to provide sin © knowing sin fpne:
. (= 1) = (® 4 1) sin Opne
0= 14
s (c2+1) = (c? — 1) sinOpne (14)
e Relationships giving (Abne; Obne) knowing (X; 0):
€08 Bbne COS Abne = €08 Ope Sin 6 — sin Ope cos O cos (A — Ape) (15)
€08 Bpne SIN Apne = — €08 0 sin (A — Ape) (16)
Sin Opne = sin Ope sin 6 + cos Ope €os O cos (A — Ape) (17)
e Relationships giving (A; 0) knowing (Abne; Obne):
cos B cos (A — Ape) = €08 Ope sin Gpne — Sin Ope €OS Opne COS Abne (18)
cos fsin (A — Ape) = — €08 Obne SIN Abne (19)
sin 6 = sin Ope sin Opne + €08 Ope COS Obne COS Abne (20)



The distance between two points of geographical coordinates (A1;601) and (Az;62) is:

dist = aarccos [sin (61 ) sin (62) 4 cos (01) cos (02) cos (A2 — A1)] (21)
It is also useful to know the coordinates of vector (Gnordl, Gnordm) (Which is the unit vector directed towards the
true North pole) in a local reference system of coordinates linked to the tilted stretched sphere.
cos Ope sin A

cosf
2¢sin Ope cos O — ((¢? — 1) + (c? + 1) sin ©) cos Ope cos A
((c?+1)+ (2 —1)sin®) cosd

For a horizontal vector, apparent coordinates (Xapp,Yapp) on the computational sphere and coordinates
(Xgeo; Ygeo) on the geographical sphere match the following relationships:

Xapp = gnordegeo + gnordlYgeo (24)
Yapp - 7gnorlegco + gnordmyvgco (25)

gnordl = - (22)

gnordm = (23)

2.2 Systems of horizontal coordinates in plane geometry.

In the equations, and in particular in the momentum equation, two different coordinate systems are used:
e The geographical system of coordinates (\; ).
e The coordinate systems on the plane: geographical distances (z;y); apparent distances (Mz; My).
Some new quantities have to be defined:
e Kj, is the projection constant (0 if Mercator projection, between 0 and 1 excluded if Lambert projection,
1 if polar stereographic projection).
e )\ is the reference geographical longitude that defines the projection.

e v is the rotation angle between the local system of coordinates on the sphere and the local system of
coordinates on the plane projection. Its expression is: v = K (A — Ao)

e One denotes C = cosy and S = sin~y. Vector (—S,C) is the compass (unit vector directed towards the
true North pole) and plays the same role as the vector (Gnordl, Gnoram) in spherical geometry. For a non
tilted-rotated Mercator projection, C'=1 and S = 0.

e M is the mapping factor of the projection; it remains close to 1 if the limited area domain is not too large.

e Horizontal wind V has components (U, V) on the sphere and reduced components (U " V/) on the plane.
Matricial relationship between these different components writes:

U c s U
(v)=v(5 0)(v'> (26)
e The geographical horizontal gradient operator V has the horizontal components V" and VV on the sphere.
For a variable X: V"X = [1/rcos0][0X /)] and V¥X = [1/r][0X/00)].
. 8;X and 8;,X are the reduced horizontal derivatives on the plane; relationship between (V'X; VYX) and
(8.X; 8;X) is:

(T)=m( % 2) (%)
e Relationships giving the horizontal derivatives of the mapping factoi M:
8Ma(':9089 KM (28)
% = — Ky, M siny (29)
% = K1, M cos~y (30)

For more details, see part 2.3 of (Joly, 1992).

For the tilted-rotated Mercator projection, most of what is written above remains valid (but (C,S) is generally
different from (1,0)). We first define a rotation with tilting on the sphere, then we apply a Mercator projection
on this transformed sphere. For more details about this type of projection, see (IDPRLAM).

2.3 Definitions of horizontal mesh-sizes.

There are several ways to define the horizontal mesh-size in spectral models. This topic was the object of a small
paper of Laprise (1992), who listed several possible definitions for the horizontal mesh-size in spectral models.
Other definitions have appeared, for example in documentations about the resolution of ARPEGE or in some
parts of the code. See internal paper (IDMES) for more details. The most usual definition which is used is the
horizontal mesh-size of the colocation grid-point.



3 The different types of horizontal derivatives used.

3.1 Horizontal gradient for spherical geometry.

Introduction of a stretched geometry in ARPEGE, and also of a deep layer formulation, leads to define different
notions of horizontal gradients. r is the radius: in the (WB1995) formulation of deep-layer equations, r is
approximated by a pseudo-radius which depends only on the hydrostatic pressure.

e For a variable X, the geographical horizontal gradient operator on surfaces iso-n writes:

MOX MOX) (10X 10X
rcos® OA” 7 90/ \7cosbbne Mbne T Obne

The following notations will sometimes be used for the components of this vector:

M_ox
rcos©® OA

M oX
VmeX = —-55

e The reduced horizontal gradient operator on surfaces iso-n (which is used in spectral space) writes:

VX:(

VX =

/ 1 0X 10X
X = — ==
v (acos@ 6A’a8®)
The following notations will sometimes be used for the components of this vector:

’ 1 90X
Vi X = acos© OA

’ 10X
x =192
Vime a 00

e Relationship between geographical and reduced horizontal gradient operator writes:
VX = (gM) v'X (33)

or:
[gv} X=MV'X (34)

Remark: in the deep layer equations, [EV] X is directly available in the code (but not VX which needs

an additional multiplication); operators [EV] and 6% commute (but not V and C%):

1(5) - =5 o

[’EV] is a 2D operator (but not V). [gV] will be called from now on “semi-reduced” gradient.
e Vi: the geographical horizontal gradient operator on surfaces iso-hydrostatic pressure.

e More generally when partial derivatives (horizontal or temporal ones) are provided without index, they are
derivatives on surfaces iso-7.

e For a 2D variable Xsp, in the deep layer equations, one has to use BV} Xop which is always a 2D
quantity, and avoid to use VXop which is a 3D quantity. For example, for a surface quantity Xsurf, the
semi-reduced gradient of Xgu.f is [gV} Xeurt (this is a 2D quantity) and the geographical gradient of Xgurs

is [r]% [EV] Xsurt (which is still a 2D quantity). In this case, denotation V Xg,,¢ is ambiguous and should
=

be avoided.

For some non-hydrostatic applications it is interesting to provide also information about the second-order
horizontal derivatives; we use the underscript “zo” for zonal derivatives and “me” for meridian derivatives.

e Double zonal reduced derivative:

) _ 1 9 [acés@ %]
Vo noX = acos© oA (36)
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e Double meridian reduced derivative:

' 1 82X
X ==
vtne me a2 8@2 (37)
e Double mixed reduced derivative:
v2 x_ ;827)( (38)
zomeTm T 42 cos © OAOO
The relationship between geographical and reduced derivatives are:

e Double zonal derivative: )
V2, X = (“QM2> V.2 X (39)

r

e Double meridian derivative: ,
Ve meX = (‘ZM2> V2 meX (40)

r

e Double mixed derivative: )
Y2y meX = <“2M2> V.2 e X (41)

r

3.2 Horizontal laplacian for spherical geometry.

Equations are written for the deep layer system of equations and in this case the product (%M ) is treated like was
M with the thin layer equations. Relationships (2.3) of (Courtier and Geleyn, 1988), applied to the horizontal
laplacian, write:

2 ’

V32X = (%M) VX (42)
where V' is the reduced laplacian, computed in spectral space (diagonal operator in spectral space). Its expression
is:

/ 2 8 (cos ©2X
Vixo L _2°X 1 0(ws05) (43)

(acos©)2 OA%2  a?cos®© 00
That yields, for the geographical laplacian operator:
M?  9?X M? 8(cos®g—g)

2 —
VX = (rcos®)2 9A2 + r2 cos © 00 (44)

The same considerations are also valid for the scalar product and vectorial product of two gradients. Relationships
(2.3) of (Courtier and Geleyn, 1988) write:

(VX).(VY) = (gM)Q (V' X).(V'Y) (45)
(VX)A(VY) = (%M)2 (VX)A(VY) (46)

3.3 Horizontal vorticity and divergence for spherical geometry.

The geographical divergence Dang of (£)V (angular velocity multiplied by the mean Earth radius a) writes as the
geographical Laplacian of the velocity potential x:

Dang = Vx (47)

The geographical vorticity Cang of (£)V writes as the geographical Laplacian of the stream function :

Cang = v2w (48)

Relationship (42) between geographical laplacian and reduced laplacian yields:
a 2 D)
Dang = (;M) v'2y (49)

Cang = (%M)2 v'2y (50)

11



Model equations involve the geographical divergence of the wind D and the geographical vorticity of the wind ¢,
which yields:

D=L Dae = EM?V?y (51)
a r
¢= rCang = 9M2V/21/’ (52)
a r
Spectral computations provide the reduced divergence and vorticity:
D =vV'?y (53)
(=v"?y (54)
Hence come the relationships between geographical divergence/vorticity and reduced divergence/vorticity:
D=2MmD (55)
r
¢= % M3 (56)

In continuity equation the notation VV is usgd for D. In this equation it is convenient to isolate quantities
(EV) V (i.e. M?>D') and ( V) AV (i.e. M?C) which are the quantities easily available in the grid point part

of the model, just after the multiplications by M?2.
Reduced divergence D and reduced vorticity ( of the wind are linked to the reduced components of the wind by
the following relationships:

r 1 ou’ 1 B(V/ cos ©)
b= acos©® OA * acos © 00 (57)

r 1 871// 1 8(U/ cos O) (58)
" acos©® OA acos© 00

3.4 Wind components for spherical geometry.

Reduced wind components are linked to the velocity potential y and the stream function 1 by the following
relationships:

/ _Ox oY
U acos@)—aA cos@86 (59)
' oY ox
(V acos@)—aA—i-cos@ae (60)
3.5 Specific features for plane geometry.
+x Horizontal gradient:
e For a variable X, the geographical horizontal gradient operator on surfaces iso-n writes:
oy - (L 9X 19X
VX =(VX;V X)_(rcose ON'r 89) (61)

e The reduced horizontal gradient operator on surfaces iso-n (which is used in spectral space) has components
VX = (G}I(X; (’9;,X) and we have the following identities: V/ZO = 8; and V;ne = 8;.

e Relationship between geographical horizontal gradient operator and reduced horizontal gradient operator
is given by equation (27); this equation can be rewritten

[gv} X=M ( _CS g ) V' X (62)

oX Y _rL(C s\ (VX)L (e s\ (i) (FE
(a;X>_aM(S C)(VVX)_M(S c)( Tox = ﬁ(%c (63)

The code easily provides V'X and MV'X. Operators [KV] , V,, MYV are 2D operators; for a 2D variable

a

Xop, [£V] Xap, V' Xop and MV Xap are still 2D quantities.

a

e Equation (35) is still valid.

or:
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e Like for the spherical geometry, we can give the expressions of second-order horizontal derivatives:

Double zonal reduced derivative:

D) 1 BZX
Vo X = 3 G2 s
Double meridian reduced derivative:
vz o yo LOX (65)
me me M2 ayQ
Double mixed reduced derivative: )
D) 1 3 X
vzo meX = W amay (66)
x Horizontal laplacian:
Equation (42) is still valid, where:
: X 9’X
2
VX = M?20x2 = M?20y? (67)
That yields, for the geographical laplacian operator:
2 92X 1 2x 1 9 (cosg2X
vx = 2 0X _ oX, (cos0%7) (68)

0z2  Oy?  (rcos6)? ON2  r2cosf 06

x Horizontal vorticity and divergence:
Equations (47), (48), (49), (50), (51), (52), (53), (54), (55) and (56) remain valid.
Reduced divergence D and reduced vorticity ¢ of the wind are linked to the reduced components of the wind by
the following relationships:
F1au 1 v
D =—"7"+—-—
M Ox + M Oy (69)
;1 ev 1au

C=Mox Moy (70

* Wind components:
Reduced wind components are linked to the velocity potential x and the stream function ¢ by the following

relationships:
/ 1 Ox 1 0y

U'=tiae Moy (1)
r_ 10y 109x
V7M8I+M8y (72)

3.6 Additional remarks.

Horizontal derivatives are computed in the code during the spectral transforms from spectral space to grid-point
space. When entering the grid-point space, reduced horizontal derivatives are computed. The multiplication by
the mapping factor M (or a power of M) and by £ is done during the grid-point calculations.
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4 The 2D equations.
4.1 Denotations for the 2D equations.

e V is the horizontal wind. Its zonal component (on the Gaussian grid) is denoted by U. Its meridian
component (on the Gaussian grid) is denoted by V.

D is the horizontal wind divergence.

¢ is the horizontal wind vorticity.

® is the equivalent height. @y is the surface geopotential height (i.e. the orography). ®* is a reference
equivalent height which is only used in the semi-implicit scheme and the linear model.

Q is the Earth rotation angular velocity.
V is the first order horizontal gradient on n-surfaces.
a is the Earth radius.

(Abne, Oone) are the longitude-latitude coordinates on a tilted and not stretched geometry, the tilting being
the same as the one of the computational sphere.

e k is the unit vertical vector. One can write:
r

ko T _T
Crla
4.2 The 2D shallow-water system of equations in spherical geometry.

Momentum equation.

Lagrangian tendency: Coriolis force can be treated explicitly (6v=0) or implicitly (dv=1).
d(V+iv(2QAr))

i =-21-6v)(QRAV) -V (73)
FEulerian tendency: the Eulerian equation writes:
%‘t’ — 2QAV)—VE-VVV — (g tan&bne)k/\V (74)
a

Advection (—VVV) and curvature (— (% tan Gbne) kAV) terms can be rearranged, in order to show the divergence
and vorticity in the equation and to eliminate the meridian derivatives of U and V:

oV
n =-2(QAV)-V®+Dy (75)
where Dv is the vector of coordinates:
1 auU 1 oV
( VC ~ acos Opne U IAbne ~ acos Obne 14 BABHE ) >
1 vV 1 auU Uitv
—VD— acos Oppe OApne + a cos Oppe OApne - a tan ebne

Continuity equation.

Lagrangian tendency:
e Conventional formulation.
d(® — (1 —d1r)Ps)
dt

=—(® - ®5)D+ 6rrVV(Dy) (76)

e Lagrangian formulation.
d(® — Ds)J)
dt
J is a “Jacobian” quantity which matches dJ/dt = —JD.
Eulerian tendency: the Eulerian equation writes:

b
= (@ 2)D-VV(@ -2 (78)

=0 (77)

4.3 The 2D “vorticity” system of equations in spherical geometry.

The system of equations starts from the shallow-water one, but ® and ®s have to be replaced by zero. So
continuity equation becomes ¢ = 0.

Momentum equation and definition of Dv given in part 4.2 remain valid, replacing ® by zero.

4.4 The 2D equations in plane geometry.

The equations are not significantly different from the spherical geometry ones, except for the curvature terms.
They are not detailed in this documentation. The 2D model is not coded in plane geometry.
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5 The 3D equations in spherical geometry (ARPEGE/IFS).
5.1 Denotations for the 3D equations.

e V is the horizontal wind. Its zonal component (on the Gaussian grid) is denoted by U. Its meridian
component (on the Gaussian grid) is denoted by V.

D is the horizontal wind divergence.

¢ is the horizontal wind vorticity.

T is the temperature.

q is the humidity, qi the liquid water, ¢; the ice and g, the cloudiness.
O3 is the ozone.

II is the hydrostatic pressure.

II; is the hydrostatic surface pressure.

Q is the Earth rotation angular velocity.

(Abne, Oone) are the longitude-latitude coordinates on a tilted and not stretched geometry, the tilting being
the same as the one of the computational sphere.

(A, 0) are the geographical longitude-latitude coordinates.

e (A,0) are the computational sphere longitude-latitude coordinates.

e w is the z-coordinate vertical velocity: w = 4%

dt
o w= % is the total temporal derivative of the hydrostatic pressure.

e gz is the geopotential height.

e O is the total geopotential. ® = gz in the thin layer equations, but not in the (WB1995) deep layer
equations.

e &, = gz, is the surface geopotential (i.e. the orography).

e r is the vector directed upwards, the length of which is the Earth radius. The length of this vector is r.
In the (WB1995) deep layer equations, one uses an approximation of this radius, only depending on the
hydrostatic pressure (“pseudo-radius”).

e g is the average Earth radius near the surface.
e i (resp. j) is the unit zonal (resp. meridian) vector on the Gaussian grid.

e k is the unit vertical vector. One can write: r
k=-
r

e g is the gravity acceleration constant.

e In the case where vertical variations of g are taken into account, we denote by G the reference value of g
at r = a.

e R is the gas constant for air, Rq the gas constant for dry air and R, the gas constant for water vapour.

® ¢, is the specific heat at constant pressure for air and cp, is the specific heat at constant pressure for dry
air.

e ¢, is the specific heat at constant volume for air and ¢4 is the specific heat at constant volume for dry air.

e V is the first order horizontal gradient on n-surfaces.
apPg
RqTst

e « is a vertical-dependent coefficient used to define a thermodynamic variable T+ drr less sensitive

to orography than temperature 7. Expression of ar is:

= (o ] ) () "

where B defines the vertical hybrid coordinate (see part (9.2)). Subscript “st” stands for “standard
atmosphere”.

e p is the mass per volume unit of air.
e MM is the mapping factor.

e M is a reference mapping factor for the semi-implicit scheme.

e 7,7, v are linear operators used in the semi-implicit scheme (for more details, see documentation (IDSI)
about semi-implicit scheme).

For non-hydrostatic and deep-layer models aspects:

e p is the pressure, ps is the surface pressure.

o W = % is the pseudo-vertical velocity used in some Coriolis and curvature terms in the (WB1995) deep

layer equations. W = 0 in the thin layer equations.

e L” is a linear operator used in the NH semi-implicit scheme (for more details, see documentation (IDSI)
about semi-implicit scheme).
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5.2 The thin layer 3D primitive equation model.

5.2.1 Momentum equation.

Lagrangian tendency: Coriolis force can be treated explicitly (dv=0) or implicitly (dv=1) in the Lagrangian
equation.
d(V+iv(2QAr))
dt
F'v is the physical contribution on horizontal wind.
Eulerian tendency: the Eulerian equation writes:
oV .0V

S = 2NV = Ve~ RTV(logIl) = VVV — 7" — (Q tan 0bne) KAV +Fy (81)
n a

= —2(1 - 6v)(RAV) = V® — RTV(logT) + Fyv (80)

Advection (—VVV) and curvature (— (% tan 9bne) kAV) terms can be rearranged, in order to show the divergence
and vorticity in the equation and to eliminate the meridian derivatives of U and V:

A% \%
867 = —2QAV —V® — RTV(logIl) + Dy —f]%—n +Fyv (82)
where Dv is the vector of coordinates:

1 (519} 1 oV

( VC " acosfpne U BAbne T acosfpne 4 Bkgne ) >

_ _ 1 oV, ou_ +V
VD acosOpne ~ Opne + a cos Gbnc OAbne tan Gone

5.2.2 Thermodynamic equation.

Lagrangian tendency:

ap®Pg apPs
d (T + 6TR R:Tst) . d (6TR RITst) n RT w 4 Pr (83)
dt - dt cp IO
Fr is the physical contribution on temperature. When drr = 1 the Eulerian treatment of orography is applied
and the prognostic variable is replaced by one variable less sensitive to the surface orography. This modification

5 apPg
has been proposed by Ritchie and Tanguay (1996). See equation (79) for definition of ar. Term M
only contains advection terms linked to horizontal variations of orography and vertical variations of the coefﬁc1ent
aT.
Eulerian tendency: the Eulerian equation writes:
oT .0T  RT w

Tr = VYT g+ o (84)

5.2.3 Continuity equation.

x 3D formulation of continuity equation: Continuity equation in the 5 vertical coordinate writes:

d(3;) _ on 9 /
n/ = D+ 4+ F
a 877 ( + 877) + Fn (85)
or:
o) o) _emy oGE) -
ot on Von n "
Fr/n is the physical contribution on %—7[7 and can be rewritten Frn gaFm where Iy, is the diabatic flux applied

to continuity equation.

Equation (85) is not convenient to use directly, one rather uses an equation for the 2D variable logIls. For a
2D variable Xop which does not depend on 7, vertical advection is zero, so the relationship between Lagrangian
temporal derivative and Eulerian temporal derivative writes:

dXsp  0Xop
dt ot
This formula is valid in particular for the following variables:
[ X2D = log HS.
o Xop = log IIs + 0Tr Rjit, .
Ty is the surface standard temperature (288.15 K), Il is the surface standard hydrostatic pressure (101325 Pa),

®d; is the surface orography. érr is 0 or 1; when dtr = 1 the new variable is less sensitive to the orography (new
variable proposed by Ritchie and Tanguay (1996) to reduce orographic resonance).
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*x Eulerian formulation of continuity equation: Calculations are not detailed, but when using the
properties of the hybrid coordinate the evolution equation of ‘?,—1; can be transformed into an evolution equation

of log IT;.
dlog(I1,) TR oIl 1 [.on 1 [.on 1
2R V= ) dp— — |ne — =] = =g[Ful] _
o i/, v 3 dn — - U n:1+Hs "o » AL (88)

F is the diabatic flux applied to continuity equation. Fi, is assumed to be zero at the top of the atmosphere.
[7’7%—2] 0 is non-zero only when there is an upper radiative boundary condition (LRUBC=.TRUE.).
n=

[ﬁ%] - is non-zero only when the option “dm =17 is activated (NDPSFI=1).

+x Lagrangian tendency of orographic term: Term R:i;t has no vertical variation and no local
:

temporal variation, so:

] _yor
aTst s
dt Vv |:Rdet:| (89)

x Lagrangian formulation of continuity equation: Combining equations (87), (88) and (89) one
obtains the following Lagrangian equation:

i [ =1
d [log T, + 1R 75 | 1 [7 o (v an s v (toert + spp 1 [ em LA [,em Ll
=—-— — ) dn ogIls + STRr - — = — |n— - —g -
dt s . an s RqTst T, wo1 s [om], o I min=1

(90)

x Vertically integrated Lagrangian formulation of continuity equation: Since equation
(90) mixes 3D terms (advective terms) and 2D terms (the other terms), and the LHS is a 2D term, one actually
discretizes a vertical integrated formulation of this equation, with a weight %—}s; equation can be rewritten:

- d[l 1. +6 L]
fn71 B og s +0TR Rqlst d?’]:

n=0 0On dt

n=1 9B 1 (=l o1l @ 1 [»8l 1 [0l 1
n=0 o [—ni wmo ¥V (VED) dn+ VY (o Tls + drn i) — - [955],_ + o [059], 2 - ng[Fm]n=1} dfo1)

J=o

5.2.4 Advectable GFL prognostic fields.

Equation is written for moisture ¢, and is the same for the other advectable GFL variables.
Lagrangian tendency:

dgq
— =F 2
Fy is the physical contribution on moisture.
Eulerian tendency: the Eulerian equation writes:
dq . 0q
— =—-VVqg—1n—+F 93
ot q 1787] T Fq ( )

5.2.5 Relationship between geopotential height gz and pressure depth.

Hydrostatic relationship writes:

o1l
5 = )
The perfect gas formula writes:
I = pRT (95)
The combination of equations (94) and (95) provides the relationship between gz and pressure depth:
9(gz) RT
_ b 96
oIl I (96)
The vertical integrated formulation of equation (96) writes:
o' =n
T
gz = gzs — / R, d1l (97)
=TI, il
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5.2.6 Relationship between total geopotential ® and pressure depth.
In the thin layer equations, ® = gz. See part (5.2.5) for more details.

5.2.7 Diagnostic expression of some vertical velocities.

* Term 77% Continuity equation is vertically integrated on dn from 1 = 0 to n = n;. Equation (86) becomes:

an} [an} /":’” ( an) {.an] {.an K)o
| — |5 + VI IV—]dn+ |n—| — |15 =— g——dn (98)
[ ot 1y, ot 1y=o =0 on on m on =0 =0 on
The following property is used: [%] 7m0 — 0. Equation (98) can be rewritten:
aH] /’7="l ( an) {,an} [.aH T 9
[7 + VIV—|dn+ || — |15 = - g——dn (99)
ot 1y, =0 on on . on =0 =0 on
which can be rewritten, taking in account that F,, at the top is zero:
.an} {,OH] [an} /":’” ( 8H)
N1 = |15 = - V (V== |dn—g[Fu] (100)
[ on m on =0 ot 1y, =0 on m
o)

One uses equation (241) and one replaces (,?ts by its expression provided by equation (88). That yields expression

of 7'7‘?9—571:
[7‘7‘3—13] . =By, ::()1 v (Vg—g) dn — f::om v (V%[) dn

+Bn [157]_, = B [155], o + Bug[Ful,oy — 9[Fal, (101)

n=1

This equation can be rewritten in its “barycentric” formulation:

[39), = B g Ful,oy +91Ful, = B [10 ¥ (VL) dn— [2509 (VE2) dy

+By (053], = B [057], (102)
*x Pressure coordinate vertical velocity w: Equation (99) can be rewritten:
dH} n=m ot . o1l
—| =[vvIy —/ VIV ) dn+ |5 — g [Fu] (103)
|: di m " n=0 87] 87] n=0 "
This equation can be rewritten in its “barycentric” formulation:
dH} = ot . o1l
— | +g[Fu], =[VVI] —/ V(VE=)dn+ = (104)
[dt m m m =0 on on =0
ie. e
w 1 dIl 1 VII 1 - oIl 1 oIl
g1 = ——+—gFm] - {V—} - V(V)d +[] 105
[HLI {H dt I ull II Iy, 1L, n=0 an g I, K on n=0 ( )

5.3 The deep layer 3D primitive equation model according to (WB1995).

5.3.1 Basics deep layer equations.

x New features brought in the deep layer equations: In the hydrostatic model, introduction
of the deep layer equations has been done according to (WB1995). The following modifications are done:

e One takes account to the fact, that the distance to the Earth centre is no longer a but a radius varying
with the vertical. For convenience (with the n vertical coordinate), as it has been done in (WB1995),
one approximates the radius by a pseudo-radius which depends only on the hydrostatic pressure II. Two
vertical lines are no longer parallel, so the section of a vertical column varies with the hydrostatic pressure.

e The vertical velocity is now taken in account in the Coriolis term through a pseudo-vertical velocity W
defined by W = %. W also appears in some new curvature terms.

e The total geopotential &, which appears in the RHS of the wind equation, is no longer equal to the
geopotential height gz.
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Remarks:
e The vertical variations of g are still neglected.

e The WB1995 approximation implicitly assumes that the Earth is spherical because it assumes that the
reference pressure where » = a has a spherical shape (of radius a); the consequence is that the non-
sphericity of the Earth (20 km between the poles and the equator) cannot be taken in account with such
an approximation.

* Pseudo-radius r and reference temperature profile 7T;: Formula (4.11) of (White and
Bromley, 1995) gives the following expression for the pseudo-radius 7:

m ' ,
e =at [ Bl oy (106)
I g1l

where a is the mean Earth radius. The difference with the true geopotential height is the fact that the temperature
T is replaced by an idealised profile of temperature T which only depends on the hydrostatic pressure, R is replaced
by the dry air constant Rq. The consequence is that r only depends on the hydrostatic pressure, that makes
calculations simpler.

For T, we have chosen an analytical profile, with a tuning coefficient ax which allows for example to take a
constant profile or a dry adiabatic profile. T; is given by formula:

Ty Rq ( IT )
1 — | = —1 — 1
og (Tl) aK . og 0, (107)

where ak is a tuning coefficient; for ax one can take for example:
e ak = 0: constant profile, T, = T everywhere.
e ax = 1: dry adiabatic profile.

T is a reference temperature: temperature profile gives a temperature 77 at the hydrostatic pressure level II;.
For the couple (T4, II;) it is desirable to take values consistent with the definition of a standard atmosphere:

T Rq I,
log (7 ) = ax—1 1
o8 (7) =y 5 (i) 1)

In the thin layer equations the reference profile T} is replaced by zero.
The horizontal gradient of T is given by the following formula:

RJT. [£V] 1T
Cpy IT

[fv} T, = ok (109)

a

The expression of @ is given in parts (9.5) and (9.6).

For r we have also chosen an analytical formulation. If the profile of 7T} is constant (ax = 0), the reference
pressure II; is taken equal to the standard mean sea level pressure Iy, the pseudo-radius r is assumed to be
equal to a at the pressure level II = Ils, and the analytical expression of r is given by formula:

RaTy ( II )
r(Il) =a — lo 110
() = a - 4% g (- (110

The horizontal gradient of r is also given by an analytical formula:

[iv} ,— _RaTy [5V]I1 (111)

a g 11

If the profile of T is not constant (ax > 0), the reference pressure II; is also taken equal to the standard mean
sea level pressure Ils, the pseudo-radius r is assumed to be equal to a at the pressure level II = Ilgy, and the
analytical expression of r is given by formula:

Ry

C T1 II aKcPd
r()=a+ 24— | 1— ( ) 112
( ) gax ( Hsst ( )

The horizontal gradient of r is also given by an analytical formula:

Rq
[29] o Bal (L)
a g Hsst

For some options it is necessary to define a value of r at the top of the atmosphere. The following one has been
retained:
[rln=0 = [rli_, (114)
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x Pseudo-vertical velocity W: it is defined by W = % and its analytical expression is:

RdTrw
gll

This is this pseudo-vertical velocity that must be used in the momentum equation. W is zero in the thin layer
equations.

W=-—

(115)

*x “Verticality” notions: It is important to well define what is “horizontal” and what is “vertical” in the
deep layer equations. Of course we are in this case using some different systems of coordinates, each having its
own its “horizontality” and “verticality”: the true height z, the pseudo-radius 7, and the hybrid coordinate n. All
the iso-r surfaces are spheres, the centre of which is the point C' which defines the Earth centre. On a point F’
located on an iso-r, vector r(F') is the vector CF. This vector is normal to the surface iso-r, and the “vertical”
unit vector k of the local system of coordinates linked to the point F' is defined by:

r

k=- 116

: (116)

One defines the “horizontal” vector j as a tangent vector to the iso-r directed towards the apparent north pole

of the computational sphere, and the “horizontal” vector i as a tangent vector to the iso-r directed towards the

apparent east direction of the computational sphere. Iso-r are slightly tilted compared to iso-z, but this slope is
generally weak (lower than 0.1 %). The consequence is that in first approximation one can assume that:

e I[so-z are nearly centred on the Earth centre C.

e The horizontal component of the wind, which is horizontal in an “altitude” sense, can be considered as
a first approximation as horizontal on a iso-r. If V3 is the 3D-wind, its components are (U, V, W) in the
system of coordinates defined by (i, j, k).

Normal vectors to iso-n surfaces can have an important “verticality default” on mountains, this one increasing when
the resolution increases (orography better described). The horizontal gradient operator V contains derivatives at
constant 7, but its components are in fact projected on a plane surface defined by (i, j) and not on a plane surface
which is tangent to the iso-n.

5.3.2 Momentum equation.

Lagrangian tendency: Coriolis force can be treated explicitly (6v=0) or implicitly (dv=1) in the Lagrangian
equation.

d(V+ 5‘0’;29 AT (1 s)(—20 AV — 20 A W) — gv — V& — (RT + e RaTy)V(log I + Fy  (117)

Fv is the physical contribution on horizontal wind.
Eulerian tendency: the Eulerian equation writes:
ov %4 .0V

B = 2NV QAWK V-V (R4, BTV (log I =V VY i (% tan0bne) KAV+Fy (118)

Advection (—VVV) and curvature (— (% tan anc) kAV) terms can be rearranged, in order to show the divergence
and vorticity in the equation and to eliminate the meridian derivatives of U and V:

oV w .0V
where Dv is the vector of coordinates:
1 au 1 v
< VC T 7 cosOpne U bne 7 COSOpne 4 O\pne R )
1 vV 1 U U2+v
VD et Ut T T O ¥ e tA0 Bbne
This vector can be rewritten:
2 1 U 1 12)%
2 VM q T acosfpne U bne  @cosOpne 14 8/\Ene 5
27 1 V. 1 au U+v
" —VM'D - acosOpne ~ OApne acosOpne © Obne . tan Obne

The way of obtaining all the inertial Coriolis/centrifugal terms, and the way of combining them with the horizontal
advection terms, is described in detail in the appendix 4.
New features introduced in the WB1995 deep layer equations:

e The us term (for more details see part (5.3.7)).

e The total geopotential ® is no longer equal to the geopotential height gz. This is ® which is present in the
RHS of the momentum equation (for more details see part (5.3.7)).

e There are new inertial terms containing W.
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5.3.3 Thermodynamic equation.

Lagrangian tendency:

ap®Pg atds
d(TJF‘STRR:Tst) B d(éTRRdTTsc) RT w 4 Py (120)
dt N dt cp I
Fr is the physical contribution on temperature. When dtr = 1 the Eulerian treatment of orography is applied
and the prognostic variable is replaced by one variable less sensitive to the surface orography. This modification
has been proposed by Ritchie and Tanguay (1996).
Eulerian tendency: the Eulerian equation writes:

oT 0T RTw
— =-VWVWI'—-9)—+ —=+F 121
ot v 77817—’_ Cp 1'[+ B (121)

This equation is unchanged compared to its “thin layer” expression. The only change is the diagnostic expression
of w.

5.3.4 Continuity equation.
* 3D formulation of continuity equation: Continuity equation in the 7 vertical coordinate now

writes:
r2 9l r2 . oIl
8(‘?5) "yl (fvol 8(?27787) T 122
o= Ve ) - et (122)
Fr,n is the physical contribution on %—;I' F,/n can be rewritten: F,ln = fgi—zaaijf (Fm is the diabatic flux applied to

continuity equation).
Equation (122) is not convenient to use directly, one rather uses an equation for the 2D variable log Ils. Equation

(87) can be still used but it is better to rewrite it in order to show operator [EV} and only purely 2D quantities.

dXQD 8X2D a T
= -V |-V| X 12
dt ot + r [av] 2P (123)

*x Eulerian formulation of continuity equation: Detail of calculations is done in appendix 2.
When using the properties of the hybrid coordinate the evolution equation of % can be transformed into an
evolution equation of log ITs.

s [2] [ (59 (V)
n=
1 [;01 a?
71_[7" [nain]n:l + i |: ] |: :| _ 77677 n= 0 sg[Fm]n=l |:T72:|"7:1 (124)

Compared to the “thin layer” formulation of these equations, there are the following differences:

e Term containing [Fn] _,: it becomes different from zero only with option “dm = 17 and is multiplied by

- :
™ ’q:l

e Term containing [ng—g]

n=1

x it is unchanged in the deep layer equations. It becomes different from zero
n=

only with option “dm = 1".
e Term containing [7'7%} =0’ it has to be multiplied by the factor [i—;} [Z—z] . It is different from zero
- n=1 n=0
only if LRUBC=.T. .

e For convenience, definition of fluxes in the deep layer equations is: additive quantity divided by a surface
taken on an iso r = a.

* Lagrangian tendency of orographic term: Formula (89) is still valid, but it is more convenient
to rewrite it with the operator [gV]:

d[Rfigt} av[rvH o, } (125)
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*x Vertical integrated Lagrangian formulation of continuity equation: Equation now
writes:

Py
=1 ,2 d[IOgHsH?TRﬁ]
fﬂ r“ 9B d st d7]

n=0 a? 8717 dt -
n=1 2 9B dlog(lly) n=1 2 9B o T Py
n=0 aiz(?ini(g?t d’l7 + n=0 ﬁTn;V [gv} |:10g Hs =+ (5TR RaTst d’l? (126)

where 81%51'[5) is given by equation (124).

5.3.5 Advectable GFL prognostic fields.

Equation is written for moisture ¢, and is the same for the other advectable GFL variables.

Lagrangian tendency:
dgq

= F 127
dt q ( )
Fy is the physical contribution on moisture.
Eulerian tendency: the Eulerian equation writes:
dq . dq
— =—-VVqg—n—+F 128
5 9=, +Fa (128)

These equations are unchanged in the deep layer formulation.

5.3.6 Relationship between geopotential height gz and pressure depth.
The formulae (96) and (97) provided in part (5.2.5) are still valid.

5.3.7 Relationship between total geopotential ® and pressure depth.
® is different from gz and the aim is to retrieve the equation provided by (White and Bromley, 1995). One has

first to define an hydrostatic pseudo-pressure Ils verifying:
olle
v ~ "

(129)

The difference I1s — II physically represents the partial pressure provided by some air which is affected by the
W-contribution of Coriolis term. One has to consider the total pressure p (including non-hydrostatic effects) and
the height vertical coordinate velocity w. The temporal evolution equation of w writes, if one assumes that the
RHS is purely adiabatic:

dw

_ 9p _
P (—us + BN 1) (130)

_ 272 cos g(gnorde - gnordlv) + U2 + V2

where us is defined by:

L 131
’ Tg (131
One makes appear the quantities Rq7y and Ils in equation (130), which can be rewritten as follows:
dw RT — RqT: a(l_Lp — p) ( RaT: Olle )
— s = — s -1 132
(dt+g RT "9 am I\"RT " o (132)

Removal of the non-hydrostatic effects can be done by zeroing the LHS of equation (132):

dw  RT — RqT: d(Ils — p)
<dt+g RT "9 am

There is here not only an hydrostatic approximation, but also the fact that one approximates z by r in the
computation of the Coriolis W-term (one neglects the residual term containing w — W). Equation becomes:

Ol (RaT:
o _g( RT “SJrl)

Using equations (95) and (129) one finally obtains the following formulation for ®:

@__ﬂ(lJerTr )
GTVER T RT '

22



which can be rewritten:
8‘I> _ RT RdTr

TR R T (133)
This is exactly the equation provided by (White and Bromley, 1995).
The vertically integrated formulation of equation (133) writes:
o' =n
D= d, 7/ " RT f/ po Bl gy (134)
1’ =TI I ' =TI, I

5.3.8 Diagnostic expression of some vertical velocities.

* Term 77%*1;]I Continuity equation is vertically integrated on dn from n = 0 to n = n;. The following property

is used: [%]]nzo = 0. Equation (122) becomes:
r? 8H:| /n=m r (r 8H) r?  9I0 r?  OII = AR,
——=| + [ V} -V— |dn+ |=5n| — |05 = —/ g dn (135)
[aQ ot m h=o L0 a On a? ' on . a? ' On =0 =0 on

which can be rewritten, taking in account that the precipitation flux at the top is zero:
el _ [ a? r? flng
ma, = (=) () [%],,
m n=0
a1 2 n=m o1 2
(51, - (%), L5 Y GVaan— () gl (136)

One Bunses equation (241) and one replaces aal_is by its expression provided by equation (124). That yields expression
of ng-
n

%], =B (), S V] GVa = () 1 9] GVE an

By 1]+ [() B, ( )z] (=) b5,

8y () olFal,e— (), 91, (137)

ﬂw‘ gm

This equation can be rewritten in its “barycentric” formulation:
[naj] - B7 <é) 9 [Fm] + (%) g [Fm]
on 1y, n\r ne1 n=1 T m
n=1 v ol 2 n=n, ry Ol
=B () V) GV an— () [ [EV] (V) dn
Bu (), |(2), -2 (5) | (5),, 058 !
+5y, [77 Bn]nzl + |: 2 . m o\ 72 =1 ) =0 [77 3n]n:0 ( 38)

New features brought in the deep layer formulation:

o Term By, [ﬁ%]nﬂ is not modified.

e The term containing [ﬁg—g] 0 which was multiplied by 1 — By, in the thin layer formulation, is now
n=

() (2)] ().

which contains the square of the rescaled pseudo-radius at the current level, the surface and the top.

multiplied by the coefficient:

e The upper air diabatic flux [Fm]m is multiplied by (%)
m

e The surface diabatic flux [Fi],_, is multiplied by (%)

n=1

23



* Pressure coordinate vertical velocity w: Equation (135) can be rewritten:

= EV [gv} H} . /n;m [gv} (2\’%{) dn + (ZZ) ) {r‘zg—ﬂnzo — g [Fml,, (139)
-

n=

r2dll
a? dt

m
This equation can be rewritten in its “barycentric” formulation:

2 n=m 2
[gdﬂ #atral, = [Lv (oo u] - [" " [Es] (rvaﬂ)dﬁ(g) 28] (140)
a2 dt a a m =0 a a 0On a 0 o J,=o

m

ie.:

[rm} [1 Ran 1o } TV[%V]H L[ [rv} (rvc’m)d L (ﬁ) [Aan} .

L IR I - S IR . G il B ol (TvP gy L (22 480

2 2 2

a? 11 m II a? dt II m a II Iy, e a a On Iy, a n=0 on n=0
i

New features brought by the deep layer formulation:

e Term containing [7'7%—1;][] o it is multiplied by coeflicient:

{a2 } {ﬁ }
2 02
r a
m n=0

5.4 The thin layer 3D NH-PDVD fully compressible non-hydrostatic model.

These equations are well described in (IDNHPB) and we will recall here some basics. See (IDNHPB) for more
details, especially for the intermediate calculations leading to the following form of the equations.

In the non-hydrostatic model there are two additional prognostic variables, one linked with the pressure departure,
and the other one with the vertical divergence. For the equations already existing in the 3D primitive equation
model:

n=

e The momentum equation is slightly modified (especially the pressure gradient term).
e The temperature equation is slightly modified.
e Continuity equation computes the evolution of logIls and is not modified.

e Equations for GFL variables are not modified.

In the fully compressible NH-PDVD model, the two additional prognostic variables are the following ones:

e in the pressure departure equation, prognostic variable is

Q= log(%)

e in the vertical divergence equation, prognostic variable is d (vertical divergence). There is a possibility to

take dg = d + X, where:
D oV
X=———-Vd | — 142
" (%) (142

5.4.1 Momentum equation.
Compared to the hydrostatic model, the pressure gradient term now writes:

op Vp
—V& + RT—
oIl * D
It is highly desirable to write Vp/p rather than V(logp) because the discretisation of this term is not exactly a
discretisation of V(logp).

Lagrangian tendency: Coriolis force can be treated explicitly (6v=0) or implicitly (dv=1) in the Lagrangian
equation.

d(V+ov(2QAr)) dp V(p)
7 =[-2(1=6v)(RAV)] o V& — RT » +Fv (143)
Fv is the physical contribution on horizontal wind.
Eulerian tendency: the Eulerian equation writes:
ov. Op Vp .0V (U )
5% = 20N NV o V® - RT » VVV —q an A tan fpne | k AV + Fyv (144)
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Advection (—VVV) and curvature (— (% tan Gbne) kAV) terms can be rearranged, in order to show the divergence
and vorticity in the equation and to eliminate the meridian derivatives of U and V:

ov 0 \Y ov
2~ 2AV - pvq> RT p+Dv W2 4+ Fy (145)
ot oIl 8
where D+ is the vector of coordinates:
1 au 1 1%
( VC " acos Opbne U 9Abne " acos Obne V 8Agne )

1 A% 1 au +v

VD — e Udnome T aoos0ome ¥ Bhome tan fone

5.4.2 Thermodynamic equation.

Compared to the hydrostatic model, there are two differences:

e The adiabatic conversion term now writes ——Dg, where
P ov gp ow R4
=VV + Vo — D+X+4+ —d 146
S RT <an> g{;m(an> R (146)
e The diabatic term Fr must be replaced by [Z—‘V’FT]
Lagrangian tendency:
d (T +6rR gTCI)s ) d (5TRO‘T7‘I>S)
aTst Ry Tst RT C
= — —D: 2F } 147
dt dt e 3T [ T (147)

[%FT] is the physical contribution on temperature. When drr = 1 the Eulerian treatment of orography is applied
and the prognostic variable is replaced by one variable less sensitive to the surface orography. This modification

d(spg 2T Ps
has been proposed by Ritchie and Tanguay (1996). See equation (79) for definition of ar. Term M
only contains advection terms linked to horizontal variations of orography and vertical variations of the coefficient
aT.
Eulerian tendency: the Eulerian equation writes:

or 8T RT cp

5.4.3 Continuity equation and diagnostic expression of some vertical velocities.

Continuity equation is unchanged compared to the hydrostatic equations. The consequence is that the calculation
of 77‘?9—1; and w is unchanged compared to the hydrostatic equations.

5.4.4 Advectable GFL prognostic fields.

Equations of advectable GFL are unchanged compared to the hydrostatic equations.

5.4.5 Relationship for geopotential height gz and pressure depth.

Compared to the hydrostatic model, the perfect gas formula now writes:
p=pRT (149)
The combination of equations (94) and (149) provides the relationship between gz and pressure depth:
9(gz) RT 11

2 150
oIl I p (150)
The vertical integrated formulation of equation (150) writes:
' =n /
RTIT
gz = gzs — / - —dIl (151)
mem, 1L P

5.4.6 Relationship between total geopotential ® and pressure depth.
In the thin layer equations, ® = gz. See part (5.4.5) for more details.
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5.4.7 Pressure departure equation.
The prognostic variable currently coded is (option NPDVAR=2):

A p
= l —
Q=log
Lagrangian tendency:
dQ Cp w Cp
< _ _Pp, = )z 152
dt Cy 3T + o T T (152)
Eulerian tendency: the Eulerian equation writes:
oQ A .0Q Cp w Cp
— ==V —N—=— — —D3— = F 153
ot Ve 77377 Cv 3 1'[+ch T (153)

5.4.8 Vertical velocity w and vertical divergence d equations.
* Using d as prognostic variable: This part is valid for NVDVAR=3.

The relationship between d and w writes:

gp ow
d=— () (154)
RdTg—l;II on

We can remark that this is Rq and not R which is at the denominator.
Lagrangian tendency:

dw
dd oo 0% . op ov
2~ _dDs +dVV — a Vw) (5= ) + F, 155
dt it RaTZL  n +RdTg—13( W\ Gy ) (155)

The physical contribution of d is linked to Fy, which is the physical contribution of w, and also to Fr/ﬂ by the
following relationship:

d / gp OFw
Fo=———=F, — —-— (156)
) o1l
[57] RaT5; On
o dw
One can notice that the RHS of equation (155) contains the term [%% which requires the computation of %

(at least its adiabatic part).
Equation of w is:
dw _9(p—1)
at ~ 77 o
At the surface we have to use another equation (which requires some assumptions about the surface wind):

+ Fy (157)

dwsurf o dvsurf
. dt

vq)s + Vsurf [Vsurfv(vq)s)] + FWSurf (158)

Value of term %V@s + Vaurt [Veurt V(V®s)] contains the horizontal second derivatives of surface orography
and Coriolis term (cf. equation (32) of Geleyn and Bubnové, 1995).
Eulerian tendency: the Eulerian equation writes:

dw

ad _ad g 9% . gp ov

9 vvd -2 _dDy +dVV — ad | vuw) [ &= ) + F, 159
ot Ton ’ RaTZT ™ a1 RqT 3L (Vo) ! (159)

x Using d4 as prognostic variable: This part is valid for NVDVAR=4.

Eulerian equation of dy is:

ody 0d = 0X
B i 160
ot ot o (160)
where % is the Eulerian derivative of the quantity (X = ﬁhV@ (%—X)) The calculation of % is not done by
on

an Eulerian temporal advection but simply by a diagnostic evaluation and the management of this term will be
explained in section (15).
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5.4.9 Geopotential equation.

This equation is not used in the NH-PDVD model but we can mention it:

dd
- = F. 161
P gw + Fe (161)
Eulerian tendency: the Eulerian equation writes:
0P o
— =—-VV® —n— F 162
5 gy Tovt e (162)

5.5 The deep layer 3D fully compressible non-hydrostatic model according
to (WS2003).

The WB1995 formulation of deep layer equations is not well designed for the NH system of equations and the
(Wood and Staniforth, 2003) one will be used instead (denoted WS2003).

5.5.1 Basics deep layer equations.
x+ New features brought in the deep layer equations: The following modifications are done:

e One takes account to the fact, that the distance to the Earth centre is no longer a but a radius r varying
with the vertical. No specific approximation is done on this radius. Two vertical lines are no longer parallel,
so the section of a vertical column varies with the altitude.

e The vertical velocity w is now taken into account in the Coriolis term. w also appears in some new curvature
terms.

dr

e Relationship between r and w is §; = w.

e The total geopotential ® does not appear in the adiabatic equations (it is replaced by Gz = G(r — a)); it
may appear in some energetic quantities; ¢ is not always equal to Gz.

e A mass vertically integrated quantity II is introduced, in order to hid some metric terms, especially in the
continuity equation: I replaces II in the adiabatic equations (II becomes, if needed, a diagnostic quantity).
The definition of the hybrid vertical coordinate applies for II, not for II. Quantities § and « (depths of
logarithm of hydrostatic pressure) are replaced by § and & (depths of logarithm of II).

e The vertical variations of g may be taken into account (optionally): we denote by g the vertically-dependent
value and by G the constant reference value (¢ = G where r = a).

+ Relationship between II and II: Definition of IT is:

o1 72
and definition of II is: ol
o —Pg (164)
Combination of both equations yields:
o 2@
P — 1
o a2 g (165)

A reference pressure level must be chosen, where II = II: the most convenient choice is the model top, because
that ensures that Il always remains above 0.
This relationship allows to compute II, when II and r are known.

* Relationship between r and pressure depth: The vertical integrated formulation of equation
for Gr writes (cf. formula (4.11) of WS2003):

I =0T
GG s / BT i (166)

= —=Touf —
3a2 3a2 "

This equation is used to diagnose r.
Bottom conditions:
e 7 = g at the altitude zero.

® Tourf = @+ Zsurf, Where zgurs is the orography altitude. Note that Grsus is always equal to Ps.
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+ Retrieve II and r when only II is known: An iterative algorithm is required, with the following
steps:
e Save the original value of Il;.
e Save the original value of p — II.
e Do a "first guess” iteration, with the following structure:
— compute a first guess for 7 (i.e. r(iter = 0)), using formula (166) with II instead of II.
— compute II(iter = 0) and II,(iter = 1) using formula (165).
e Do additional iterations:
— start from I (iter), use the definition of the hybrid vertical coordinate to compute upper air I(iter).
— use formula (166) with II(iter) to compute r(iter).
— use formula (165) to compute Il (iter + 1).

x Retrieve § and « from § and & when r is known: Such conversions may be useful to enter parts
which keep the thin-layer hypothesis (physics, internal post-processing) and which must see the true hydrostatic
pressure and the true hydrostatic pressure depths.

e First IT must be computed from II and 7.
e Relationship between § and 6 can be approximated by: § ~ §(Ila ) /(r2G).
e Relationship between o and & can be approximated by: o ~ @([la’g)/(IIr2G).

* “Verticality” notions: cf. the similar paragraph for (WB1995) deep-layer equations.

5.5.2 Momentum equation.

Modifications brought by the deep-layer formulation are:
e Additional Coriolis w terms and curvature w terms: they are similar to those of the WB1995 formulation,
but this is w and not W which appears.
e & is replaced by Gr, and II is replaced by II in the pressure gradient term: this modifications explain why
some metric terms appear.

e Contrary to the WB1995 formulation, there are no us terms appearing in the pressure gradient term (it
appears in the w equation instead).

Lagrangian tendency (cf. equations (4.4) and (4.5) of WS2003): Coriolis force can be treated explicitly (dv=0)
or implicitly (§v=1) in the Lagrangian equation.

d(V-&-d:;fQQ/\ r)) =[- (1—6v)(ﬂ/\V+ZQ/\wk)]——V—Z—g—pV[G = RT?-I—FV (167)
Fv is the physical contribution on horizontal wind.
Eulerian tendency: the Eulerian equation writes:
%—Y:—ZQ/\V wy ap r] — RT@—VVV— %—:—(%tanebne)kAV—i—Fv (168)

Advection (—VVV) and curvature (— (% tan 9bne) kAV) terms can be rearranged, in order to show the divergence
and vorticity in the equation and to eliminate the meridian derivatives of U and V:

‘ﬂ:—m/\v—mAwk—EV—i@v[G} Vp
ot r a2 911
where Dv is the vector of coordinates:
1 au 1 av
V(- 7 c0s Opne UaAb,,e T TcosOpne VO)‘Bne ,
_VD-— 1 oV 1 ou_ _ U 1—‘/ tan ebnc

7 ¢c0s Opne ~ OApne + rcos Opne  OApne

oV
+ Dv —776 + Fv (169)

This vector can be rewritten:

2 1 oU 1 oV
g VM C a cos Oppe U OAbne acos Oppe Vv B)\Eme R
2 1 av 1 aw_ _ U +v
VM acosOpne ~ OApne acosOpne  OAppe tan ebne

The way of obtaining all the inertial Coriolis/centrifugal terms, and the way of combining them with the horizontal
advection terms, is described in detail in the appendix 4.
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5.5.3 Thermodynamic equation.
Equations (147) and (148) are still valid, but the expression of D3 is modified:
e Modification in the X term: V[Gr] instead of V@, use of II, metric terms coming from the use of II.

e Modification in the vertical divergence term: use of II, vertical derivation of (r?/a*)w instead of w.

Expression of D3 is now (cf. equation (4.14) of WS2003):

2 r?
D oMY Gp 0w Ry
=VV+ — v L) - — 22 ) =D4x+ 2 1

a2 o1 pp (] < on ) gfnl RT ( on d (170)

on

5.5.4 Continuity equation and diagnostic expression of some vertical velocities.
Nature of changes:

e II is changed into II.
e Some metric terms appear: replace V (V%—g) by V (%V%).

e (G appears in factor of the diabatic term.

Taking account of these changes, calculations done in part 5.2.3 can be re-used. We give only a subset of modified
formulae.

*x FEulerian formulation of continuity equation:

8log 1 o1l 1 [, o1 1
goellls) _ 2 d — |n== — —GIFu] _ 171
/ ( n) n— [ 877} +HS {%"L_o i [Fm], =1 (171)

F is the diabatic flux applied to continuity equation. Fi, is assumed to be zero at the top of the atmosphere.

x Vertically integrated Lagrangian formulation of continuity equation:

Ty Dy
=1 o5 d[log HS*‘STRTit]
n=0 9On dt

n=1 5B 1 =1 el = Dy 1
Juzo 5 <‘ﬁs oo v (#V8h) an+ v [lontle + brnmdic] - - [958

dn =

* Vertical velocities w and 77%% Nature of changes:

e one computes ﬁg—l;][ instead of 7'786,—1;][

e definition of w is now w = %.

Calculation of these quantities inherit of the changes found in continuity equation. Start from formulae of part
5.2.3, change II into II, V (V‘g—g) into V (%V%—S) g into G.

5.5.5 Advectable GFL prognostic fields.

Thin layer equations remain valid.

5.5.6 Pressure departure equation.

It is not possible any longer to use log(p/II) as prognostic variable. The simplest variable we can use is log(p/f[)7

but: I
r
() e () v ()

and for nearly hydrostatic flows, log(II/II) is significantly bigger than log(p/II); additionally to that, log(IL/II)
remains close to an average value which has a vertical gradient (that can be not very good for semi-Lagrangian

schemes). For this reason, we take the following prognostic variable (still denoted by Q)

1:[ref
Q 10g<H) +5P10g <Href>
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where f[ref and Il are reference values based on the standard atmosphere (log(f[ref /I,et) is temporally constant
and constant along the i surfaces). It is desirable to take a value of dp close to 1.
Lagrangian tendency (cf. equation (4.8) of WS2003):

d0 Cp w . Olog(Ilver /Tret) Cp
&__%p, ¥ 08 Cref/ wet) | & 1
dt Cy 3 11 + e on + o T T (173)

FEulerian tendency: the Eulerian equation writes:

Q _ yop 09 o w o dlog(Tet/Thet) |
5 = —VVQ el D = = + bl 3 + P (174)
5.5.7 Vertical velocity w and vertical divergence d equations.
Equation of w is (cf. equation (4.6) of WS2003):
dw r? dp A(p —10)
cﬁ__Gus_(g_G)+G(cz2_1>(’9f[+Gm:[+FW (175)

Compared to the thin-layer version of this equation, we notice the following modifications:

e I is replaced by II.

e An additional metric term appears: G (1 — Z—z) glfl

e Additional term containing us (see equation (131)), linked to the fact that we take account of additional
inertia terms.

e Additional term —(g — G), to take account of the vertical variations of g.

The surface condition writes:
Wsurf = Vsurfvr

and this relationship can be used to compute DWsure

the code.

. Currently only the diagnostic calculation of wey,f is used in

Lagrangian tendency of d equation:

2 2

dd Gp o[ Lael), G 2 A%

o= —dDs +dVV — L [ g Ja | P (V|5w|) (5 ) +F (176)
RaT 90 " RyT Y

Eulerian tendency: the Eulerian equation writes:

9 d[r2/a2w] N 2
9 _ _yvi—#9% _aps+avv — P g e Gp <v [T wD <6V> +F (177)
ot on RyTZL O RaT 30
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6 The 3D equations: specific features for plane geometry.

6.1 General considerations.

The differences mainly touch the wind equation (in particular the curvature terms) and the horizontal derivatives.
The thin layer equations are described in detail in (Joly, 1992), so detailed calculations will be provided only for
the deep layer equations in this documentation (replace r by a and W, T, and us by zero to retrieve thin layer
equations). Only the case LM AP=.TRUE. (conformal Mercator or Lambert projections) will be examined in
this documentation.

Some new quantities have to be defined (Ki, Ao, v, S, C, the derivative operators a;X and B;X): They are
defined in part (2.2).

6.2 Momentum equation for (WB1995) formulation of deep-layer atmosphere
equations.
6.2.1 Computation of horizontal curvature terms in LAM models.

* Use reduced components of the wind elsewhere than in horizontal gradients. One
starts from equation (118). Combining horizontal advection and horizontal curvature terms yields the following

vector:
TCOEOU—ffVa ﬂtan@
TCOSQU— - fV— — —tan&
The following property is used:
0(X cos6) 0X
AARY) _ _ x g2
20 s1nt9—i—c0508(9
for X = U or V. That yields the following vector, using denotations V" and V":
—UV"U — 25V (U cos0)
uvt (V cosO) — U%‘/ztan@

One replaces (U, V) by (U/7 V/) elsewhere than in horizontal derivatives; that yields the following vector:

~MCU'V'U — MSV' ViU + Aff;g V(U cos6) — Aggg V(U cos6)
—MCU' V'V — MSV' V'V + MSU G (1 s 0) — MV ¥ (V cos ) — M2 L2V tan g

* Sum “horizontal advection and horizontal curvature terms” for the reduced wind
tendency: One applies the operator:

1 c -5

M\ S C

which /gives the contribution “horizontal advection and horizontal curvature terms” to the Eulerian tendency of
(U, V). That yields a vector, the two components of which are the following ones:

e first element:

’

2
_CPU'VU — OSV VU + @v Y(U cos ) — (C’YO;; V¥ (U cos )
’ ’ 2 !
LOSU'VY + SPV VRV — fogg V¥ (V cos 6) + ﬂv Y(V cos 6)
U’2 + V/2

+MS——tané
T

e second element:

’

! ! 2
_esUVU = 52V VU + 2V 9 (U cos ) — ﬂv Y(U cos )
cos 8 cos
2 !
_C?U'VV — csV vt v+ﬂV( 9)—CVVV(Vcos9)
s 6 cosf
U?4v2

—MC————tanb
T

31



* Use reduced gradient operator on the plane: One must now rewrite this vector using 8,U ,
8;U,, 8;V,7 8;,\/' instead of V'U, V'V, VY(U cos ©) and V"(V cos ©). Calculations are long, and detailed in
appendix 5. Calculations yield a vector,the two components of which are the following ones:

e first element:

acosf

a [M(U’2 +V'2)s8
T

(sinf — K1) — M2U 0.U — MQV'8;U/}

e second element:

/2 ,2 ’ ’ ’ ’ ! ’
4 {M(U“/)C (sin6 — K1) + MU 0,V + MV 9,V }

r acosf

The deep layer formulation brings an additional multiplication by .

6.2.2 Horizontal Coriolis term in LAM models.

Spherical components (unstretched and untilted geometry) write:

[%—?Lh — v (178)
[%‘;Lh 0 (179)

Index “ch” means “contribution of the horizontal Coriolis term”. Applying the matricial operator allowing to
retrieve the reduced wind components on the plane, one obtains:

U’ ,

[675} ch - (150
ov’ ,
{at} ch - sy

The same code can be used in global and LAM models for this term.

6.2.3 Additional inertial terms containing W.

* W component of Coriolis term: Spherical components (unstretched and untilted geometry) write:

oUu

[E} Lo —2Q cos oW (182)
ov
{E]CV ~0 (183)

Index “cv” means “contribution of the W component of Coriolis term”. Applying the matricial operator allowing
to retrieve the reduced wind components on the plane, one obtains:

{68\;,]“:2900]‘840WS (185)
The same code can be used in global and LAM models for this term.
x W curvature terms: Spherical components (unstretched and untilted geometry) write:
5] =-Tv (186)
(5] =-%v (187)

Index “cw” means “contribution of the W curvature terms. Applying the matricial operator allowing to retrieve
the reduced wind components on the plane, one obtains:

U’ W
[81&_ =Y (188)
ov'] W
{Bt_ =Y (189)

The same code can be used in global and LAM models for this term.
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6.2.4 Pressure gradient term.

* General/ cgnsiderations: For terms which do not contain s, the only transformation is to rewrite
them with (0y; 0y) instead of (V*;VY): the deep layer formulation brings an additional multiplication by . For
terms containing us, one needs to see how ps and its horizontal gradient rewrites in plane geometry.

*x Terms containing Us:  Spherical components (unstretched and untilted geometry) of the s contribution

writes: .
oUu R T
{—} =" —ps —E A ) + pe RaT V" log I (190)
ot 1., .
v 1 R T
{—] =V —ps =LA ) + pe RaT VY log 11 (191)
ot Hs Tl
Index “us” means “contribution of the terms containing us”. Applying the matricial operator allowing to retrieve
the reduced wind components on the plane, one obtains:
aU’ a / I R ’
{} —_— {ax </ B rdH) + psRaT:0, logﬂ] (192)
ot r o
s s
v’ aly (" R /
[&} == {ay </ S rdn) + s RaT: 0y logl'[] (193)
s s

These formulae contain ps, B;ps and a;ps.

x Expression of ps in LAM models: Spherical geometry (unstretched and untilted geometry)

expression of s writes:
2rQcosOU + U? + V?

rg
U and V have to be replaced by U and V' using the following formulae:

s = —

U=(CU +8V )M

U+ V2= M>(U?+V'?)
Thus the final expression of s writes:

20 cos O(C(MU') + S(z\g/')) + (MU' + (MV') (194)

The same code can be used in global and LAM models for this term.

x Horizontal gradient of us in LAM models: Calculations are significantly different than the ones
for spherical geometry and are described in detail in appendix 6. After long calculations (see appendix 6 for more

details), both components of the vector (8;/15; 8;,;15) can be rewritten as follows:

e first element:

, , 277’2 2y,
2 rceos) o — 22 scosg oy - 2oy - B gy MU AV o
g g gr gr gr?
_2QKL v " 25 M (UIQ n Vf2)51n9 — K1,
ga gar cos 6
e second element:
ror ’ 2 ’ M2 "2 2 ’
~ 2 i eos 8] 00— 22 [MScos o)AV~ %U du = My gy MUV )y,
9 Y g gr? Y
JrZQKL Ul B 20M (U/2 n V/2)51n0 — Ky,
ga gar cos 6

or:
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e first element:

~22 (6 cos g [MQé);U/} = 2 g c0s0] [M%a;v’} _2 [MU’] [MQa;U'] _ 2 {MV/} [M28;V']
g g ar ar

! 2 ! 2 ’ ’ ’ ’ 1 —_—
+([MU] + [MV']%) [Maxr} 20Ky [MV} +§([MU 24 MV ]2)sm9 K,

gr? ga gar cos 6

e second element:
~ 20 cosg) [MQE);U,} = 22 (S cos 0] {M28;V/] _ 2 {MU'} [M28;U/} _ 2 [MV/} [MQE);VI}
g g gr gr

! 2 ! 2 ’ ’ ’ ’ 1 —_—
+([MU} + [MV']%) [Mayr} n 20K, {MU} B E([MU 24 MV ]2)s1n9 K,

gr? ga gar cos @

All terms containing 8,/( and 8;, can use the same code for spherical geometry and plane geometry. The only terms

which need a different code for LAM models are the terms containing K1, and Sinci;;( L

6.2.5 Reformulation of the wind meridian derivatives, using the divergence and
vorticity.
In plane geometry:
o,V =D —aU
oU =a v —¢

6.2.6 Final formulation of momentum equation in the plane.

In the LAM models code the following formulation of the wind component is used:

e U-component:

2 UMV (i g — K )S

al
T acos 6

AMUL — _a MU'\ [M20,U] - ¢[MV M8,V — M*¢'] +

~WIMU'| + f[MV'] - 2Q cos oW C — ¢ ((RT + RaTopss) [M.(log IT)] + [M@,L@]) 12U

+F, (195)

e V-component:

GMV] _ e[ MU | [M20LV] - MV M2D — M20,U] — e IMUPEMVE (g [y )C

acos 6

~WIMV'] — f[MU'] - 2QcosOWS — ¢ ((RT + RaTepie) MO, (log IT)] + [Ma;cb}) + 2V

+F, (196)

6.3 Momentum equation for (WS2003) formulation of deep-layer atmosphere
equations.

Some calculations of the previous part can be re-used (all terms other than the pressure gradient term). The
main modifications are:

e Replace W by w.
e Quantity us does not appear any longer in the pressure gradient term: it appears in the w equation.

e (alculation of the horizontal gradient of us is no longer required.
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7 Some other diagnosed quantities.
Equations are generally written with the radius r to take account of the deep-layer formulations. For thin-layer
formulations replace r by a and [iV] by V.
7.1 ¢, R and k.
For ¢, (air calorific capacity at constant pressure):
e =cpg(l—q—a—a)+cp,a+ cpa + cpyai (197)

where cp4 is the dry air calorific capacity at constant pressure, c,, is the water vapour calorific capacity at
constant pressure, cp, is the liquid water calorific capacity, and cp,; is the ice calorific capacity.
For R (air constant):

R=Ra(l1-q—a—a)+ R (198)
where R4 is the dry air constant and R, is the water vapour air constant.
For k: R
- 1
K o (199)
The ratio ¢y /cp is given by equation:
Cv
—=1- 200
Tk (200)
7.2 |LV](RT).
a
Its expression writes:
[gv} (RT) = (Ry — R))T [gv} 4+ R [gv} T (201)

7.3 Potential temperature PT and its horizontal gradient.

Expression of PT writes:

Pr=T [ 1 } (202)
1000
where Hmoo = 100000 Pa
Its horizontal gradient writes:
Fv} (PT) = PT ZY]T K 2] (203)
a T II
7.4 Virtual potential temperature PTV.
Its expression writes:
I 77" R IIr j-ra
PTV =TV [ } = — [ } 204
1000 Ra LIio00 (204)
where ITj000 = 100000 Pa; kq = Ra/cpy-
7.5 Equivalent potential temperature PTE.
Its expression writes:
LQSat
PTE = PT exp (205)
|: [Cpsat]T:|

where the potential temperature PT has been defined by formula (202). Here L is the vapour water latent heat
per mass unit. Expression of [cp_,,] writes:

[Cogat) = Cpg T (Coy — Cpg)dsat
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7.6 Absolute vorticity Cus.

Its definition is given by formula:
Cabs = C + f (206)

for both thin layer and deep layer equations (after formula (4.28) of (White and Bromley, 1995)).
For deep layer equations, it is better to rewrite this formula as follows:

Gabs = = (gc) +f (207)

in order to show quantities easily available in the model.

7.7 Potential vorticity PV.

In the thin layer formulation, expression of PV is:

aV} [ M 8PT] B { aU] {M@P;T} —gCabsan (208)

9871'1 acos® OA 9871'1 a 90 oIl

In the WB1995 deep layer formulation (see formulae (4.26) to (4.28) of (White and Bromley, 1995)), expression
of PV is:

PV:{

v |2,2GV) [9} [ M @LT} _ e 9GY) H [Maﬂ} e 22T 90 cosh [9] [%32}
~ |7 e rl lacos® OA P r a 00 I5abs o a 00
(209)
In the (WS2003) deep layer formulation, expression of PV is:
T 2% M OPT T oU1 [M OPT r OPT al [M OPT
P = - -~ I — - -~ T A~ - abs T _~ 2Q S - T A~ 21
V=43 [Gan} [acos@ oA } a {Gan} {a ae} O o T Cow[ } {a ae] (210)
7.8 Shearing deformation SHD and stretching deformation ST D.
Spherical geometry:
1 oU
1 oV
HD=———-0. 212
s rcos © OA 0-5¢ (212)
Plane geometry:
STD =V"U —0.5D (213)
SHD =V"V —0.5¢ (214)
A total deformation can be defined as follows:
DEF = \/(2SHD)? + (2STD)? (215)
7.9 Hydrostatic vertical divergence dj,yq.
The “thin layer” expression of dpyq is:
R |cyw 11 ov
dhyda = —— | — = V+— — 21
hyd Ry Lpﬂ +VV + RTV[gz] BH} (216)
The (WB1995) deep layer expression of dnyq is:
R |cvw afr a? T r II 7r 0 (L)
dhya=—— |—=+—-|-V|V-=V |- — — |- - 21
b Rq |cpII + T [av] r2 {av} [a} + RT [av} l97] oIl (217)
The (WS2003) deep layer expression of dyyq is:
RlecowIl afr r II [r ov
ya=—— |22 -4 2L U M 21
v ==, Lp Aoy [av} vVt aRT [av} (cr] an} (218)
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7.10 Hydrostatic height coordinate vertical velocity wyyq.

The “thin layer” expression of wnyq matches the following equation:

I Ownya/On
dnya = — —r 219
bvd = TIRT  oll/on (219)
which can be rewritten, after a vertical integration:
n=1
OIl/On)RaT
g [wnyd], —,, = 9 [Whyd]gus + / %dhyddn (220)
n=m
where:
g [whyd}surf = [V}surf v®5 (221)
The (WB1995) deep layer expression of whya matches the following equation:
o a2 0 (Z—zwhyd) /On
d = - — 222
WA= IR 2 olljon (222)
which can be rewritten, after a vertical integration:
2 2 n=1 29
r [rSur r” (011/0n) RaT
g {agwhyd:| = QTf [Whyal s + /7 ;#dhyddn (223)
n=m =M
where:
a r
g [whyd]surf = |:7V:| |:7v:| ®S (224)
T surf LA
The (WS2003) deep layer expression of wyyq matches the following equation:
I 8 (;—iwh_yd> /37]
dhyda = —G = 225
hvd RaT  li/on (225)
which can be rewritten, after a vertical integration:
2 2 n=1 3
r 7] eur oIl /On)RaT
G |:2whyd:| = Gi[ LQ f [’LUhyd]surf +/ 7( /1_7[}) d dhyddn (226)
a a _
n=m ="
where:
a r
g [Whyd] o = [*V} [*V} Dy (227)
T surf LA

7.11 Moisture convergence CVGQ.

This quantity is also denoted MOCON and is used as input of some convection schemes. Its expression writes:

CVGQ =—-VVq— T']g—z (228)
This notion can be generalized to any intensive quantity X: for a quantity X one can define CVGX as:
0X

7.12 Montgomery potential ®,, and some other energetic quantities.

Formulae containing gz are guaranteed for thin layer equations (is it gz, Gz or ® for deep-layer equations?).
Formulae for enthalpy and kinetic energy are guaranteed at least for the hydrostatic model (must we add 0.5w?
in the NH model?).

e Montgomery potential: ®ng = cp T + g2.
e Dry static energy: s = cp, 1" + gz.

e Moist static energy: sp = ¢, T + gz + Lg.
e Enthalpy: h = ¢p,T + gz + 0.5 * (U2 + V2).
e Kinetic energy: KE = 0.5 (U? + V?).

Here L is the vapour water latent heat per mass unit.
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7.13 Angular momentum of components MMA, MMB and MMC'.

Axial angular momentum:

MMA = [Ug + Qrcos6]rcosé (230)

The two other components of the angular momentum are:
MMB =r[— (Ug 4 Qrcosf)sin 6 cos(\ + Qt) + Vg sin(A + Q)] (231)
MMC =r[— (Ug + Qrcosf)sin @ sin(\ + Qt) — Va cos(A + Qt)] (232)

(Ug; Vi) are the geographical wind components in a geographical system of coordinates; ¢ is the time since the
departure of the model.

7.14 Entropy S.

x Hydrostatic model: The total entropy for moist air is given by the following formula:

S = ¢plog [TZ} — Rlog [HH
0

} + 5o (233)
1000

where H1()()0 = 100000 Pa; To = 273.15 K; So = S(T = To; I = H1000).
It is easier to get the partial entropies Sy (for dry air), S, (for water vapour), S; (for liquid water) and S; (for
ice). They are respectively given by the following formulae:

Sy = cpy log {5} — Ralog [ 14 ] + Sao (234)
To II1000
T 11
Sy = ey 1o {—}—vao [ v }+Sv 235
Cry 108 To & IT1000 0 (235)
T
Sy = ¢p, log {7} + Sio (236)
To
T
Si = cp; log [7} + Sio (237)
To

I and II, are respectively the partial pressures of dry air and water vapour: II, = ¢II and II4 = (1 — ¢)II.
Constants Sqo, Swvo, Sio, Sio have the following values: Sqo = 6775Jk:g_1K_1, Svo = 10320Jkg_1K_1,
Sio =3517Jkg "K', Sio = 2296Jkg™ "K'

The total entropy for moist air writes:

S=8i1-—qg—q —q)+ Soq+ Siq + Sigi = Sa + (So — Sa)g + (St — Sa)q + (Si — Sa)a

* Non-hydrostatic model: The hydrostatic pressures II, TI; and II, must be replaced by the total
pressures p, pq and py.
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8 Discretisation of the equations: general aspects.

8.1 Denotations and preliminary remarks.

x Upper index:

e First integration step:
+ : t+ At quantity.
o : t quantity.
— : t quantity.

e Following integration steps:

+ : t + At quantity.
o : t quantity.
— : t — At quantity.

x Particular case of the first timestep: Written discretisations are valid from the second integration
step. At has to be replaced by % for the first integration step (in this case the t — At quantities are equal to the
t quantities).

x The different classes of prognostic variables: Prognostic variables can be split into different
classes:
e 3D variables, the equation RHS of which has a non-zero adiabatic contribution and a non-zero semi-implicit
correction contribution. They are called “GMV” in the code (“GMV” means “grid-point model variables”).
This class of variables includes wind components, temperature (and the two additional non-hydrostatic
variables in a non-hydrostatic model). The sub-class of thermodynamic variables includes T, and the two
additional non-hydrostatic variables in a non-hydrostatic model. There are NFTHER. thermodynamic
variables.

e 3D “conservative” variables. The equation RHS of these variables has a zero adiabatic contribution, only
the diabatic contribution (and the horizontal diffusion contribution) can be non-zero. They are called
“GFL” in the code (“GFL” means “grid-point fields”). We can divide this class of variables into two
sub-classes:

— Historical variables (they are advectable). This class of variables includes for example:
* humidity q.

liquid water q.

ice gj.

cloud fraction g¢,.

rain g,.

SNOW (s.

convective liquid water giconvy -

convective ice giconv-

convective rain @rconv-

convective SNOW @sconv -

graupels g.

hail qy,.

ozone O3.

aerosols gAEro-

TKE (qTKE).

Variables for EFB turbulent parameterization (EFB1 to EF B3).

some extra fields.

* X K K X X K X X X X X X X X K

— Some non-advectable pseudo-historical variables which are often simple diagnostics which must be
conserved from one timestep to the following one. This class of variables includes for example:
% atmospheric total liquid water content for radiation qiyaqd.
atmospheric total ice content for radiation girad.
convective precipitation flux (gcpr).
stratiform precipitation flux (gspr).
second-order flux for AROME (gsrc)-
forcings (1D model) (grorc)-
easy diagnostics for AROME physics (¢ezpiac)-
greenhouse gases for ECMWF physics (gauc)-
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chemistry for ECMWF physics (gcaem)-

tracers for ECMWF physics (¢rrac)-

ERA40 reanalysis fields (ECMWF) (gera40)-

moisture convergence for MF physics (¢cvaq).

total humidity variation for HIRLAM physics (gqva)-

standard deviation of the saturation depression (gspsar)-
convective vertical velocity (gcvv).

downdraught mesh fraction for ALARO physics (gpar)-
downdraught vertical velocity for ALARO physics (gpom).-
updraught mesh fraction for ALARO physics (quar).

updraught vertical velocity for ALARO physics (qguom).
pseudo-historic convective cloudiness for ALARO physics (qunesHn).
total turbulent energy (grrE).

prognostic mixing length (guxt).

shear source term for turbulence (gsuTur)-

flux form source term for turbulence: moisture (grqTUR)-

flux form source term for turbulence: enthalpy (grsTUR).
Rasch-Kristjansson enthalpy tendency for ALARO physics (qgrkTH)-
Rasch-Kristjansson water vapour tendency for ALARO physics (grkTqv)-
Rasch-Kristjansson condensates tendency for ALARO physics (grkTqc)-
pseudo-historic entrainment for ALARO physics (quen).

quantities related to methane (qurcm4).

output aerosols for diagnostics (gagrouT).

output fields from UV processor (quvp).

output fields from ECMWF physics (gpuys)-

diagnostic fields for NORO GWD scheme (gnocaw).
semi-Lagrangian dynamics diagnostic fields (gsipia)-

extra fields for “CRM” model (ECMWF) (gcrm).-

specific gas constant (gsprc).

KK K X X X X K X K K K K KX X X K X K XK XK X X X X X K

*

e 2D variables, the equation RHS of which mixes 3D and 2D terms, has a non-zero adiabatic contribution
and a non-zero semi-implicit correction contribution. They are called “GMVS” in the code (“GMVS”
means “grid-point model variables for surface”). This class of variables includes the logarithm of surface
pressure (continuity equation).

e 2D surface variables used in the physics. They are purely grid-point variables and they represent data at
the surface or into different layers of the soil. This class of variables includes for example the water content
of the superficial reservoir of the soil, or the snow depth. Contrary to the “GMVS” variables they are never
advected. They include prognostic surface fields and diagnostic surface fields.

8.2 Discretisation.
General case: 3D variable in a 3D model:

Equation
%—f:—vvx-ﬁ%+A+F (238)
is discretised as follows for unlagged physics:
(X — AtBL)T = X~ + [2AtA — 2AtBL — 2AtVV X — zAm%—f]O + [AtBL + 2AtF) ™ (239)
and as follows for lagged physics:
(X — AtBL)T = X~ + [2AtA — 2AtBL — 2ALtVV X — 2Atﬁ%}° + [AtBL]” + [2AtF]T (240)

A is the total (non linear and linear) adiabatic contribution, £ is the linear adiabatic contribution (semi-implicitly
treated), F' is the physical contribution, VV X is the horizontal advection, 7'7%—); is the vertical advection. All

quantities are evaluated at the same grid point F. Calculation of Xt knowing (X — AtBL£)" is done in spectral

space. The remaining calculations are done in grid-point space. Horizontal diffusion is not taken in account in

this formula and is done in spectral space.

When doing lagged physics one first computes, without physics

_ _ .0X

Xprov = (X — AtBL)Y — (AtBL)” 4+ (2AtBL)° = X~ + [2AtA — 2AtVV X — 2Atna—}°
n

then does the lagged physics, then computes (X — AtBL)"
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Particuliar cases:

8.3

GFL variables: terms A and L are zero for these variables. For non advected GFL variables, the advection
terms are replaced by zero.

2D variable in a 3D model (continuity equation): see general case, but:

— A+ VVX is a 2D quantity which is the vertical integral of a 3D quantity.
— L is a 2D quantity which is the vertical integral of a 3D quantity.

— F'is a 2D quantity which is the vertical integral of a 3D quantity.

- 7'788—); is zero.

2D variable in a 2D model: see general case, but 7'7%—)”( is zero in this case.

Vertical discretisation in a 3D model.

There are two “main” ways of managing the vertical discretisations: a conventional one which has the property
of conserving some global invariants, and another discretisation using a finite elements representation.

* Finite difference vertical discretisation (LVERTFE=.F.): The main features of this type
of discretisation are:

Discretisations mix half level and full level quantities.

7.7(%1 is computed at half levels.

e The prognostic 3D variables are computed at full levels.
e When computing a vertical integral from the surface (resp. the top), only quantities between the surface

(resp. the top) are involved; integrals first give half level quantities, then full level quantities by adding a
residual term. This is the case for example for the divergence integral term used in the continuity equation
and in the diagnostic equation giving some vertical velocities.

The half level hydrostatic pressure always matches the definition of the hybrid vertical coordinate. On the
contrary, the full level hydrostatic pressure does not always do that (that depends on the way to compute
it, there are different possible options).

x Finite element vertical discretisation (LVERTFE:.T.): The main features of this type of
discretisation are:

Discretisations generally avoid computation of half level quantities.

7'7‘2)—13 is computed at full levels.

e The prognostic 3D variables are computed at full levels.
e All the vertical integrals of the adiabatic part use a matricial multiplication with special coefficients

computed in setup routines. When computing a vertical integral from the surface or the top, all the
full levels are involved. Vertical integrals directly give full level quantities. The lines of the integral
matricial operator will be denoted by [Rinte](surs,) (resp. [Rinte](top,ry) for an integral from the surface
(resp. the top) to the layer I. The matricial operator will be denoted by [Rinte](top,surs) for an integral
from the top to the surface. For example, f::om Xdn is discretised by the scalar product [Rinte](top,){X)

where [Rinte](top,) is the I-th line of the matricial operator Rinte and (X) is the vector of coordinates
(X715 X2;5...5 X015 ... X)) (values of X at full levels).

All the vertical derivatives of the adiabatic part use a matricial multiplication with special coefficients
computed in setup routines. When computing a vertical derivative, all the full levels are involved. Vertical
derivatives directly give full level quantities. The lines of the matricial operator will be denoted by [Rderi:
for a derivative to the layer [. For example, BB—); is discretised by the scalar product [Raeri]i (X) where [Rderi]i
is the [-th line of the matricial operator Raqeri and (X) is the vector of coordinates (X1; Xo;...; Xi5...; X1)
(values of X at full levels).

Rderi is not the exact inverse of Rinte, and it is not recommended to apply Rderi and Rinte to the same
quantities (we should avoid to make appear Rderi(Rinte(X)) where this is X which actually appears): this
point may require incremental treatment of vertical derivatives in some parts of the code.

e The finite elements basis for Rinte can be a set of linear functions or a set of Hermite cubic functions.
e Both full level and half level hydrostatic pressure always match the definition of the hybrid vertical

coordinate.

More details are given in (Untch and Hortal, 2001), (Untch and Hortal, 2004) and in appendix 7.

The operator [Rinte] is stored in the array RINTE or RINTBF11 of YOMVERT and pre-computed in the
setup under SUVERTFE. Vertical integrations are done in the routine VERINT.

The operator [Raderi] is stored in one of the arrays RDER.. of YOMVERT and pre-computed in the setup
under SUVERTFE. Vertical derivatives are done in the routine VERDER. It is not exactly the inverse of the
operator [Rinte].

These arrays are attributes of structure TVFE (module YOMVERT).
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9 The hydrostatic pressure based 7 vertical coordinate.

Parts 9.1 to 9.7 are valid for thin layer equations or (WB1995) formulation of deep-layer equations. For (WS2003)

formulation of deep-layer equations, equations are valid for 1:I, not for II: this is IT and not IT which matches the
definition of hybrid coordinate.

9.1 Definition and calculation of the hydrostatic pressure at half levels.
The definition of the n-coordinate yields the following relationship:

II= A(n) + B(n)Ils (241)

The coefficients A and B only depend on 7. One has the following additional relationships:
e 1 =1 at the surface.
e 7 =0 at the top of the model.
e A(n=1)=0and B(n=1) =1 at the surface.
e A(n=0)=1lp and B(n = 1) =0 at the top of the model.

A and B are given at half levels, so:
II; = A; + BII, (242)

9.2 Calculation of the hydrostatic pressure at full levels.

There are several ways to compute the hydrostatic pressure at full levels, according to the value of the namelist
variables LVERTFE, NDLNPR and LAPRXPK.

o LVERTFE=.F.:
— NDLNPR=0; LAPRXPK=.TRUE. :

I, = 0.5(I; + IT;_,) (243)

Remark: this equation matches the definition of the hybrid, coordinate, taking A; = 0.5(A; + 4; )
and Bl = 05(B7 + BI_I)A
For layer | = 1:
M—y = 0.51F;_, (244)
— NDLNPR=0; LAPRXPK=.FALSE. :

Il log(IT) — 1, log(IT;_,)
HZ - Hf,

log(IL;) = (245)

1

Remark: this equation does not match the definition of the hybrid coordinate but it matches the
identity log(Il;) = log(II;) — cu (see section 10 for definition of «).

For layer I = 1 (replace II;_, and II; | log(II;_,) by zero in formula (245)):

=1 =1I;_, / exp(1) (246)

— NDLNPR-=1:
M = /T, (247)

Remark: this equation does not match the definition of the hybrid coordinate but it matches the
identity log(II;) = 0.5(log(II;) + log(IL;_,)).

For layer | = 1:

My =1L_,/ (1 + CR"J) =TI;_, /45 (248)
d

e LVERTFE=.T.:
— NDLNPR=0; LAPRXPK=.TRUE. : for all layers (including the layer number 1):
Il = Ay + Bills (249)

The way of computing A; and B is the following (the same method is applied to A and B, the
following equations are written for A): one discretises the following equation:

"= dA |
Any — Ap=0 = / Tdn (250)
n n

"—o
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This is a vertical integral and this integral is computed like any vertical integral in the case
LVERTFE=.T., using a matricial product coded in routine VERINT. Z—A at full levels is discretised

as follows: !
[dﬂ s ke B (251)
dn], m—my
Remarks:

* Equation (249) matches the definition of the hybrid coordinate.
x The result slightly depends on the definition of n (variable LVFE_REGETA) and gives
something close to the option: LVERTFE=.F.; NDLNPR=0; LAPRXPK=TRUE. .

— NDLNPR=0; LAPRXPK=.FALSE. : This case is not defined.
— NDLNPR-=1 : This case is not defined.

9.3 Calculation of n at half levels.

The explicit definition of 7 is used at two locations: the semi-Lagrangian vertical interpolator and the VFE
integral and derivative operators.

There are two ways to compute 7 at half levels, according to the value of the namelist variable LREGETA (or
LVFE_REGETA for the version of ) used in the VFE operators, denoted by 7yfe):

¢ LREGETA=.TRUE. (regular spacing of 7):

(252)

5
I
]~

¢ LREGETA=.FALSE. (irregular spacing of n):

A-
1
;= .., + B; (253)
LREGETA is relevant only in the semi-Lagrangian scheme. LVFE_REGETA is relevant only if
LVERTFE=.T. .

For 7yte there is an additional option (LVFE_REGETA=F, LVFE CENTRI=T) which gives something
intermediate between the original LVFE_REGETA=F formulation and the original LVFE_REGETA=T
formulation.

17» o Z:i; (Hsti - Hsti—l)q
! ZZ:L(HSH - Hsti—l)q

i=1
where ¢ is an exponent between 0 and 1; ¢ = 0 provides LVFE_REGETA=T,; ¢ = 1 provides the original
LVFE_REGETA=F.

(254)

9.4 Calculation of n at full levels.

It is always computed according the following way:

m = 0.5(n; +m;_,) (255)

9.5 Calculation of the horizontal gradient of the hydrostatic pressure at half
levels.

One simply applies the horizontal gradient operator to the half level pressure, using the formula (242).

([fv} H)f - B [fv} I, (256)

a 1 a

9.6 Calculation of the horizontal gradient of the hydrostatic pressure at full
levels.

x Case LVERTFE=.F.: This gradient can be written with several different ways. The code is provided

according the following formula:

B- —A- _B-
1—1

B+ 8 AT(HW et
_ T [fv} I, (257)

1
01 is given by formulae (261) and (263).
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x Case LVERTFE=.T.: Expression is simpler and simply writes:
([fv} H) - B [gv} I, (258)
1

a
or:

[v]o B [T

i | = A s L) (259)
l

a

9.7 Computation of a good set of A and B at half levels.

It requires a formula giving a rather regular spacing in pressure, with the following constraints:
e (C1) AII has little variations in the free troposphere.

e (C2) AII is smaller in the PBL than in the free troposphere, and the variations of AII are smooth in the
PBL.

(C3) AII regularly decreases when going up in the stratosphere.

(C4) II is a monotonous variable, even over high mountains.

(C5) A is always positive, B is always between 0 and 1 and is a monotonous function.

(C6) Near the surface, the vertical coordinate is a pure o one. That means that A;_, and A;_;

always 0.

e (C7) Near the top, the vertical coordinate is a pure pressure one. That means that B;_
always 0.

e (C8) The set of A and B provided must ensure that the operator B used in the semi-implicit scheme can be

always diagonalised with real positive eigenvalues in all the available vertical discretisation schemes (this

is a delicate point especially when the vertical finite element scheme is used with LVFE_REGETA=F.).

| are

; and B;_, are

Until 2006, we have used a formula provided by J.F. Geleyn: A and B are given by third-degree polynomials.
The freedom degrees are:

e The pressure of the first full layer.
e A ratio allowing to tune the depth of the layer number L.

e A reference pressure on the average orography of the Earth, which can be taken lower than the surface
standard pressure.

It is assumed that there are only one purely o layer and one purely pressure layer, and that Iliop, = 0. Some
tests done during autumn 2004 have shown that the operator B cannot always be diagonalised with real positive
eigenvalues, especially when the vertical finite element scheme is used with LVFE_REGETA=.F. . The other
shortcoming of this formula is the too stringent constraint which obliges to have exactly one purely o layer and
one purely pressure layer. We wish to be able to put several purely pressure layers in the stratosphere and to
obtain sets of A and B close to the ones used at ECMWF.

At ECMWF, a different formula is used, there is no documentation about it and no available FORTRAN
program giving it directly. It allows the possibility of having several purely pressure layers.

To overcome the previously mentioned shortcomings, we have regularly developed new ways of computing the
A and B allowing mode freedom degrees.
An algorithm has been developed between 2004 and 2006 and is described in the internal paper (IDAB). The
freedom degrees are:

The pressure of the tropopause (generally taken to 250 hPa).

The pressure of the top of the PBL (generally taken to 900 hPa).

The number of layers in the stratosphere + mesosphere.

The number of layers in the PBL.

The number of layers in the free troposphere.

The number of purely pressure layers.

The number of purely o layers.

The pressure depth of the bottom model layer.

The pressure of the first full layer.

e The speed of going from o layers to pressure layers (governing spacing about mountains).

To sum-up, atmosphere is shared into three main layers and algorithm uses vertical polynomials depending on
pressure.

A more recent algorithm has been developed in 2012 with a possibility to share atmosphere into more than three
main layers; vertical dependency of polynomials used in this algorithm is done according to altitude instead of
pressure; conversions between altitude and pressure use standard atmosphere; altitude depths are prescribed at
some pre-defined altitude levels.
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10 The quantities a and ¢ linked to pressure depth layers.

The content of this section is valid for thin layer equations or (WB1995) formulation of deep-layer equations. For
(WS2003) formulation of deep-layer equations, replace II by II, § by d, « by &.

Meaning:  has the following meaning: the pressure depth of a layer, divided by the “average” pressure of this
layer. « has the following meaning: the pressure depth between a half level and the full level situated immediately
above it, divided by the “average” pressure between this half level and this full level. These operators are used for
discretisations of some vertical integrals. They have a different expression according to the value of the integer
NDLNPR.

Expressions for a and § at full levels:
e Case LVERTFE=.F.; NDLNPR=0:

— For a layer | between 2 and L (and also [ = 1 if the pressure at the top of the model is not zero), a
and § are discretised as follows at full levels:

II; IT;
1 =1 l
a=1 ATl log <H11> (260)
II-
8 = log <Hl ) (261)
-1

— For the layer | = 1 if the pressure at the top of the model is zero:
* =1 = 1 at METEO-FRANCE.
* ag=1 = log(2) at ECMWF.
% 0;=1 has an infinite value. In practical, in the code, §;—=1 is computed with a top pressure equal
to 0.1 Pa in this case in order to avoid the calculation of an infinite value.

e Case LVERTFE=F.; NDLNPR=1:

— For a layer [ between 2 and L (and also [ = 1 if the pressure at the top of the model is not zero), a
and § are discretised as follows at full levels:

I II

—1_ -1 2t 262
o i i (262)
b=t 2l (263)

I 15

Equation (263) can be rewritten:
1 ]

il = am (260

— For the layer | = 1 if the pressure at the top of the model is zero:

* =1 = 1 and o= 1.
* (51:1 =1 + %.

ATT,_ Al
* I = 5= = ==

d1=1 1+T$'

* [ﬁ]l:1 - AHz=d1'
— Remark: equation (264) is also used for case NDLNPR=0 to discretise [1/I1];.

e Case LVERTFE=.T.; NDLNPR=0: For a layer [ between 1 and L, o and § are discretised as follows at

full levels:
B I; — 11

IT;
P ATl _ AL
I Ay + B
Remark: quantity «; is not used in the adiabatic part of the model (only in the MF-physics).

e Case LVERTFE=.T.; NDLNPR=1: this case is not defined.
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Expressions for [2V] a and [LV]§ at full levels: For case LVERTFE=F., details of calculations
are provided in appendix 1.

e Case LVERTFE=F.; NDLNPR=0:

— For a layer | between 2 and L (and also [ = 1 if the pressure at the top of the model is not zero),
[gV] a and BV] 0 are discretised as follows at full levels:

o IGIL_, log (%) W (=T ) rp B e
HE } O‘L - (L — II,_,)? [Hl - Hl_l] {EV} I (267)
r A-B; . — A B:rp
av)o], == [y (268)
The gradient of « + logIl has a simple expression in this case:
va} (a+log1’[)} _ b Fv} I, (269)
a 1 HT a

— For the layer | = 1 if the pressure at the top of the model is zero:
* [[iV] a]l:l =0.

* [BV] 6] 1 has an infinite value.

e Case LVERTFE=.F.; NDLNPR=1:

— For a layer | between 2 and L (and also [ = 1 if the pressure at the top of the model is not zero),

[E V] « and EV] 0 are discretised as follows at full levels:

(59 ], - S o],

& |A-B;_, — A;_ B
[ov] ] = -2l — A Bl rroyy, o)
@ v IR (T -1
Using equation (263), equation (273) can be rewritten:

[ov]] - - WP AP o)y, o)

a HTH27 1 a

— For the layer | = 1 if the pressure at the top of the model is zero:
- [[59]e],, 0.
* [[EV] 5] =0.

a =1

e Case LVERTFE=.T.; NDLNPR=0: For a layer [ between 1 and L, [EV] ¢ is discretised as follows at
full levels:

551, - (22 -2)a oo - Ao rcf

Quantity [[£V] ozL is useless in this case.

e Case LVERTFE=.T.; NDLNPR=1: this case is not defined.
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11 Treatment of the advection (2D and 3D models).
11.1 Treatment of the horizontal advection (2D and 3D models).

x 3D model: Horizontal advections are computed at full levels. For a variable X other than wind components:

[VVX], =V, [VX)], (274)
In the deep layer formulation, it is better to rewrite this equation as follows:
VVX], = [9} \g va} X} (275)
Tl a l

Remarks:
e In the deep layer equations, quantities V; and [[ZV] X]l are easily available in the model, and there is
one additional multiplication by [%]; to do compared to the thin layer equations.

e For X = U or X =V (horizontal wind components) the meridian derivatives of U and V are not easily
available, and the horizontal gradient is rewritten in order to use the divergence, vorticity, and some
curvature terms. See the parts (5.2.1) and (5.3.2) concerning the momentum equation for more details.

e The values of r, V and X used in formulae (274) and (275) are taken at instant ¢.

x 2D model: The only difference with the 3D case is that there is only one layer (index I is useless) and that
the notion of deep layer equations has no sense in this case.

11.2 Treatment of the vertical advection (3D model).
Case LVERTFE=.F. .

Vertical advection is treated explicitly. For a variable X, its vertical advection 7'7% is computed at full levels and
is discretised as follows:

. . Ol

22X) Zos (15 )y (i1 = X0 + o )r, (X0 = o) (276)

8’!} ! (AH)Z (AH)Z
For the layer | =1 (ﬁ%)n—o can be different from 0 if a radiative upper condition is applied; one uses the top

value X,—o of X:
- oIl 5 OLL _

7'787)( =05 (157 )i, (X2 = X1) + 20 3’7)’7=0 (%1 = Xno) (277)

877 1 AH)l (AH)I

For the layer I = L, (ﬁg—g) L, can be different from 0 (if taking account of rainfall and evaporation in the continuity
equation); one uses the bottom value X,—; of X:

(3)() 05 (2 (ﬁ%)nzl (Xy=1— X1) (ﬁ%)I:Lq (Xt — XL—1)>
77877 . e (AIT)L (AIl)L

(278)
The values of X, (ﬁ%) and (AII) present in the RHS of equations (276), (277) and (278) are taken at instant .

Case LVERTFE=.T. .

x (eneral case:
Vertical advection is treated explicitly. For a variable X its vertical advection ﬁ%—i]{ is computed at full levels and

is discretised as follows:
L 0X O (An) (ax)
— | = —_— —_— 279
(n 317)1 (naﬁ)l (am; \ oy ), )

0X
<(9’I7) l - [Rderi}l<X>

((X) is the vector containing all layer values of X).

where

*x Particuliar case of the moisture convergence:
The code present in routine CPPHINP currently uses a different vertical discretisation not described in detail.
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12 Physics and physics-dynamics interface (3D model).

12.1 Time of evaluation.

In an Eulerian scheme physics can be evaluated at ¢ — At (not lagged physics) or ¢ + At (lagged physics). The
lagged physics use as input the provisional ¢ + At variables available at the end of the grid-point calculations
(before the inversion of the semi-implicit system and the horizontal diffusion).

12.2 Physical tendencies, flux divergences, and flux in the thin layer

equations.
x Physical tendencies and flux divergences: Physical tendencies write F = %%—f in z-vertical
coordinate and F' = —gg—g in pressure Il-vertical coordinate. F is the flux.

* Relationship between fluxes and flux divergences: Between two hydrostatic pressure layers
II(1) and II(2), the fluxes difference writes:

M=1(2) 5z
F(II(2)) — F(II(1)) = / a—HdH (280)
II=II(1)
The discretised form of this equation writes:
OF

12.3 Physical tendencies, flux divergences, and flux in the deep layer

equations.
x Physical tendencies and flux divergences: Physical tendencies write F' = %j—i%—f in z-vertical
coordinate and F' = fg[f.—i %} in pressure II-vertical coordinate. F is a flux defined by an additive quantity,

divided by a surface area on a surface iso-r = a. This is more convenient to store this flux in the model (which
is additive) than the genuine flux Fyrai which would be defined by an additive quantity divided by the true

surface taken on a surface iso-r where 7 is not necessary equal to a (Fvrai and F are linked by the relationship
Forai = f—z]:) For convenience, the flux divergence which is actually stored in the model is [(T‘—;g—ﬁ .

* Relationship between fluxes and flux divergences: Between two hydrostatic pressure layers
II(1) and II(2), the fluxes difference writes:

O=I1(2) 2 [ 2

re | a® OF
F(I1(2)) — F(II(1)) = / — [} dll (282)

=T1(1) a? | r2 oIl

The discretised form of this equation writes:
r? a® dF

Fi-Fp, = {‘12 eyl (AL, (283)
One has to remember that the quantities stored in the model code are F at half levels and [‘:—j g—g] at full levels.

12.4 Remark for VFE vertical discretisation.

Vertical integrals in the physics and transformations between fluxes and flux divergences use the same
discretisation as for LVERTFE=.F. . Operator Rinte is not used. Fluxes remain computed at half levels.
When a flux is needed at full levels knowing its value at half levels, the following average is used:

Fi=F (5 R

The only difference between LVERTFE=.T. and LVERTFE=.F. is the way of discretizing «; and ¢;.

48



12.5 Levels of physics-dynamics interfaces.

To summarize, we can say that calling the different physical parameterisations is done according to the following
scheme:

dynamics ->

physics-dynamics interface routines ->
physics caller routine ->
the different physical parameterisations.

For non-AROME MF physics, this kind of scheme can be retrieved in the following sequence of calls:

CPG -> MF_PHYS -> APLPAR -> AC.. and RAD.. routines.

Actions done in the physics-dynamics interface routines are:

e Calculation of input quantities which are used only in the physics (for example moisture convergence, solar
angle).

e Call the physics (via a physics caller routine).

e Conversion of the physics outputs (fluxes or tendencies of physics prognostic variables) into tendencies of
dynamics prognostic variables.

e Store tendencies in / add tendencies to appropriate buffers.
e Perform additional diagnostics.
e Temporal advance of surface and soil variables.

Some of them may have to call GP.. or GNH.. routines (do intermediate dynamical calculations), for example
GPHPRE.

In physics caller routines, we just find call to different physical parameterisation routines. These routines should
not do dynamics (call to GP.. routines like GPHPRE is forbidden) and should not know the kind of vertical
coordinate which is used in the adiabatic part of the model.

See documentation (IDPHYE) for more details about physics, and physics-dynamics interface.

12.6 The “delta m = 1” barycentric formulation.

The “ém = 0”7 assumption says that, when it rains, a particle of water is not replaced by a particle of dry air,
and when there is some evaporation (especially near the ground), there is no removal of dry air. This assumption
can lead to bad conservation of mass, especially for high resolution simulations (below 10 km). This assumption
remains acceptable for the ranges of horizontal resolutions where the hydrostatic hypothesis works well.

But a “ém = 1” formulation has been coded since several years, which takes account of the rainfall and the
evaporation in the dry air budget, for example by replacing a particle of water by a particle of dry air when
it rains. This “0m = 1” has evolved during the last years, going from a “non barycentric” formulation to a
“barycentric” formulation (the last one treats at the same level rainfall and evaporation). Since CY29T3/AL29T3,
the “barycentric” formulation of “dm = 1” formulation has been implemented in the code and we will give a short
description of it.

For “om = 07:

e when it rains, a particle of water is not replaced by a particle of dry air: the consequence is that the
diabatic term linked to rainfall is replaced by zero in the continuity equation.

e when there is evaporation, a created particle of water does not pull out a particle of dry air: the consequence
is that the diabatic term linked to evaporation is replaced by zero in the continuity equation.

e F, becomes equal to zero.

e there is no modification of the vertical velocity, and i]g—g at the surface is equal to zero.

For “ém =1":

e The precipitation flux and the evaporation flux must be taken into account, and F, = Fg + F}, is non-zero.
For the time being the following assumptions are done:
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— Fg is non-zero only at the surface, zero elsewhere.

— Fj} is zero at the top of the atmosphere.

° 7'7(89—571 is modified, excepted at the top of the atmosphere (where it remains to zero, unless LRUBC=.T.).

The “barycentric” formulation of “dm = 1” leads to the following modifications (f—z appears only for the (WB1995)

deep-layer equations, this factor must be replaced by 1 otherwise; I must be replaced by II for Wood and Staniforth
deep layer equations).

e Term w: the RHS of equations (141) and (105) is the same for “dm = 0” and “ém = 1”. The consequence

is t hal .
w w
II ny,0m=1 II 11,6m=0

e Term 7'7?,—13 at the surface:

L 011 L 011 2
[776} = {Ua] + (CLQ) 9[Fe + ],
n n=1,dm=1 n n=1,6m=0 r n=1

e Upper air term ﬁg—g: we combine [RHS eqn (138)]sm=1 - [RHS eqn (138)]sm=0 with the previous equation:

. OI1 . OI1 a?
{na] = {na] + By, (7"2> g[Fe JFFp]n:l
n ny,0m=1 n ny,6m=0 n=1

e Diabatic part of M%EHS):

0log(1ls) | 9log(Is) _ 1 a72
[ ot ] { ot =9t Bl | 5
dm=1 dm=0 n=1
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13 The Eulerian discretisation of the 2D shallow-water system
of equations (spherical geometry).

13.1 Momentum equation.
* Definition of X, A and L.

X =V +év(22AT) (284)
A=-2QAV)-Vd (285)
L=-V®+ Bco[—2Q AV] (286)

*+ Remarks.
e If 5=1, the part of the non linear term which does not contain the Coriolis term is zero.

e It is desirable to discretise the momentum equation form given by equation (75). Vector Dy can be
computed knowing the following quantities easily available in the grid-point part of the model: U, V, D,

1 oU 1 v 2
¢ acos Oppe OApne’ @cosOppe OAppe ' a tan Gone.

13.2 Continuity equation.
x Definition of X, A4 and L.

X=0 (287)
A=—(®—d)D (288)
L=-o"(M'D") (289)

13.3 Application to the 2D “vorticity” system of equations.

e For the 2D “vorticity” system of equations, start from the shallow-water model, and replace ® and ®s by
zero in it.
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14 The Eulerian discretisation of the 3D primitive equation
model.

14.1 Thin layer formulation of the momentum equation.
x Definition of X, A, £ and F, top and bottom values.

X=V (290)
A=-20AV —-V® — RT'V(logII) (291)
L=V YT 4 RaT" log(ILy)] + Bco[—2(2 A V)] (292)
F=Fv (293)
Top and bottom values are defined as follows:

Vn:O =V (294)

If 6m = 0:
Vy—1 =V (295)

If om = 1:
V=1 =0 (296)

* Remarks.

e Coriolis term can also be put in the semi-implicit scheme by tuning Sc.. Values Sco = 0 (LIMPF=.F.) and
Bco = 1 (LIMPF=.T.) are available. Caution: do not use LIMPF=.T. in variable resolution (formulation
of spectral computations is not correct in this case for the semi-implicit scheme).

e It is desirable to discretise the momentum equation form given by equation (82). Vector [Dv/]; on layer [
can be computed knowing the following quantities easily available in the grid-point part of the model: Uy,
Vi, M2Dy, M2G, (oo o b [eessams s 00 [3 10 Obnelr.

@ cos Opne OAbne S Obne OAbne

* Discretisation of —2Q AV at full levels:
[(—29 A V).i]; = 2Qsin 0V, (297)
(=29 A V).j); = —2Qsin OU, (298)

*x Discretisation of the pressure gradient term at full levels: The pressure gradient term
writes:

— (V® + RTV(log 1))

It contains the geopotential ® = gz. Expression of gz is provided by equation (97). So the pressure gradient term

can be rewritten as follows:
" Rr

II
Vo, + vV (/ RTdH> + RTV (log 1)

Term:
11
is discretised as follows if LVERTFE=.F.:
[v<1>s +V (frlf f%dﬂ) + RTV(log H)} =
s 1

Vo, + S [V(RT)], 0k + 307 (RT)k [V,

k=L k=

+[V(RT)], i + (RT); [V(a + logIT)], (299)
and as follows if LVERTFE=.T.:

[WS 4V (fH“ 7%dn) + RTV (log n)} _
s l

VP: + [Rintelsur sy (— gt ) + (RT): [V (log IT)], (300)
(where (X)) denotes the vertical vector of coordinates (Xg=1, ..., Xx=t, ..., Xk=L))-

* Discretisation of the grid-point Rayleigh friction: This term writes K ; Ui, its discretisation
on layer [ is Kg.Uii. An optional contribution can be added to V-component: this term writes K.V, its
discretisation on layer [ is Kf.i.Vij-
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14.2 (WB1995) deep layer formulation of the momentum equation.
x Definition of X, A, £ and F, top and bottom values.

X=V (301)
A=-2QAV -2 AWk — gv — V& — (RT + pusRaT:)V(logIT) (302)
L=—MV [yT + RaT*log(IL,)] + Beo[-2(2 A V)] (303)
F=Fv (304)
Top and bottom values are defined as follows:

V=0 = Vi1 (305)

If 6m = 0:
Vy—1=Vi— (306)

If dm = 1:
V=1 =0 (307)

*+ Remarks.

e Coriolis term can also be put in the semi-implicit scheme by tuning Sc.. Values Sco = 0 (LIMPF=.F.) and
Bco =1 (LIMPF=.T.) are available. Caution: do not use LIMPF=.T. in variable resolution (formulation
of spectral computations is not correct in this case for the semi-implicit scheme).

e It is desirable to discretise the momentum equation form given by equation (119). Vector [Dv]; on layer I
can be computed knowing the following quantities easily available in the grid-point part of the model: Ui,
Vi, M2Dy, MG [ axens ) Lacos oo s 0 [ tan Bonel, [£

acos Opne OApne S Obne OAbne

x Discretisation of —2Q AV at full levels: See formulae (297) and (298), which are still valid.

x Discretisation of W at full levels:

__ Ra[Ti]i[w]
W, = o[ (308)

See part (14.10) for discretisation of w at full levels. See part (9.2) for discretisation of IT at full levels.

* Discretisation of —2Q A Wk at full levels:
(=29 A WK).i]; = —2Gnoram 2 cos OV, (309)
(=29 A WK).jli = 2Gnorai€ cos OW, (310)

x Discretisation of —gV at full levels:

() 4, 2], &
-[(5) -] %

x Discretisation of the pressure gradient term at full levels: The pressure gradient term

writes:

—(V® + RTV(logII) 4+ psRaT:V (log I1))
It contains the total geopotential ®, and the additional term psRq7:V (logII). This expression can be rewritten
with the semi-reduced gradient operator BV]:

i ([fv} &+ RT [fv} (log IT) + ps RaT: [fv} (log H))

r \la a a
Expression of @ is provided by equation (134). So the pressure gradient term can be rewritten as the sum of two
terms:

e The first one, which comes from the expression of gz:

_g ([Zv} o, + EV} (/HH —RHTdH> Y RT [gv} (1ogn)>
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e The second one, which contains some additional us terms:

_g ([Zv} (/HH —ps Rldj rdH) + psRaT: EV} (logH))
Ev} ®, + EV] </H —];Tdn) +RT EV} (log IT)

which already exists in the thin layer formulation, is discretised like in the thin layer formulation:
e Case LVERTFE=F.:

Term:

(V)@ + [29] (Jit ~5Far) + RT [£V] (logH)]l -

(V] @+ X0 [[EV] (BD], 6+ X0 (R [[£9] 9],

+ [[£V] (RT)], a0 + (RT): [[£V] (@ + logTT) ], (313)
o Case LVERTFE=.T.:

[z9] @+ [5V] (Jo ~dmT) + BT [2V] (logH)]l -

ZV|(RT)6+RT[ZV]s >
n

EV] Ds + [Rinte] (surf,) <— & + (RT): [EV} (log H)]z (314)

The code does all the calculations with the operator [EV], and after these calculations, it does a multiplication

by a/(r): to obtain the geographical pressure gradient term. The additional term containing us uses the same
type of discretisation (re-use formulae (313) and (314) in replacing V® by zero and RT by psRaTy). That leads
to the following discretisation:

e Case LVERTFE=.F.:
[(5V] (it~ B4t + R[5V t0g 1] =

L [[29] (et o+ S (e aTn [[59) ]

[[ V] (usRaTy)], 1 + (usRaTe)i [[£V] (a + log IT)], (315)

a

e Case LVERTFE=.T.:

[EV] (fli — s dH) + ps RaT: [ V] logH} =

l
29 (s Ra T )6+ t1s Ra T [ £ V] 8 ,
[Rinte] (surf.0) <_ [£V](rsRa )A:]-u aTe[£V] > (s RaTy) HEV] (log IT) ] (316)

Term psRqT: is not more difficult to discretise than RT'.
[nsRaTr]i = [psliRa[Tr)a (317)
For us, discretisation of equation (131) at full levels yields:

2 [T]l Q cos g(gnordel - gnordl‘/l) + U12 + ‘42
[rl, 9

sl = — (318)

For T;, use formula (107) and formulae provided in part (9.2) (computation of hydrostatic pressure at full levels).

Term [EV] (psRaTy) is more difficult to discretise, because of the rather tricky discretisation of [EV] s
[gV] (psRaTy) can be written as a sum of two terms: psRq BV] T, + RqT: BV] fbs-
e For ps at full levels, use equation (318).

e For T; at full levels, use formula (107) and formulae provided in part (9.2) (computation of hydrostatic
pressure at full levels).

r

e For [EV] T, use formula (109) and formulae provided in part (9.6) (discretisation of @ at full levels).
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e For [gV} us: for details of all the calculations, see appendix 3. This quantity has to be put under the sum
of several quantities.

[5V] e =
7§gn0rdm cos [gv:l U + %gnordl cos @ [gV] V
_%U [gv] (gnordm cos 9) + %V [gv] (gnordl COs 9)
+ U [5V]r - & (U [£V] U 2V [2V] V) (319)

gr2 a rg

This expression uses the following quantities:

U and V at full levels.
r at full levels: use formulae (110) or (112) and formulae provided in part (9.2) (computation of
hydrostatic pressure at full levels).

[£v]o

BV] r: use formulae (111) or (113) and formulae provided in part (9.6) (discretisation of at

full levels).

BV] U: it is convenient to write its expression with vorticity and some curvature terms. It can be
written as a vector of coordinates:

’
2 1 ou
M |:u.cos@ 8A:|
’ ’
2|+ 1 A% MU Qtangbnc)
M|:C+acos®6/\:|+|:2 ( a

[%V] V. it is convenient to write its expression with divergence and some curvature terms. It can

be written as a vector of coordinates:

’
2 1 2%
M acos® OA

2 [ 1 au MV (2tan 6y,
M {D - mm} + [T (Frorgrene)

[gV] (Gnoral cos 0): this geometrical quantity (useless in the thin layer equations) is zero in an untilted

geometry; in a tilted geometry it is a vector of components:

M
EV] (Gnora1 cos ) = ( Tacos® C%S Ope cos A ) (320)

[1V] (Gnordm cos 0): this geometrical quantity (useless in the thin layer equations) is a vector of

cgmponents:
< TeaO ((02 —1) 4 (¢® +1)sin 9) cos Ope sin A >
1 ((((;271)4'((;24»1) sin ©) sin Ope+2c cos © cos O cos A)
@ ((62+1)+(0271)sin @)

* Discretisation of the grid-point Rayleigh friction: This term writes K ; Ui, its discretisation
on layer | is K. Uii. An optional contribution can be added to V-component: this term writes Kg.i.Vj, its
discretisation on layer I is Kf.j.Vij-

14.3 Thermodynamic equation.
x Definition of X, A, £ and F, top and bottom values.

Top:

Bottom if ém = 0:

X=T (321)

RT w
_RTw 22
A o I (322)
£=-r(M'D) (323)
F = Fr (324)
Tyeo = Tie1 (325)
Tye1 = Ti—z (326)

Bottom if dm =1 (output of physics):

- (327)
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x Discretisation of the conversion term.
R w) _ R {z]
cp 11 ! [epls LTI,

See part (14.10) for discretisation of & at full levels.

14.4 Thin layer formulation of the continuity equation.
x Definition of X, A, £, and F.

X =loglly
1 < > 1 | o1 1 [.01
=—— dn+ VV [logIly] — — {n] + = [n}
ITs IL | " on n=1 I [ on n=0
—2
M
£ = _WVD

Fm
F =
(i)

(328)

(329)

(330)

(331)

(332)

The actual form of continuity equation which is discretised replaces the sum of A and of the horizontal advection

term by a term which is a vertical integral of a divergence term.

*x Discretisation of the vertical integral of the divergence term: The term to discretise is:

T K an)
— vV(iv=]a
I /no ( an )

In the RHS of continuity equation, term

1 oIl 1 (oIl
IISVV((%)—I—(BW)VV

e Term LVV (a—n) using equation (241), the vertical integral of this term can be rewritten as:

/ V )V log Isdn

Discretisation of this term writes:

— Case LVERFTE=.F.: .

> [ABLVIV log I,

=1
— Case LVERFTE=.T.:

AB
[Rinte](top,su'rf) < TT]VV log HS>

e Term His (%) VV: discretisation of this term writes:

— Case LVERFTE=.F.: B
1
T > [amvv,
1=1
— Case LVERFTE=.T.:

1 AIl
ﬁ [Rinte] (top,surf) < A'I’]VV>

s
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14.5
* Definition of X, A, £, and F.

2
a 1
A=- [7’2} I,
n=1

X =loglly

L£=-v(M’'D)

= ()

V} <GVZS> dn+— v[ v} [log IIs]—

1 foul 1 e
. |"on o I [

(WB1995) deep layer formulation of the continuity equation.

(333)

ﬁan]
877 n=0

(334)
(335)

(336)

The actual form of continuity equation which is discretised replaces the sum of A and of the horizontal advection
term by a term which is a vertical integral of a divergence term. One discretises equation (124).

x Discretisation of the vertical integral of the divergence term: The term to discretise is:

wf [
& [29] (2va)

F(5) 2]V

In the RHS of continuity equation, term

is rewritten under the sum of several terms:
Lry { V} <8H> L
a 1o}

Ha +

e Term

a

voB
on

[

Discretisation of this term writes:
— Case LVERFTE=.F.:

oIl
< Van)dn

—V
1L,

(5 [Ev] (2

(n) [aV} log Isdn

>iani (7), v 5 s

— Case LVERFTE=.T.:
[Rinte}(top,surf) <

HLS, (g—g) [EV] V: discretisation of this term writes:

— Case LVERFTE=.F.:

e Term
1 L
r
T (E)z (AT,
=1
1
1L, [Rlnte](top,su'rf) <( )

— Case LVERFTE=.T.:

e Term h

— Case LVERFTE=.F.: .
1 r
i ;V“A“h 15

— Case LVERFTE=.T.:

1 ATl
ﬁs [Rinte] (top,surf) <VA’I7

The sum of integrated terms has then to be multiplied by (“—2)
n=1
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H%V (?TE;I) [EV] (5) discretisation of this term writes:

JI6

AB (f) A\ [fv} logHS>
An \a a

Ev] \

V)

ATI
An

G

to obtain the tendency

)

iiV [EV] (’?,—g) using equation (241), the vertical integral of this term can be rewritten as:

9 log(Ilg)
ot .



14.6 Moisture equation.
x Definition of X, A, £ and F, top and bottom values.

X=q (337)
A=0 (338)
L=0 (339)
F=F, (340)
Top:
Gn=0 = qi=1 (341)
Bottom if dm = 0:
In=1 = qi=L (342)
Bottom if dm =1 (see CPQSOL, relative humidity is the same for n = 7z, and n = 1):
n=1 = gs (343)

14.7 Other GFL variables.

x Definition of X, A, £ and F, top and bottom values, for advectable variables.
Equations are discretised as for humidity equation, the only difference is sometimes for the choice of vertical
boundary conditions at the top and bottom. For example, for liquid water gi:

X=q (344)
A=0 (345)
L=0 (346)
Top:

[@]n=0 = [@1]i=1 (347)

Bottom if ém = 0:
[@]n=1 = @)= (348)

Bottom if dm = 1:
[@]n=1=0 (349)

Vertical boundary conditions:

e quantities are assumed constant above the middle of the upper layer and below the middle of the lower
layer in case dm = 0.

e quantities are assumed constant above the middle of the upper layer in case dm = 1.
e advectable GFL variables other than humidity are assumed to be zero at the surface in case ém = 1.

x Particular case of non advectable pseudo-historic GFL variables: Equations given for
liquid water are still valid; advections have to be replaced by zero; definition of top and bottom values is useless.

14.8 Relationship between geopotential height gz and pressure depth.

* Geopotential height at half levels (case LVERTFE=.F. only): Discretisation of equation

(97) at half levels yields:
k=l+1

977 = gzs + Z [RiTk] Ok (350)
k=L
See section (10) for discretisation of ¢ at full levels.

x Geopotential height at full levels:

e Case LVERTFE=.F.: It is computed from the geopotential height at half levels by the following
relationship:
gz =gz + [RiT) ] cu (351)

See section (10) for discretisation of « at full levels.
o Case LVERTFE=.T.:

RT6
gz1 = g2zs + [Rinte] (surf.0) <A77> (352)

See section (10) for discretisation of ¢ at full levels.
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« Horizontal gradient of the geopotential height at half levels (case LVERTFE=.F.
Only): One applies the operator [£V] (V in the thin layer equations) to equation (350). That yields:

k=l+1 k=141

g[[5v] zL:gEV} a+ Y [[59] RT} 5 + Z T [ [ Mk (353)

k=L

See section (10) for discretisation of § and [ V] 4 at full levels.

r
a

x Horizontal gradient of the geopotential height at full levels: One applies the operator
[§V] (V in the thin layer equations) to equation (351). That yields:
e Case LVERTFE=.F.:
T T T T
g[[5v]2] =o[[5v]2] + [[5] D) @+ R [[5V] o] (354)
a 1 a 1 a l a l

See section (10) for discretisation of o and [gV] o at full levels.

e Case LVERTFE=.T.:

g HZV] z}l =g EV] Zs + [Rinte] (sur f,1) <— [§V] (RT)0 + RT [iv] 5> (355)

a An

See section (10) for discretisation of § and [§V] 0 at full levels.

14.9 Total geopotential ¢ in the (WB1995) system.

* Total geopotential at half levels (case LVERTFE=.F. only): Discretisation of equation
(134) at half levels yields:

k=I+1 k=1+1
Op=Ds+ Y [ReT ok + Y [[us]nRalTie] o (356)
k=L k=L

See section (10) for discretisation of ¢ at full levels. See part (14.2) for discretisation of ps at full levels.

x Total geopotential at full levels:
e Case LVERTFE=F.: It is computed from the total geopotential at half levels by the following relationship:

®; = &; + [RiTy) au + [[us]i Ra[T]i] cu (357)
See section (10) for discretisation of o at full levels.
e Case LVERTFE=.T.:

(358)

RT6 + psRaT:6
®; = O + [Rinte) (surf,i) <—M>

An
See section (10) for discretisation of ¢ at full levels.

See part (14.2) for discretisation of us at full levels.

+x Horizontal gradient of the total geopotential at half levels (case LVERTFE=.F.
only): One applies the operator EV] to equation (356). That yields:

([29] @] = [£9]) &+ 3247 “luw 7], 60+ SA2 e [[29]4], (359
S Ruli (59T, 00+ S RaTle [[29] ], b+ SE deRalrild [[594],

See section (10) for discretisation of § and [gV] 0 at full levels. See part (14.2) for discretisation of js and [%V] s
at full levels.
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+ Horizontal gradient of the total geopotential at full levels: One applies the operator [ZV |
to equation (357). That yields:
e Case LVERTFE=F.:

159 8], = [[z9) ], + [[59) (&), 0 + [Re7i [[5¥] o], (60
+Ralus]: H%V } ar + Ra[Tr]; [[ } ] o + [[ps]iRa[T3]1] H%V] O‘]l
See section (10) for discretisation of o and [§V] o at full levels.
e Case LVERTFE=.T.:
[[gV] (I):Il = [gV] ¢'s + [RintE}(s1L7”f,l) < [ZV](RT>6> mte](surf,l) <_%> (361)
+[Rinte}(surf,l) <_ Rd“S[AgnV]Tr5> + [Rmte](eurf 1) < RdTr§V} 5> + [Rinte}(su'rf,l) <_RdThuAST[)£V]6>

See section (10) for discretisation of ¢ and BV] 0 at full levels.

See part (14.2) for discretisation of ps and [EV] us at full levels.

14.10 Diagnostic expression of some vertical velocities: thin layer
formulation.

* Term n&l’[ at half levels if LVERTFE=.F.: for the half level /, equation (101) is discretised as

follows:
n=1
oIl
B / v (V) dn
m =0 an
L

> [ABLVLVIL + ) (AT YV

k=1 k=1

n=mni
—/ v (V@H) dn
n=0 (91]
! l
- lZ[AB]kaVHS + [AVV,
k=1

e Term:

is discretised as follows:

By

e Term:

is discretised as follows:

k=1

Ol Ol
m {n@n] - +[1 = By ] {nan] .
oIl oIl
of ool
: 877 surf : 87] top
* Term 77%—1;7[ at full levels if LVERTFE=.T.: for the layer I, equation (101) is discretised as follows:
n=1
oIl
B V(IV d
m ‘/7]_0 ( 87]) n

AB ATl
Bl [Rinte](top,surf) <A?7VVHb + A77V\/->

n=m
—/ v <V6H> dn
n=0 87]

AB AIL
_[Rinte](top,l) < A VVII +AVV>

o Term:

B

is discretised as follows:

e Term:

is discretised as follows:

e Term:

is discretised as follows:
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e Term:

. OI1 . OI1
Bm |:77677:| et + [1 - Bm] |:n877:| o

o1l oIl
By |n— +[1-B —
: |:77 677 :| surf [ ] |:77 877 :| top

is discretised as follows:

*x Pressure coordinate vertical velocity w: for the layer I, equation (105) is discretised as follows:

e Term H—: its discretisation at full levels is:
m

— Case LVERTFE=.F.:

il @ 02)

— Case LVERTFE=.T.: Equation (362) is still valid but in this case it can be rewritten in a simpler

way as follows:
1 1 1
| == == 363
{HL (I, A+ Bl (363)

n=m
/ v <V8H> dn
n=0 9n

— Case LVERTFE=.F.: This term can be easily computed at half levels and its discretisation on the
half level number [ is:

e ‘“Vertical integral of divergence” term

n=m oI k=1 k=l
[ / By \Y ( an )| = > [ABLVRVIL + Y [ATIL YV, (364)
n= T k=1 k=1
Computation of w/II needs this discretisation at full levels, that needs a weighting of the following
type:
(&3]
=+ (=) (365)

That yields the following discretisation at full levels:
|:f77 m v (VBH) dn:|
=Y ABRVAVIL + 3 T T ANV + §E ([AB) VI VIL + [AIVV))  (366)

— Case LVERTFE=.T.: This term is directly computed at full levels and its discretisation on the

layer number [ is:
n=mn,
{ / v <v‘gg> dn] Rinelont <iBVVH + RV > (367)
n

=0
e Product “Vertical integral of divergence” times —ﬁ at full levels: discretised as:
1
— Case LVERTFE=.F.:
|: f”? m v (Vc?l'[) d'q:|

:_[Aéiﬁ]l( P U ABL VYL + S AH]kVVk) — Er[ABLVIVIL — i V'V, (368)

— Case LVERTFE=.T.:
_ {% f"I::Om \v4 (Vg—n) dn}
= — x5 [Rinte] (top.n) (R2ZVVILs + AHVV> (369)

e Term [V%] on layer [ is discretised as follows:

vl v,

Discretisation of % is given by equation (257) or equation (259) according to the value of LVERTFE.
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o Term H%” [ﬁ%}nzoz its discretisation on the layer [ is:

]
(AT {7 om |,

This term is non-zero only if a radiative upper boundary condition is applied (case LRUBC=.T.).

14.11 Diagnostic expression of some vertical velocities: (WB1995) deep layer
formulation.

* Term 7]88% at half levels if LVERTFE=.F.: TFor the half level I, equation (137) is discretised as
e Term:
is discretised as follows:

follows:
() L B ()
B; (Z;) y i[AB]k (5) v [2v]m+ i (£), (am, [29] v+ in[AH]k 129 ()] J
o Term: . ) n;m oI 7
(5 L R
(), [ (5), v 5] 32 (), lom [5w] veo Sovesame 29 (2)]

k=1 k=1
oIl
Bm |:77:| +
on 1

2 —Pm\ 2 2 9
" m " n=1 a n=0 37] n=0
is discretised as follows:
L0l a? a? r? LOIl
n surf l surf top n top

* Term 77%% at full levels if LVERTFE=.T.: For the layer [, equation (137) is discretised as follows:

2 n=1
5, (‘g) [ o] (rvgﬂ)dn
7 ) p=1 Jn=0 L0 a n

is discretised as follows:

o Term:

e Term:

is discretised as follows:
a? AB (T r r\ AIl [r AIl [Tr r
B <> (Raveeltap,surp <An GV v+ (2) 5y Bl v+ va, 29 (JD
e Term: ) e
=
_ (g) / B4 (TV<9H> i
72 ) Ju=o Lo a On
is discretised as follows:
a? AB (r r r\ AIl [r AIL [Tr r
- Gy inte o A - - HS - A - N - -
<r2>l [Rinte]top.1 < An (a) v [av] + (a) An [av] V+VA17 Hav} (a)}>
oIl a? a? r? oIl
i) o |(5), 2 (5) ) (2) L o5
on n=1 ) ") = @/ =0 on n=0

is discretised as follows:

oIl a’ a? r? oIl
Bln—=| +|(%)-B(% - o
: |:n 877:|surf |:<T2>l l <T2>surf:| <a2>top |:17 a’r]:|top

e Term:



x Pressure coordinate vertical velocity w: For the layer I, equation (141) is discretised as follows:

e Term L: its discretisation at full levels is given by equation (362) or (363) according to the value of

i,
n=m
()
g=0 L@ a On

LVERTFE
e “Vertical integral of divergence” term

— Case LVERTFE=.F.: This term can be easily computed at half levels and its discretisation on half
level number [ is:

= (29 (£v%ﬂ)dn}

n=0 7
= S ABl 2], Vi [EV] 1+ 35070 (2], (AT [£V] Vi
+ 305 Valam [[2V] (2)], (370)
Computation of w/II needs this discretisation at full levels, that needs a weighting of the following
type:
a
= Ly + 5 (U= L) (371)

That yields the following discretisation at full levels:
L2 Ta9] (v an,
=200 MBIl 2], Ve [FV] T+ 3000 2] (AT [29] Vi
+3000 Velan [[2V] (5)],

+5 (8B [3], Vi [fV] T+ [F], (A [5V] Vek VAT [[EV] (5)]) - 672)

a
— Case LVERTFE=.T.: This term is directly computed at full levels and its discretisation on the

layer number [ is:

= [Rinte] (top,1) <%g [%V} Hs> + [Rinte](top,) <§%—; EV] V>
[ inte (iop 1) <V I:[Zv] (5)}> (373)

e Product “Vertical integral of divergence” times _ﬁ at full levels: discretised as:
l

= (9] (V) an]

— Case LVERTFE=.F.:
[ [ [5V) (V) dn]
= i (U2 ARk 2], Vi [59] M+ U2 2], 18T [59] V)

st (Sho Vi, [[3V] (2)],)
(A H Vi[5V —a [3], [59] Vi avi [[5V] (3)], (374)

- [ATD]; a a

— Case LVERTFE=.T.:

)1)) @75)

g Rielop (35 5V [EV] 1) + (537 (V] V) + (VAT [[5V] (

Q13

e Term [gv [gz]n} on layer [ is discretised as follows:
Ty [avjm] F} v [zv]T
a II “laly ! II
l l

Discretisation of [gz]n is given by equation (257) or equation (259) according to the value of LVERTFE.
63



e Term H%u (é) B [ﬁ@]nzoz its discretisation on the layer [ is:

on
o (2), 2
[AH]Z a2 top 8’,7 top

This term is non-zero only if a radiative upper boundary condition is applied (case LRUBC=.T.).

e Once discretised the RHS of equation (141) one obtains [Z—i %} at full levels; a multiplication by {‘i—;}
l 1

has then to be done to get [%]z
14.12 Specific features for plane geometry.

14.12.1 Momentum equation.

x Equations: It is desirable to discretise the momentum equation form reformulated on the plane, with the

reduced components of the wind (U/; V/), and the reduced gradient vV = (8;; 8;): vectorial equation is replaced
by the couple of equations (195) and (196) (replace r/a by 1, T}, us and W by zero in the thin layer equations).
The main difference with the spherical geometry is the expression of the curvature terms.

x Discretisation of —2Q AV at full levels: See formulae (297) and (298), which are still valid.
*x Discretisation of W at full levels: See equation (308).

x Discretisation of —2Q A Wk at full levels: Replace (Guordi; Gnoram) by (—S; C) in equations (309)
and (310), which become:
[(—29 A Wk).i]; = —29 cos OW,C (376)

(=292 A WK).j|; = —2Q cos OW, S (377)

x Discretisation of —?V at full levels: It is desirable to rewrite equations (311) and (312) with U’

and V. These equations become:

[(59) 4, -~ [2] S o
-[(59) 9, - [2] S o

x Discretisation of the pressure gradient term at full levels: For the thin layer formulation,
equation (299) can be used but it is desirable to use rather the reduced gradient operator vV = (8,,(; 6;,) For the
deep layer formulation, equations (313), (315) and (317) can be used but it is desirable to use rather the reduced
gradient operator vV = (8;; 8;)

e For us, the equation which has to be discretised is (194); the same code can be used for spherical and plane
geometry. Discretisation at full levels writes:

s = — 2Ll Rcos6(COIT,) + S[(z]wy ) + (MU})? + (MV; ) 50

e For the horizontal gradient of us, the components are given in part (6.2.4). Discretisation at full levels give
the two following components:
L
l

— first element:

e rie’] R s o] 5 ] [k ] -5 ] i
+([MU’]S{:—Q][lMV']?) [M[a;r]l} — % [Mv’]l + gj[f]l (IMU'? + [Mv’ﬁ)sini%
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— second element:

] -
l

o ) 2 o] - ] i) o] i
LRI RIEID [arfon ] + 258 a0 = 2Eqare 'y 2R

All terms containing 8,/( and 8;, can use the same code for spherical geometry and plane geometry. The
sin 6— Ky,

only terms which need a different code for LAM models are the terms containing K1, and >~

. . . . . / ’
x Expression of the meridian derivatives of U and V' : As in spherical geometry, it is desirable
to write them with the divergence, vorticity, and zonal derivatives of the wind. Discretisation at full levels is:

[a;v'] D, - [a;U']

l 1

] =[av] -d
l l

* Discretisation of the grid-point Rayleigh friction: This term writes K¢ ;. Ui = Kp 3o M U'i
and its discretisation on a layer [ is KfriCMUl/i. An optional contribution can be added to V-component: this

term writes Kp .V}, its discretisation on layer [ is KfriCMVllj.

14.12.2 Other equations.
e Thermodynamic equation: equations (321), (322), (323), (324), (325), (326), (327) and (328) are still valid.
e Continuity equation, diagnostic expression of some vertical velocities: content of parts (14.4), (14.5), (14.10)
and (14.11) is still valid; it is simply desirable to use denotation MY = (M@,;; M@;) instead of BVL

and write V as (MU/; MV/), in order to work in a local system of coordinates linked to the plane. For
continuity equation, the same code is used in global and LAM models in the grid-point part.

e Moisture and other GFL equations: equations (337), (338), (339), (340), (341), (342) and (343) are still
valid.

e Relationships for geopotential: see parts (14.8) and (14.9) (use operator MV = (MB;; Ma;,) rather than
VD)
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15 The Eulerian discretisation of the 3D fully compressible non-
hydrostatic model (NH-PDVD).

Some of the discretisations are well described in (IDNHPB) and we will recall here some basics. See (IDNHPB)
for more details, especially for the intermediate calculations and the assumptions leading to the following
discretisations.

15.1 Discretisation of some intermediate quantities for the thin layer
equations.
We have to discretise at least the following quantities:
e Half level total pressure.
e Total pressure depths at full levels.
e Surface wind Vgurt.

e Half levels wind when required.
_ v
o X= 5=V (5Y).

SORT
e gw and its horizontal gradient.
e d (knowing gw).
o Ds.
o2

e Laplacian term: on

x Half level total pressure:
It is required for finite difference treatment of some terms. The following assumptions are done:

e The top value of p — II is assumed to be zero. If the top value of II is zero, the top value of p is also zero.
The consequence is that: Q;_, =0

e () is assumed to be constant between | = L and the surface: qu,f = Qz:L

e For the other half levels: Q; = O.5(Qz + Qz+1)

From Q; and II; we can compute p;.

x Total pressure depths at full levels:
e Finite difference discretisation (LVFE_DELNHPRE=F): [Ap]; = p; — p;_,.

e Finite element discretisation if LVFE_INT_ECMWF=F and LVFE_DELNHPRE=T: the following
formula is used:

Op
Apl; = [AII]; | ==
(ap) = (an | 5]
where:
i
o) _m o0
oIl 1 11, BlogH
1
. o a(2H) .
Discretisation of D Toa Tl at full levels is:

e (5] 52

e

OlogII
!

e Finite element discretisation if LVFE_INT_ECMWF=T and LVFE_DELNHPRE=T: the following
formula is used:

[Ap; = [AH];I% + pi[Alog (p/T)];

where:
[Alog (p/I)]i = [Raeri (log (p/11))]:[An];

* Surface wind:
Vsurf == Vl:L (381)
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+ Half level wind:

Vi=WiVi+ (1 - W) Vi (382)
where: 5
W — I+1 — Q41 383
U b — a1 (383)
Remarks:

e W;_, is set to zero.
e Top boundary condition: Viop = Vi=1.
e Bottom boundary condition: Vgu¢ = Vi=p.

* Quantity X:
e Finite difference discretisation (LVFE_X_TERM=F): It is better to rewrite X as follows for the

discretisation 1 ov
_br
= R V9 arogm
X is discretised at full levels as follows:
P 1
= [ﬁ}z [RTY;6, [Vigzli_, (Vi = Vi_y) + VIgzli(V; = V1) (384)

This discretisation uses V[gz] at half levels and V at both full and half levels.
The discretisation of V[gz| at half levels is given by equation (437).

For NPDVAR=2, [p/II]; = [exp(Q)]:-
e Finite element discretisation (LVFE_X_TERM=T): X is discretised at full levels as follows:

X, = {%} . ][%AT’]]};Z V[92]:[Raexi V] (385)

* Quantity Ds: Ds is computed at full levels and requires the preliminary computation of X;.
R
[Ds]i = D1 + X + CIZFd (386)
1
For NVDVAR=4 it is desirable to rewrite this equation by replacing d; by d4; — X;.
x Retrieving full levels d from full levels A[gw]: Such a calculation is required for example when

reading initial files (where this is A[gw] at full levels which is stored).
It is desirable to rewrite the definition of d as follows:

The discretisation writes:

di=— £] 1algul) (387)

* Retrieving [gw] from full levels d: This discretisation looks like the integration of the geopotential
equation. Note that w can be required also in the hydrostatic model.

e Finite difference discretisation (LVFE_GW=F):
First the surface vertical velocity must be computed, using the surface boundary condition:

JWsurt = Vsurfv[q)s} (388)
Integrating equation (387) from the surface, yields:

II
[Algw]l: = diRaTid; {p] (389)
!
k=1+1 -
JWy = GWsurf + Z (ddeTkék {] ) (390)
- Ply
k=L
and:
II
gwir = gwy + diRaTicy |:p] (391)
!

e Finite element discretisation (LVFE_GW=T):
Use equation (388) at the surface; for upper-air full level values of w discretisation is:

I dR4TS
quw; = gWsurf + [Rinte}(surf,l) <_ d >

392
b A (392)
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* Retrieving V[gw] from full levels d and Vd:

e Finite difference discretisation (LVFE_GW=F):

First the horizontal gradient of the surface vertical velocity must be computed, using the surface boundary
condition:
Vgwsurt] = V[Veurt V[Ps]] (393)

The RHS of this equation is the vector of components:

[Vonsurf] [Vzoq)s} + Usurf [vgo zoq)s] + [vzo‘/surf] [vmeq)s] + ‘/surf [V§o meq)s}

and
[vmeUsurf“Vzoq)s] + Usurf [Vgo me(I)s] + [vme‘/surf][vme@s] + ‘/surf[v?ne me(I)s]

Integrating equation (387) from the surface, and applying the gradient operator, yields:

11 11 11 11
[AV[QU)HZ = V[RdTl} |:p:| did; + RqT,V |:p:| di0; + RaT |:p:| Vd;é6; + RqT; |:p:| a;Vé, (394)

l l 1 1

Note that V [%]z can be rewritten:

o) bk
Pl Pl I
The half level values are given by:
k=1+1
Vigwr] = Vigwsur] + Y [AV[gu]ly (395)
k=L

and:

11 11 11 II
V[gwl] = V[gwf] —+ V[RdTl] |:p:| diog + RaT;V |:p:| diog + RaT) |:p:| Vdiag + RaT) |:p:| d;Vo (396)

l l l 1

e Finite element discretisation (LVFE_GW=T): Use equation (393) at the surface; for upper-air full level
values of V[gw]| discretisation is:

(397)

V|5 dRaT3)]
V[gwl} = v[gwsurf] + [Rinte](surf,l) - A

An

with:

|:V (HdeT(S)] = V[RdTl] |:H:| di6; + RaT;V |:H:| di6; + RaT; l:H:| Vdié; + RaT; l:H:| Vo
p ! pJ, pJ, p p

l l

Remarks: there are two difficulties which can appear for some options:

e Case NVDVAR=4: calculation of Vd is required, but in this case this is Vd4 which is available, and VX
is not convenient to compute. This is why there is an additional thermodynamic variable “NHX” which
contains X and VX.

e Case LSPRT=.T.: in this case RT is stored instead of T', and V[RT] is available in the code, but not
V[R4T]. We can see in formula (394) that the computation of V[R4T] is required, and currently we have
approximated it by V[RT]. Using of the prognostic variable “virtual vertical divergence” [Rq4/R]d allows
to solve this problem (no additional difficulty is introduced in the adiabatic part of the equations, the
diabatic term becomes slightly longer but not so difficult to compute).

8(8(17—1-[))
*x Laplacian term ———~

e Finite difference discretisation (LVFE_LAPL=F): both derivatives are computed separately. % (at
half levels) appears in the RHS of the w-equation. 8—77 (at full levels) is applied when transforming w into

)
dw
Oglad iy the RHS of the d or d4 equation.

d or in term —4
n
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e Finite element discretisation (LVFE_LAPL=T): this term requires some attention and its study is still
an issue. It seems that writing it into a combination of two first-order derivatives does not give a stable
scheme. For the time being the following formula is applied:

0(%5r?) _10(kw) o[IC] | on 07 ()
on m on on +810g1’[ on? (398)

Discretisation is:

(2] — b s () o ()], + 50 (Y],

where Raderi is the second-order derivative VFE operator.

15.2 Discretisation of some intermediate quantities for the (WS2003) deep
layer equations.

* Radius: The following discretisations come from equation (166).
e Finite difference discretisation (LVERTFE=F):

502 " et ] ]
3 a kdpllpog
S S P ShkSTk Ok 400
N | o0
k=L
and: 3 "
3 3a” RITILéy
N 401
=i 2 B (101)
where rsure = @ + Zsurt
e Finite element discretisation (LVERTFE=T):
=<\ 71/3
s, 3d® RTTIS
= T — Rinte sur TTIAT 402
= [ T R (55 o)
x Horizontal gradient of radius: Applying horizontal derivations to formula (166) yields:
[ ]
[IV} Tsurf = [fv:| Zsurf
a a
e Finite difference discretisation (LVERTFE=F):
Half levels:
r r2 r a? gy r RkaﬁkSk
Z _ — _surf | 7 = Z kRO CRTR
[29]r = " [29 ] re + 52 > [2V] { . } (403)
l I k=L
with: o
a Dk
T3, I d 1) Txd - i . T3 106
_ TIli FV] Ry + Ry Ilx [ZV} T + Ry Ty 0 [KV] Hk_'_Rk 1Lk FV] 5. _ Ry el K0k [IV] -
Pk a Pk a Pk a Pk a Py a
Full levels: 5 _
r T Ir a® Tr R, T11,6;
V)= L 2] G [LV] | 404
{a " r? la it Gr la m (404)
e Finite element discretisation (LVERTFE=T):
5 5 [lv} |:RT1:I5:|
r Tt [T a a 2
-V = == | = V| rswrt + =5 Rinte (sur e 405
[a }” r? [a ]T H—Grlz e f’l)< An (405)

x Quantity us: See equation (318) for discretisation at full levels, replace g by G. For discretisation at half
levels, use V at half levels, r at half levels.
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x Half level total pressure:
(including top and bottom values) are unchanged.

Definition of Q is changed but formulae giving half level values of Q

* T(~)tal pressure depths at full levels: Sece treatment for thin layer equations, replace IT and § by II
and ¢ in equations.

* Surface and half level wind: Thin layer discretisations remain valid: see equations (381), (382),

(383).

x Quantity X:

e Finite difference discretisation (LVFE_X_TERM=F): It is better to rewrite X as follows for the
discretisation

_rep 1 [fv} [GT]87V~
all RT la 0log(1I)
X is discretised at full levels as follows:
-2 (8], [ v+ e
=" [ﬁ}z[RT}l& 2V [Grly (Vi = Vi) + |29 Gk (Vi = Vo) (406)

This discretisation uses [gV] [Gr] at half levels and V at both full and half levels.
The discretisation of EV] [Gr] at half levels is given by equation (403).
e Finite element discretisation (LVFE_X_TERM=T): X is discretised at full levels as follows:

* Quantity Ds:

=2 [g]l [An] [CV] [GT]i[Rdaeri V]i (407)

a LTI a

[RT):4,

Thin layer discretisations remain valid: see equations (386).

* Retrieving full levels d from full levels A[G(r?/a?)w] or A[Gw]:

dy = —— 1 [QL NG (408)

" RaTid, LTI

To retrieve full levels d from full levels A[Gw], follow the following steps:
e Finite difference discretisation (LVFE_GW=F):

— Vertical integration to compute Gwy.

Compute r;/a.

Compute G(r? /a®)w;

Vertical derivative to compute full level A[G(r?/a?)w].

Use formula (408).

e Finite element discretisation (LVFE_GW=T): Not yet completely implemented. It seems recommended
to follow the following steps, in order to avoid to apply Rinte and Raderi to the same quantities:

VFE vertical integration to compute Gw;.

Compute r;/a.

Compute G(rf/a® — 1)y

VFE vertical derivative to compute full level A[G(r?/a® — 1)w].
Add this to the original full level A[Gw] to obtain full level A[G(r?/a?)w].

Use formula (408).
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* Retrieving [Gw] or [G(r?/a?)w] from full levels d:

Finite difference discretisation (LVFE_GW=F):
First the surface vertical velocity must be computed, using the surface boundary condition:

JWsurf = Vsurf(a/rsurf) |:£v:| [Grsurf} (409)

Integrating equation (408) from the surface, yields:

[A[G(TQ/(IQ)w”l = ledegz |:1;[:| (410)
l
k=i+1 i
G(T%/QQ)uﬁl = G(’r’gurf/(f)wsurf + I; (ddeTkSk |:p:| k) (411)

(multiply by a2/7"72 to obtain Gwy;), and:

IT
G(T%/a?)wl = G(T?/a?)wf + diRaT iy |:p:| (412)
l
(multiply by a?/r? to obtain Gawy).
Finite element discretisation (LVFE_GW=T):
Use equation (409) at the surface; for upper-air full level values of w discretisation is:

HdeT5> (413)

Gr /a®>)w; = G(r2,.s/a®)wsuwt + [Rinte] (surf -
(ri/a”)wi = G(riut/a” )Wsurt + [Rinte] (surf,0) b Ay

(multiply by a?/r7 to obtain Guwy).

x Retrieving V[gw] from full levels d and Vd: Same kind of methodology to find discretised

equations (apply the operator gradient to equations giving [G(r7/a?)w] from d) as with the thin layer equations.
Differences with the thin layer equations will be:

Replace g by G.
Replace V by (a/r) [1V]

a

Replace II by II.

Replace & by 6.
Replace a by a.
Replace w by (r?/a*)w.

15.3 Thin layer formulation of the momentum equation.
x Definition of X, A, £ and F, top and bottom values.

X=V (414)
A= =201 - s) @A V)] - Ly grYP) (415)
oIl P
L=-V [T -T"(vQ) + RaT" log(IL.) + RaT*Q] + Bco[-2(1 — dv)(RXA V)] (416)
F=Fy (417)
Top and bottom values are defined as follows:

V=0 = Vi (418)

If ém = 0:
Vo1 =V (419)

If 6m = 1:
V,=1=0 (420)

Note that this bottom condition is not fully consistent with the one done in the remaining part of the NH code

(V=1

= VZ:L)~
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x+ Remarks. the remarks done for the hydrostatic model remain valid here. We must add an additional
remark: in some cases we need this equation also at the surface, with some assumptions (explicit treatment of
the Coriolis term, V,—1 = V;=r).

x Discretisation of —2Q2 AV at full levels: It is the same as for the hydrostatic model.

x Discretisation of the pressure gradient term at full levels: Tt is modified compared to the
hydrostatic case.
The pressure gradient term writes:

op Vp
Vo + RT—
(g m)
It contains the geopotential & = gz.

e LVERTFE=.F.: the pressure gradient term is rewritten in order to isolate a main part which looks
like the hydrostatic pressure gradient term, and to isolate some purely anhydrostatic contributions. Its
discretisation at full levels is written under a sum of 4 terms. The first one looks like the hydrostatic
pressure gradient term; the following ones become zero in a hydrostatic model.

Vo + LRIV log 11 —[(ﬂq)wp} —[RTV [1og£” —rr (1= 1) viegm
p . All ! I p

— Term [V<I> + %RTV log H]l: it looks like the pressure gradient term in the hydrostatic model, but
with an additional factor %; its treatment is similar to what is done in the hydrostatic model:

l

[Vo + JRTVIogll], =
Vo, + > (5], [V(RT)], 6 — o (5], Vieg [£], (RT) )i+ S (2], (RT)x [V4],

+[2], IV(BRT)), a0 — [2] Viog [£], (RT)icu + [B] (RT): [V(a+ logTT)], (421)

p

— Term [(ﬂ — 1) V(I)]l: its discretisation is:

Ap _ ( [Apl:
[(£2-1)va] = (154 - 1) vl (122)
For [V®]; see equation (435). Discretisation of [Ap]; has already been studied.
— Term [RTV [log %Hl: its discretisation is:

[RTV [log %] } = [RT),VQ, (423)

— Term [RT (1 - %) Vlog H] e its discretisation is:

[RT (1 - 1;) Vlog HL — [RT); {1 - pl} [%L (424)

See part (9.6) for the discretisation of [%] -

e LVERTFE=.T.:

ap Vp| _  [Apl _ Vp
[8HV<I>+RT ]l ~1aT ][vq>]l [RT); {p}l (425)

where:

— [V®]; is discretised with applying the operator Rinte (s€e equation (436)).
— [Ap]; has been already studied above.
- [%} ; for NPDVAR=2 it is convenient to rewrite this term as follows:

- [,

* Discretisation of the pressure gradient term at the surface: It is computed in the RHS
of equation glvmg “"f , in the case LVERTFE=.F. . Currently the pressure gradient term at the surface is set
to the pressure gradlent term at the full level [ = L.
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*x Discretisation of the grid-point Rayleigh friction: It is the same as for the hydrostatic model.

15.4 Deep layer formulation of the momentum equation according to

(WS2003).

The following modifications must be brought to the thin layer equations:

e Additional w terms appear, use 7, w;; see the treatment of W terms for LVERCOR=T (see part 14.2).

e Pressure gradient term: 22V® is replaced by r> 9p V[Gr]. Use the discretisation of r;, EV] .

a2 a1l

For LVERTFE=F it is not possible any longer to isolate the hydrostatic contribution, and we simply

discretise:
e [Aph =9 iGrl - 2R
a [AIT]; La T

B p]
p
l
15.5 Thermodynamic equation.
x Definition of X, A, £ and F, top and bottom values.
X=T
RT

Cv

A=—-——D3

_ RaT*

Cvd

r-[ze]

Cv

L= {HQD' + d]

Top:
Tn:O = T‘l:l

Bottom if ém = 0:
Tn:l = 7—'l:L

Bottom if dm = 1 (output of physics):
Tn:l - Ts
x Discretisation of the conversion term.
(B p,] = 2T
l [cv}l

[D3]z

Cv

See part (15.1) for discretisation of D3 at full levels.

15.6 Continuity equation.

Thin layer formulation is identical to the hydrostatic model one.

Deep layer formulation: the following modifications must be brought to the thin layer equations:

e I is replaced by 1.

e Some metric terms appear: replace [V (Vg—g)]l by {V (%V%)
1

. ) _ 3 .
v (v _ e [zv} vy (o1 [zv} n
r 0n , 17 la on LT an , La a

e Replace g by G.

15.7 Moisture and other GFL equations.

Formulation is identical to the hydrostatic model.
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(429)
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15.8 Relationship between geopotential height gz and pressure depth (thin
layer formulation).

*x Geopotential height at half levels (case LVERTFE=.F. only): Discretisation of equation

(151) at half levels yields:
k=lhl o

gz = gzs + Z [Rka] Ok (434)

See section (10) for discretisation of ¢ at full levels.

x Geopotential height at full levels:

e Case LVERTFE=F.: It is computed from the geopotential height at half levels by the following
relationship:

II
gz = gz + p—ll [RiTh] au (435)
See section (10) for discretisation of « at full levels.
e Case LVERTFE=.T.:

HRT§> (436)

g2 = gz + ['Rime](surf,l)< » A7

See section (10) for discretisation of ¢ at full levels.

+x Horizontal gradient of the geopotential height at half levels (case LVERTFE=.F.
Only): One applies the operator V to equation (434). That yields:
9Valr=gVa+ 3, -, SE[V(R = ST BeVlog BE [ReTH] 0k
+ 3o e (R T) [V6), (437)

See section (10) for discretisation of ¢ and V¢ at full levels.

x Horizontal gradient of the geopotential height at full levels: One applies the operator V
to equation (351). That yields:

e Case LVERTFE=.F.:
11 11 11
9[Vz], = g[Val; + J [V(RT)], i — p{vm 1’% [RiTi] ou + pfll [R/T] [V, (438)

See section (10) for discretisation of & and Ve at full levels.
e Case LVERTFE=.T.:

Iv(RT)6 — BV (log 2YRTS + LRTVS
(RT)0 — IV (log &) ! > (139)

g [Vz]l = ngs + [Rinte](su'r'f,l) <_ £ A’I’]
See section (10) for discretisation of 6 and V¢ at full levels.

15.9 Relationship between geopotential quantities gz and ¢, and pressure
depth in (WS2003) system.

e Geopotential height gz: r = a + z and formulae are written with r instead of z. Calculation of r and its
horizontal gradient have been described in part 15.2.

e Geopotential ®: Calculations (not detailed) show that ®; = /Gg;z;. If g remains vertically constant,
P, =

e Note that ® is not used in the adiabatic equations, but only in some energetic quantities (physics,
diagnostics).
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15.10 Diagnostic expression of some vertical velocities.
Thin layer formulation is identical to the hydrostatic model one.
Deep layer formulation: the following modifications must be brought to the thin layer equations:

e One computes ﬁ% instead of 7'7‘3—1;][.

e Definition of w is now w = %.
e Calculation of 1'7% and w/ II inherit of the changes found in continuity equation: replace II by II, replace

[V (Vi) by |V (gv%)b g by G.

15.11 Thin layer formulation of the pressure departure equation.
* Definition of X, A, £ and F, top and bottom values.

X=Q (440)
__%p ¥
A=-"2Ds— 5 (441)
_ [%a 572 _ Cpg w2
L= |2AQD +d) — (0D ) (442)
_ %
F= (443)
Top: .
Qo =0 (444)
Bottom if jm = 0: ) )
Qn:l = QZ:L (445)
Bottom if 6m = 1 (output of physics):
Qn=1= Q=1 (446)
x Discretisation of the RHS term.
_op, @] _ Ll [ﬁ}
{ Cv Ds HL T el D], I, (447)

See part (15.1) for discretisation of D3 at full levels. Discretisation of { has already been studied.

15.12 Deep layer formulation of the pressure departure equation in
(WS2003) system.

The following modifications must be brought to the thin layer equations:
e Replace w/II by w/II; definition of w is now w = cfi—l;[;

e See parts 15.1 and 15.2.

e JOp-term only contains a vertical advection contribution; same kind of treatment as for the drr-terms in

temperature equation.

take account of remarks listed in part 15.10.

15.13 Thin layer formulation of the gw and vertical divergence equation.

x Definition of X, A, £ and F, top and bottom values, for the vertical divergence.

X=d (448)
0 [%] oV
gp dt lad gp
A=—-dD3s+dVV — - + — (V -— 449
’ RaTZT 97 | RaTQE (Vew) <an) (449)
' -
L=- 2 1Q) (450)
d / gp OF,
F=— F (451)
o] - m oIl
[57] RaT 55 On
Top:
dy—o = di—1 (452)
Bottom if ém = 0:
dp=1 = di=1, (453)

Bottom if dm = 1: currently cf. dm = 0. Note that this bottom condition is not fully consistent with the one
done on the horizontal wind and the vertical velocity w.
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x Definition of X, A, £ and F, top and bottom values, for the vertical velocity.

X =w (454)
A= g% (455)
F=F, (456)

Top:
e LVFE_GW=.F.: w,—o is computed by the general formula giving w at half levels.
e LVFE_GW=.T.: top value of w is useless.

Bottom if jm = 0:
Wn=1 = VurtV Zsurt (457)

Bottom if §m = 1: currently the same as for §m = 0. Remark: we also need the equation of the surface vertical
velocity.

*x Discretisation of term g%:

e LVFE_GW=F., if LVERTFE=.T., LVFE_ INT_ ECMWF=F. and LVFE_ DELNHPRE=.T.:

dp-1D| _ (p— )T
|:g 11 . - g[Rderl (p H)]l Hl+1 ~1I, (458)
e LVFE_GW=.F., other cases:
Op—1)| _ [p—Tiy1 —[p—1]
{g o | = g T, — 1L (459)

At the top of the model, this formula becomes:

) gt

e LVFE_ GW=.T.: This quantity must be evaluated at full levels: use the full level [Ap]; (see its
discretisation in part 15.1).

Additional remark for LGWADV=T: once updated temporally gw, using the gw equation, it is
recommended to apply vertical derivatives on temporal increments (and not directly on the temporally
updated gw) to restore the temporally updated d. This precaution is to ensure that we discretise

d(t+At) = d(t—At)+ 2At% and not something looking like: d(t+ At) = Rderi(Rinte (d(t — At))) + 2At%.

* Discretisation of the RHS of [gwgf] equation: This calculation must be done in some cases
(LGWADV=F): This RHS is the sum of the product:

sturf

D
7 Vo,

and the “Jacobian” term:
Vsurf (Vsurfv[v(ps})

dV,

e —ul hag already been studied above.

e The “Jacobian” term can be developed as follows:
Uit [Vio 20®s] + 2Usurt Veurt [V me®s] + Veuet [Vine me®s]
*x Discretisation of the RHS of the vertical divergence d equation:
o Term —dD3 + dVV at full levels:
[—dDg + dVV]l = —d; [Dg]l +d; [VV]Z (461)

This discretisation can be applied for both finite difference and finite element vertical discretisations.

P S
dT?j—l;,I on -

e Term —
€ R,
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— LVFE_GW=F.: This term is rewritten:

_ gp 9 [%] ad
R4TT Ologll

Its discretisation at full levels is:

o %] __m g [dﬂ} f[di”} (462)
R4TTI Ologll IL RaTidy | Ldt laaj dt Jaai-1
1

’

— LVFE_GW=.T.: It is desirable to isolate the Laplacian term:

(=[5, [
dt ad N dt lap dt oth

([%]oth is zero for thin layer equations). The Laplacian contribution provides the term:

Pp 9(%%2)

B RdTg—l;: 877
Its discretisation at full levels is:
a(p—11) a(p—11)
o 05| _ ) 0 (%5m)
RdTg—H on II; R4Ti6; on
n l 1

o (271 )

The discretisation of —— has been studied in part 15.1.

Remark: the discretisation of this term, combined with the discretisation of the RHS of the w equation,
must respect the constraint “C2” of (IDVNH2.1).

— __op VY. sro o .
e Term Z = RaT 30 (Vw) ( on ) its discretisation looks like the one of X.

— LVFE_Z_TERM-=.F.: This term is rewritten:

___9p oV
T T RJTT (vw)(alogﬂ)

Its discretisation at full levels is:

Z = _1;% RdgTuSl [Viwl_y (Vi = Vi_y) + V[wl(V; = Vi) (463)

This discretisation uses V[w] at half levels and V at both full and half levels. The discretisation of
V[gw] at half levels is given by equation (395).

— LVFE_Z_TERM-=.T.: Z is discretised at full levels as follows:

__mglAnf ,
Z; = 0, RaTi, V[w]l['Rdeer}l (464)

x Use of d4 as prognostic variable: In equation (160), the calculation of % is not done by an Eulerian
temporal advection but simply by a diagnostic evaluation. In the Eulerian scheme without any predictor-corrector
scheme, the discretisation of % follows:

oX X% —X~

ki i 465

ot At ( )

With a predictor-corrector scheme, there are two options:

e Option 1 (ND4SYS=1): include all the contributions of the evolution of X in the predictor-corrector
scheme iterations.

e Option 2 (ND4SYS=2): include only the advective contributions evolution of X in the predictor-corrector
scheme iterations; after the last step of the corrector step, include the non advective processes.
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15.14 (WS2003) deep layer formulation of the gw and vertical divergence
equation.

x Definition of X, A, £ and F, top and bottom values, for the vertical divergence.

X=d (466)
7‘2 a2w
A= —dDs; +dVV — @{8Mgtﬂm+ Gp"@{i4><mv (467)
RqTS: on RaT%} a an

L, physics, top and bottom values: cf. thin layer formulation.

x Definition of X, A, £ and F, top and bottom values, for the vertical velocity.
X =w (468)

r? op , O(p—T0)
A= —Gue—(9-G)+G | =5 -1) = +G—=—"—~~
ps — (9 — G) <a2 ) P o

(469)
Physics, top and bottom values: cf. thin layer formulation.

x Discretisation of each component of the RHS. They are discretised at half levels if
LVFE_GW=F, at full levels if LVFE_GW=T.

e Term —Gus: discretisation of us has been already studied. See equation (318) for discretisation at full
levels (case LVFE_GW=T), replace g by G; for discretisation at half levels (case LVFE_GW=F), use V
at half levels, r at half levels.

e Term (g — G) is non-zero only if vertical variations of g are taken into account.
In this case: (¢ — G) = G(a®/r} —1) and (9 — G); = G(aQ/ri2 —1).

e Term G (1 — é) % +G a(;(;iﬁﬁ): depths of pressure are discretised like in the thin layer model.

a

— Case LVFE_GW=F: use the half level values of [Ap], [AII], r, already studied.
— Case LVFE_GW=T: use the full level values of [Ap], [AII], 7, already studied.

The way to separate the non-Laplacian residual from the main Laplacian term is still an issue (relevant for
LGWADV=F).

e To compute the RHS of d equation we additionally need the following formula:

d[%w} _ r2dw+2r 2
at a2 dt ' a2"
15.15 Specific features for plane geometry.

Like for the hydrostatic model, the specific features for plane geometry mainly touch the momentum equation.
These specific features are identical in the hydrostatic and non-hydrostatic model, so we don’t recall them.
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16 Discretisation of some other diagnosed quantities.

Discretisations are generally written with the radius r to take account of the deep-layer formulations. For thin-
layer formulations replace r by a and [§V] by V.

16.1 ¢,, R and k.

For ¢, (air calorific capacity at constant pressure) at full levels:

[eo]; = Cpy (1 -], — la], - [qih) + cpy, [g]; + oy [a]; + co; [ai] (470)

where cp4 is the dry air calorific capacity at constant pressure, c,, is the water vapour calorific capacity at
constant pressure, cp, is the liquid water calorific capacity, and cp,; is the ice calorific capacity.
For R (air constant) at full levels:

[R], = Ra (1 —ld, = [al, - [qi}z) + Ry [q]; (471)

where R4 is the dry air constant and R, is the water vapour air constant.
For k at full levels:

R
= ot (172)
The ratio ¢y /cp at full levels is given by equation:
vl .
H — 1 [l (473)
16.2 [tV|(RT).
Its discretisation at full levels writes:
r r r
HEV] (RT)L = (Rv — Ra) [T, Hav} q]l +IR], Hav} T]l (474)
16.3 Potential temperature PT and its horizontal gradient.
Discretisation of PT at full levels writes:
—[s];
II
[PT], = [T7, |:1_£10}(§0:| (475)

where HlOOO = 100000 Pa
Discretisation of its horizontal gradient at full levels writes:

[z ), - e (L 1o

l

) (476)

Remark: in the cycle 45 the code does not match exactly formula (476); this has to be changed in the future.

The expression of [Evim at full levels is given in part (9.6).

16.4 Virtual potential temperature PTV.

Its discretisation at full levels writes:

[PTV], =[TV], { ) ]Hd L { [, ]Kd (477)

IT1000

where H1000 = 100000 Pa; Rq = Rd/de.
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16.5 Equivalent potential temperature PTE.
Its discretisation at full levels writes:
_ LZ[QSat}l
[PTE], = [PT): exp {[Cpsat]sz] (478)

where the discretisation of the potential temperature PT has been provided by formula (475). Discretisation of
[Cpeas] at full levels writes:

[cpsat]l = Cpg + (va - de)[anc}L

16.6 Absolute vorticity Cus.

Its discretisation at full levels writes:
[Cans], = [¢], + f (479)

for both thin layer and deep layer equations (after formula (4.28) of (White and Bromley, 1995)).
In the deep layer formulation, it is better to rewrite this formula as follows:

a T

Gl = [2] [2¢] + (480)

rlpLa

in order to show quantities easily available in the model.

16.7 Potential vorticity PV.

x Vertical finite difference discretisation.
In the thin layer formulation, discretisation of PV at full levels is:

ov M OPT oU1 [M OPT OPT
P = e - pr— - - abs 4 1
PV, g[aHL[acos@ aAL g{&HL[a aeL gKb]l[BHL (481)
In the (WB1995) deep layer formulation, discretisation of PV at full levels is:
2] [azv) 2] [aczw
PVI, = (5] o[ %2 (a5, - =] o [ 260 (28],
—g [Cabs); [%L + 2Q cos 6 [%L [% %]l (482)
In the (WS2003) deep layer formulation, discretisation of PV at full levels is:
_[r v M __9PT r aU1 [M aPT
(PV], = [2],6 [%5], [easa Tn ), — [£], G [35], [ %e ],
= [5], G leanl, [ ], +20c0s 2], [F567], (483)
Discretisation of vertical derivatives relative to hydrostatic pressure: for a variable X:
X1 Xit1 — X1
[GTTL —05 ( AT ) (484)
0X o Xi=2 — X1
{371_[} =1 ( [AIT];=1 ) (485)
0X Xi= — Xi=r—1
il = [ == = 4
(5], ( AT ) (486)

In the (WB1995) deep layer formulation, this discretisation is applied to X = (r/a)U, X = (r/a)V and X = PT,
otherwise it is applied to X = U, X =V and X = PT.

Discretisation of the components of EV] (PT): see equation (476).

*x Vertical finite element discretisation.

The same discretisations are currently used. VFE discretisation of vertical derivatives has not been implemented
for this quantity which is currently used only in the post-processing.
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16.8 Shearing deformation SHD and stretching deformation ST D.

Spherical geometry:

a 1 aU
[STD) = M [;L [acos@ (‘9/\] ~ 05D, (487)
l
a 1 av
[SHD], = M Hl LCOS@ 8/\} — 0.5 (488)
!
Plane geometry:
[STD), = M? [%L [0.U']; — 0.5D, (489)
[SHD]; = M? m [BLV']) — 0.5¢ (490)
l

16.9 Hydrostatic vertical divergence diyq.

The thin layer discretisation of dnyq at full levels is:

_ Bujer| (el R L ov
(dival, = — - H 5] - VI - 7 [Vl | (491)
with:
e if finite differences discretisation applied to vertical derivatives:
oV 1
[VigAnGT] = 5 (VI = V) (7 g2l + (IV), = [VI_y) (9 2], (192)

e if VFE discretisation applied to vertical derivatives:

ov A
[Tloa ] = G Racn(VIL IV o], (493)
oIl 1, 1
The (WB1995) discretisation of dpnyq at full levels is:
_ R [w R Ta r R |a? r r 1 T ()
[ehyal, = " Rq [cp]l {HL " Rq {TL Hav} VL+ R4 {NL Vi Hav} {aHl " RaT, l{av} lgZ] 11 oIl
!
(494)
with:
e if finite differences discretisation applied to vertical derivatives:
r 0 (#) a VvV Vv r \% \% T
Uﬁ] o=~ | =5 | ([T FL) ¥l (7] - 5 L9l
1
(495)
e if VFE discretisation applied to vertical derivatives:
r 0 (%) alAn); A\ T
{EV} [gz] 11 S =5 |:Rderi (7>L HEV} [gz]}l (496)
l

The (WS2003) deep layer discretisation of dynyq at full levels is:
e Lec) (8, - 2 L], # [, i [ om ]
d =—— 1= |=| |=| -5 |- -V|V| + |- -V| [Gr]II— 497
[yl R [Cp]l I z[HL Ra Llrlilla 1 Llali RaTy Lla (6] oty 0

e if finite differences discretisation applied to vertical derivatives:

[29] tennZe] = 22 [ovie-w) [[55] 6]+ (- vy [[E9] ]| oo

with:

e if VFE discretisation applied to vertical derivatives:

Hgv} Gr] ng}i]l _ B v, Hgv} [Gr}] (499)

gl Hl !

One needs the discretisation of the horizontal wind at half levels: this discretisation has been given in part (15.1).
Discretisation of each other RHS terms has been previously studied in this documentation.
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16.10 Hydrostatic height coordinate vertical velocity wyyq-

x Vertical finite difference discretisation.
The thin layer discretisation of wynyq matches the following equation:

k=L

9 [Whydl; = g [Whyd] s + Z Ry Ty, [dnyal,, Ok
k=41

Discretisation of wnyq at full levels is given by the following equation:
g [wnya]; = g [wnyal; + RaT} [dnyal; ou

At the surface:
g [whyd}surf = [V]l:L v¢s
The (WB1995) discretisation of wnyq at half levels is given by the following equation:
rlz [l ol
93 [Whyalr = 95 [whyal e + > “3 R [dnyal . O
k=Il+1

Discretisation of wyyq at full levels is given by the following equation:

i i ]
93 [Whyal; = 93 [Wnyals + 5 RaTi [dnyal, o

At the surface:
a T

g [Wnya] e = [7} =1 Vlier [E

V] @,
.

The (WS2003) deep layer discretisation of wnya at half levels is given by the following equation:

rl? [t v
G—5 lwnyaly = G= 5% [Whyd]guer + kZI 1, fta T [dnyaly, Ok
=i+

Discretisation of wyyq at full levels is given by the following equation:

[r]? [ il

I -
G o wnvaly = G5~ Twnyaly + 7 RaTi [dhyal, &
At the surface:
a r
= | — — ¢S
G [whyd}surf |:,r:| =L [V]l:L |:av:|

x Vertical finite element discretisation.
One directly computes whyq at full levels.
The thin layer discretisation of wnyq at full levels is given by the following equation:

Rdeh d(s
9 [Wayd]; = g [Whyd]guer + [Rinte] (sur s <A17y>

At the surface, g [wnyd],,,; is still given by equation (502).
The (WB1995) discretisation of wnyq at full levels is given by the following equation:

[r]? [r)2uet 2 RqTdyyad
g? ['U)hyd]l =g aSQU [whyd]surf + [Rinte](su'rf,l) ? An

At the surface, g [wnyd],,,; is still given by equation (505).
The (WS2003) deep layer discretisation of wnyq at full levels is given by the following equation:

[T}Q [T]gur 1:[ RaTdy dg
Ga—; [Whya], = GTf [Whyd]quet + [Rinte] (sur 1) ﬁTny

At the surface, G [Whya),,,¢ is still given by equation (508).

sur
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16.11 Moisture convergence C'VGQ.
This quantity is evaluated at full levels. For NCOMP_CVGQ=0 or 1, calculation is done as follows:

.0
[CVGEQ), =~ [VVd, - [naq] (512)
1l
For NCOMP _CVGQ=2, calculation is done as follows:
_[99] _ @}
[CVGQ], = th {dt l (513)

NCOMP_CVGQ=2 can be used only in the semi-Lagrangian scheme.
For the way of discretizing — [V'Vq], (which is an horizontal advection term) report to part 11.1. For the way of

discretizing — [ﬁg—f]]l (which is a vertical advection term) report to part 11.2.

16.12 Montgomery potential ®,,, and some other energetic quantities.

All these quantities are discretised at full levels. Formulae containing gz are guaranteed for thin layer equations.
Formulae for enthalpy and kinetic energy are guaranteed at least for the hydrostatic model.

e Montgomery potential: [®mg], = cpyT1 + [92];-

e Dry static energy: s; = [cp], T1 + [92];-

e Moist static energy: [su], = [cp), Tt + [92], + Liqu.
Enthalpy: h; = [ep], Th + [g2], + 0.5 % (U + V}?).
Kinetic energy: [KE], = 0.5 (U} + V}?).

16.13 Angular momentum of components MMA, MMB and MMC'.

All these quantities are discretised on layer using the layer values of (Ug; V) and r.

16.14 Entropy S.

Hydrostatic model: the entropies are discretised at full levels using the layer values of ¢, qi, ¢i, T and II; the layer
values of II,, and II; have to be taken consistently with the one of II: [IL,], = [¢]; [I1], and [I14], = (1 — [¢]:) [II],.

Non hydrostatic model: the hydrostatic pressure II must be replaced by the total pressure p in the previous
formulae.
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17 Treatment of the linear terms.

The grid-point calculations of the model provide the quantity (X — At3L)" for a subset of equations. Retrieving
X7 is done in the spectral computations after the direct spectral transforms and just before the horizontal
diffusion. The algorithm of solving the semi-implicit scheme is described in a specific documentation (IDSI)
about semi-implicit scheme.

In the (WB1995) system, a reference state must be defined for Ty, r, W and ps. The reference state is defined
by an horizontal wind equal to zero: the consequence is that the reference state for divergence, vorticity, and
us is zero. The equation giving ﬁ% gives a reference state for 17% equal to zero. The equation giving (w/II)

gives a reference state for (w/II) which is equal to zero; the consequence is that the reference state for W is also
zero. The reference state r* for r must depend only on the hydrostatic pressure II, but also match the formula

4 — 0: the consequence is that %—TH* must be zero, so r* must be a constant; the simplest way to define this

dt
constant is to take r* = a. Thus the reference profile for T; is zero. The consequence is that the spectral part of

the semi-implicit scheme is the same in the deep layer and the thin layer equations.

In the (WS2003) formulation of deep layer equations, a reference state must be defined for r and us. The reference
state for w is also relevant in the NH thin layer equations and is zero.
e Reference state for us: the reference state is defined by an horizontal wind equal to zero: the consequence
is that the reference state for divergence, vorticity, and us is zero.
e Reference state for r: the simplest way to define it is to take r* = a.

18 The Asselin filter.

In a leap-frog scheme, a weak time filter is used after Asselin (1972). If Xg denotes the filtered value of X:
X8 = X° + €ass1(Xg — X°) + €ass2(X T — X°) (514)

19 Lateral boundary coupling and upper boundary coupling.

A limited area model (LAM) needs to get information from the lateral boundaries. It can be done:

e By lateral boundary coupling, in grid-point space.
The LAM domain is divided into 3 zones (C for inner zone, I for intermediate zone, E for extension zone).
Davies (1976) relaxation is applied to fields:

Xcoupled = (1 - Oérel)Xcoupled + areIXIbc (515)

Qrel is equal to 1 in the extension zone, 0 in the inner zone, and varies between 0 and 1 in the intermediate
zone. aye is vertically constant and can depend on the coupled variable.

e By upper boundary coupling.
The same kind of formula:

Xcoupled = (]- - OCnud))(coupled + anudXIbc (516)
is still applied, but now anug is vertically-dependent (generally non-zero near the model top only) and may
depend on the wavenumber too.

Onud Writes:

avonKnud
1 + avahKnud
ay is a vertically-dependent coefficient: 1 for | below a threshold lnen1; O for [ above a threshold lhen2;
continuous and monotonic function between 0 and 1 otherwise. . is identical for all variables.
an is a wavenumber-dependent coefficient: 1 for low wavenumbers (below a threshold mneko); O for high
wavenumbers (above a threshold npeki1); continuous and monotonic function between 0 and 1 otherwise.
ay, is identical for all variables.
Kua is a tunable coefficient which may be different for each variable.
Such scheme is activated in practical to force the LAM large-scale patterns by the large scale model in the
high atmosphere.
There are two ways to activate such a scheme:

Qnud =

— Spectral nudging, in spectral space: both vertical and wavenumber dependencies are possible. Could
be applied in spectral space to spectral fields only.

— Grid-point nudging, in grid-point space: only vertical dependency is possible. Could be applied in
grid-point space to grid-point fields.

Xibe is needed at each timestep, but coupling files are not read at each timestep (frequency of reading such files
is generally between 1h and 3h). A temporal linear, quadratic or cubic interpolation is applied to retrieve Xipe
at the current instant from values read on files.

A call-tree for lateral boundary coupling and upper boundary coupling is given in part 24.6 .
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20 The flux form of an equation and its discretisation.

20.1 The flux form of the equation of a variable X.
20.1.1 Introduction.

The aim is to evaluate the Eulerian tendency of an additive quantity (x corresponding to some content on an
additive quantity in a particle. The additive quantity @x is linked to an intensive quantity X. For example:

e For X =1 the additive quantity @ is the total mass in a particle.

e For X = ¢ (specific humidity), the additive quantity Qq is the water vapour mass in the same particle.

e For X = V| the additive quantity Qv is the momentum in the same particle.

X and @x are linked by the following relationship:
Qx =1 X

All the calculations will be done for the deep layer equations.

Given a particle of dimensions dx, dy, 0z, of density p: the total mass contained in this particle is
Q1 = pdxdydz

Using the hydrostatic relationship 6II = —pgdz, expression of Q1 can be rewritten as follows:

Q1= —édw&yél’[

Product dxdy involves ;—i and a surface §5, which does not depend on the vertical nor on the hydrostatic pressure.
Q1 writes:

2
Qi = —%%5&511 —118—1]55 o

All What does not depend on the time ¢ has to be put in factor (for example g, S, and dn); the Eulerian tendency

f’r oIl

pel 2L X has to be taken to write the flux form of the evolution equation of X.

20.1.2 The flux form of the equation of X.

x Calculation with metric terms. One does a combination between the Eulerian form of the evolution
equation of X and the Eulerian form of continuity equation to obtain it.

Equation for X writes:

0X a r 0X dX
Bt foe] o[
ot~ v on "l
where [dd—)f]ad is the adiabatic Lagrangian tendency of X. One here omits the horizontal diffusion terms and
semi-implicit correction terms.

Equation (517) is combined with equation (555) divided by a®. In continuity equation the following term must

appear:
oI
9 |:a2 8n:|

ot

} 4 (517)

Term 0 {Z—i %} /On can be rewritten:

7‘2 7‘2 7‘2
2] ol pom ol
a2

D Y e )
o ot om an ot oy J{] =

ot ot oy On ot ot

a2

on ?[ 2] a[@] : :
One moves the terms % By an nd: in the RHS of the equation.

Continuity equation can be rewrltten unaer its flux form:

ot ot 0On on Ot

a

r2 r? r? iy
@_ 3H8[2] +3ja[‘?} _[Tv} v %— Ok, (518)
an on Ton

2 -
o r= ol
The quantity: # is given by the combination of equations: X (518) + {;—z %} (517)
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e Terms containing [gV] in the RHS:

e[z wex 5] 8] - v ) oo e o) ) = ] v 2]

r2 ol
a? dn

e Terms containing a%, other than the one which is multiplied by aa—l;[ in the RHS:

2, r2 .
2 oI L oX Xa [W%ﬂ o [sz’?%{}
“la@an| ey on - on

e Term containing [%]ad in the RHS:

7 oIl [2X]
a? On dt |.q

e Physical term containing Fx:

e Physical term containing %:

That finally gives the flux form of the Eulerian equation of X:

22 on 22 xpon
ASE o) v - LB
on ?[22] on 2] 2 o1 | [dX 2 a1 oFp
XSG e t X e [?27 [ ]t {:267] Fx —gX 5, (519)

* Final equation.
e (WB1995) deep-layer formulation of hydrostatic equations: see equation (519).
e Thin layer formulation of hydrostatic equations: some terms disappear and this equation takes a simpler
form.
Tl o[xn%2]  Tom] rdx I
= N EER

o x < o Fx —gx
Van on on dt 877] X9

o5 X] _

oF,
o Y on

5 (520)

e (WS2003) deep-layer formulation of NH equations: replacing II by II allows to hide some metric terms.
Equation can be written:

8[%_7[)(} alr a. Ol al a oMl r 8[Xﬁ%l;7[} ot | 1dX ot OFp
e = 2V [rvaﬂ} S A R M &) [877 e
(521)
or:
0 [%X] alr a, Ol adll [r 8 [Xﬁ%z[} oI rdXx o1 oF;,
—5 =72V [V&J X=Tan Y B R {an] [ELJ {an} Bx=aX,
(522)
If[vertical variations of g are taken into account, an alternate possible formulation is to use the RHS of
oS alx

5 , which provides more consistent budgets. But the RHS of the corresponding equation is more
tricky: this option has not been retained.

20.1.3 Specific features for plane geometry.

Equations (519) and (520) are still valid but it is desirable to use the gradient operator MV = (M@,/(; M@;) and
the quantities (MUI; MV,) for the wind, and to write equations on the plane.
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20.2 Use of the discretisation of the flux form of equations.

The flux form of equations is used in some diagnostics, like the DDH package (horizontal diagnostics in boxes).
There is a specific documentation for the DDH package, at least for the thin layer equations (Piriou, 2006), so
no additional detail will be given here. Only the list of variables diagnosed (to which is applied the flux form of
equations) is given below:

e X =1 (continuity equation).

e X = g (moisture equation).

e X =V (horizontal wind).

X =0.5(U? 4+ V?) = 0.5V.V (kinetic energy).

o X =cpT.

o X =c,T+ gz +0.5U? +V?) (total energy).

X = q (liquid water).

X =g (ice).

e X=M=rA(QAr+V) (kinetic momentum).

e X = S (entropy).
For some of these variables, [%]ad is assumed to be zero (X = 1; q; ¢,T + gz + 0.5(U% + V?); q; ¢; S); for

some other ones which are not prognostic variables, computation of [%] need some additional calculations (for

ad
example for the kinetic energy).

Additional remark: gz has been kept in some energetic quantities but it may be better to write ® (which is not
always equal to gz for deep-layer formulations of equations).

20.3 The discretisation of the “thin layer” flux form of the equation of a
variable X.

20.3.1 Left hand side.
In the LHS, [%X] is computed at full levels, and is discretised as follows:

{c‘mx] (A,

iy = X
an [An], !

20.3.2 Term containing the horizontal divergence in the RHS.

This term is rewritten under a sum of 3 terms, in order to show the quantities VV, VII and VX, and writes:

- {anx] vv - vx] v {

o1l
on on Von

o

Discretisation shows the quantities [AIl],, [An],, [VV],, [X],, [AB],. For the second term one uses the definition

of the hybrid vertical coordinate, showing %—5 and Ils. So the discretised form of the sum of 3 terms writes:

_ |:[AH]Z [AB}ZVH] _ |:V [AH]Z:| [VX]
[An], [An], ) Z[An]l ! :

Remark: term —V [V%X] can be rewritten as —XV [Vg—g] — V%?VX to show the quantity V [Vg—g] easily
available in the model.

Xl] [VV], — [ViX]] {

20.3.3 Term containing the vertical divergence in the RHS.
* Vertical finite difference discretisation: Its discretisation writes:
[Xﬁ%ﬂi - [Xﬁ%}z,l
[An]z

e Vertical integration of continuity provides 7'7?,—1;[ at half levels, so this is 7'7?9—1; at half levels which has to be
used in the discretisation.
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e X is known at full levels; its discretisation at half levels is given by formula:
XT = 05 (Xl + XH»I)

The former expression can be rewritten as a difference of two fluxes (more exactly —ﬁ(ﬂuxj —flux;_,)) where:

flux; =

0.5(X; + X141) {‘an]
ol An) 000
g on 7

ﬂuXtop = Xtop |:7781_I:|
g M | on
Aux Xsurf |:778H:|
surf = .
9 87] surf

The DDH package (routine CPDYDDH) stores these half level fluxes.
x Vertical finite element discretisation: What is currently coded is a mixed FD-VFE discretisation
where the operator Rgeri is not used:

e Vertical integration of continuity provides 7']?9—1;][ at full levels; its discretisation at half levels is given by

fOrmula:
l ' l I+1

e X is known at full levels; its discretisation at half levels is given by formula:
Xf =0.5 (Xl + Xl+1)

The discretisation currently proposed is:

e Layers2to L —1:

0.5+ Xern)] |05 ([338], + [#98],,., )| - 05 (s + 301 [0.5 ([92],_, + [#38], )]

[An],
e Layer 1:
[0.5 (X1 + X5)] [0.5 ([ﬁg—g]l + [7‘;2—5]2)} — Xiop [ﬁ%}]mp
- [An],
e Layer L:

Now [192] = 05 (Xe s+ x0)] 05 ([992],_, + (98], )]

[An],,
This discretisation does not match completely the way of discretising a vertical derivative (which uses the operator
Raderi), but this is the discretisation which leads to the minimum amount of modifications in the DDH package
(routine CPDYDDH) compared to the case LVERTFE=.F., since the fluxes remain defined and stored at half
levels. The former expressions can be rewritten as a difference of two fluxes (more exactly — =% (flux; —flux; _,))

[An];
where:
ﬂuxfzioﬁ(Xl—’_XHl) 0.5 {nan] + [UBH:|
g on |, M|,

Xtop . aH
ﬂUXtop B g |:178"7:| top
= [ 1]
9 377 surf
The DDH package (routine CPDYDDH) stores these half level fluxes.

20.3.4 Term containing [%} J in the RHS.
a

e (15

88

Its discretisation writes:




20.3.5 Physical term containing Fx in the RHS.

Its discretisation writes:
[ALL],

[Aﬁ]z

[FX]z
20.3.6 Physical term containing 88—1:71’ in the RHS.

Its discretisation writes:
[AF],

[Aﬁ]z

,gXl

20.4 The discretisation of the flux form of the equation of a variable X in

the (WB1995) system.
20.4.1 Left hand side.

In the LHS, [ X } is computed at full levels, and is discretised as follows:
con ] _ [, Am,
a? n . a? [An],

20.4.2 Term containing the horizontal divergence in the RHS.

This term is rewritten under a sum of 4 terms, in order to show the quantities EV}

[gV] r, and writes:

e el v -] [59]

o1l
an

ol
n

-[ve] B9«

-]

V, [V] T, [£V] X and

oIl r

a

Discretisation shows the quantities [r],, [AII],, [An],, HgV] V]z’ [X],, [AB],. For the second term one uses the

definition of the hybrid vertical coordinate, showing %—f;’ and IIs. So the discretised form of the sum of 4 terms

writes:
[ [wTv) o] [ e oo v 2

Remark: term — [g

[%V] [%Vg—g] easily available in the model.

20.4.3 Term containing the vertical divergence in the RHS.

% Vertical finite difference discretisation: Its discretisation writes:

r2 . OI1 r? - OI1
[‘T"XUT"L - [?Xnain}f—l
[An],
e Vertical integration of continuity provides ;—;ﬁg at half levels, so this is r2

v]«] - {vl

V] [gv%x] can be rewritten as — X [gV] [%Vgg] — 7V8H [i

a2

(AL,
[Aﬁ]z

) [[5]

V] X to show the quantity

a

nan at half levels which has

to be used in the discretisation (this is equivalent to use az at half levels and nan at half levels).

e X is known at full levels; its discretisation at half levels is given by formula:

XT =0.5 (Xl + Xl+1)

The former expression can be rewritten as a difference of two fluxes (more exactly —

ﬁuxf _ 0.5(X1 + Xi41) nBH
g on |7
2
flux¢op = Xtop Lﬁaj
g a? ' on top
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(ﬂuX flux; |)) where:

[

T

a
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Xsurf aH
ﬂuxsurf i
9 617 surf

The DDH package (routine CPDYDDH) stores these half level fluxes.

x Vertical finite element discretisation: What is currently coded is a mixed FD-VFE discretisation
where the operator Rger: is not used:

e Vertical integration of continuity provides ;—iﬁ%ﬂ at full levels; its discretisation at half levels is given by

formula:
oy 5 r? ol n ﬁ . OIL
a277877 Zi a2n8n . a2n817 L1

e X is known at full levels; its discretisation at half levels is given by formula:
XT = 05 (Xl + Xl+1)

The discretisation currently proposed is:

e Layers2to L —1:

o0+t oa ([o] + [200],, )] ~wo0urexirlos ([o], + (2121 )

[An],
e Layer 1:
wacs o o (8], (30 )) o [0,
) [,
e Layer L:

2, 2 .
o LQngg} surf B [0.5 (XL71 i XL)} |:0.5 ({2277‘891;’[} L—1 * Lﬁzn%ﬂ L):|
[AW]L

This discretisation does not match completely the way of discretising a vertical derivative (which uses the operator
Raderi), but this is the discretisation which leads to the minimum amount of modifications in the DDH package
(routine CPDYDDH) compared to the case LVERTFE=.F., since the fluxes remain deﬁned and stored at half
levels. The former expressions can be rewritten as a difference of two fluxes (more exactly — (flux; —flux; )

An]
where:
ﬂuX7:0.5(Xl+XH_1) 5 [ an] +[ an]
Ton "o
Xto oIl
fluxgop = P
e =Ty { nan}
Xsurf T aH
ﬂquurf -
9 617 surf

The DDH package (routine CPDYDDH) stores these half level fluxes.

20.4.4 Term containing [%} J in the RHS.
a

Its discretisation writes:

LA, rexq ]

dt
20.4.5 Physical term containing Fx in the RHS.
Its discretisation writes:

[*], |am],
@ [An),

[FX]z
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20.4.6 Physical term containing 88—1:7" in the RHS.

Its discretisation writes:
[AF],

[Aﬁ]z

—ng

20.4.7 Term — X2 ? {Z%}

5t —on in the RHS.

This term is non-zero only in the (WB1995) deep layer formulation.

x Vertical finite difference discretisation: Taking X =1 in equation (519) yields:

o[ z] o|zn3n]
1 [ry] |ty o L] Ok
on - [av] [avﬁn} on g on (523)

Discretisation of the RHS of this equation has been already studied in parts (20.4.2), (20.4.3) and (20.4.6) (take
X =1).

Using the following properties: [%—lﬂ =0 et [I}],,, =0, equation (523) yields the following discretisations:

top

r? 1l r r r? ol r? ol
|:G,2 Bt:| =1 - |:|:Evi| I:EVAHiHl:l B |:a’2na17:| 1=1 - |:a277(977:| top ! [Fp]izl (524)

r? oIl r? oIl T r r? ol r? ol
5] - Ew ] e [Evan]) - (5] + [m5] —omhenn, e

That yields: [2—2 6—?}7, and one assumes that:
1
eon) _ 2] rom
a? Ot Z_ a? 7 ot 17

So discretisation of [%]]Z writes:

8 om r2
[857"“2] can be rewritten into the following sum:

oM r? r? p
o[s5] _anol5] ol
on ot On a? On

Term

Hence:
T a1l r2
wols] o8] o
ot On an a? 0On
One makes the following additional assumption:

2421 -] [48]

which provides the following discretisation:

r@[%ﬂ] _ {TT [ - (8],

a? 0On . a? [Aﬁ]z

a2

Summary:

of 2
e The discretisation of [An], [%12 [8“:]} is: [%—?A {Z—i” .
1



e For the layer number [:
o, [l _[r* [iﬂ}fﬁ [iﬂ} _|” [q+ﬁ [iﬂ]
ot a? l_ a? 7 ot 17 a? 7 ot 111 a? ; t 17 a? . ot 1i-1
_ |:r2 BH] 1— [CTTZL
T

a? ot

e For the layer number [ = 1:
2
e (L]
o)l (-
I e e P (=],

x Vertical finite element discretisation: For the time being the above FD discretisation is also used
even if the VFE discretisation is switched on in the model.

d&d
20.4.8 Term X %15~ in the RHS.

This term is non-zero only in the deep layer formulation.

* Vertical finite difference discretisation: One uses the value X; of X on the layer number [, and

for [@} » the discretisation [[il;]]; already used elsewhere in this documentation.

on
: N 0[] , : :
It remains to discretise the term —4—. More generally, for any integer or real number n, one writes the following
relationship between Eulerian tendency and Lagrangian tendency:

] _dl] [ov] [29] [2] - Rkl

ot dt r a am on

which is rewritten as follows:

o= n—-17 9z n—17 4 [z n—1 n-17 §[r
(=] _ [r 5] _ [r 5] [r [2v] [29] [2] o[22 4 [£]
ot an~t| ot an~t| dt a1t Lr a a an—1 on
This formula can be written as it is for each layer I, provided that one uses values of r/a only at full levels and
never at half levels; that yields the following discretisation:

5] ol ] SR e I SR )

with:
dlz]| _wm
i | " a
l
L] k(e - ] < b, [ e
Ton |77 (AT,
and:

P _ [
a™ a
Computation of [hand [[2v] [2]], has already been studied in part (5.3.1) (see equations (110), (112), (111
a a all]
and (113)).

dl Lz
It is to be here noticed that discretisations are written showing the quantities H%V] [ﬂ ]l and [ El‘;}} which are
gy

available in the model; in the contrary the corresponding derivatives of [Z—H are not available. For consistency, one
has to do the same thing in the vertical advections, because even if it is possible to compute directly the vertical

T

B[LZ] =n [an} % if the identity 6["%] =n [an} o]

a
ED an—1 on an—1 on

advection of [2—:] , one does not obtain the identity

is not used.
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x Vertical finite element discretisation: For the time being the above FD discretisation is also used
even if the VFE discretisation is switched on in the model.

20.4.9 Remarks.

x Vertical finite difference discretisation: Discretisation of the flux form of the evolution equation
of a variable X, that has been described in this documentation, is valid for any variable X known at full levels;
this is in particular the case for X = [i}n at full levels. So, for X = [l]n, the vertical divergence term has the

a a
following discretisation:

e | I e M e G Y e B

[An]z

Quantity = must not be put in factor before the discretisation. More generally, when X = [g]n Y, the vertical
divergence term has the following discretisation:

o ] - [t [0 ]+ [5
[ -1
[An]z

This remark is valid in particular for some variables like X =V 4+ 2QAror X =M =rA(V+ QAr).

-0.5

x Vertical finite element discretisation: The current formulation of DDH is not fully consistent
with VFE for flux vertical divergences (use of a mixed FD-VFE discretisation). This point is still an issue which
requires a specific study.

x Non advected pseudo-historical GFL variables: The calculations previously done are valid
for advected variables. For non advected pseudo-historical GFL variables, all the previous calculations must be
done again with replacing the advections by zero.

x Semi-Lagrangian advection: The calculations previously done are fully consistent with the Eulerian
discretisation of the equations, but not with the semi-Lagrangian discretisation of the equations.

20.5 The discretisation of the “(WS2003) deep layer” flux form of the
equation of a variable X.
20.5.1 Term containing the horizontal divergence in the RHS.

This term is rewritten under a sum of 4 terms, in order to show the quantities [gV] V, [gV] 1:[, [gV] - and
[iV] X, and writes:

a? o1l r a? r on a®_ oIl r r a. O] 1r
- [&;X} YV L«z”} A an t [rs"aﬂ] 2v) e~ [Van] 2V x

a

Discretisation shows the quantities [Al:[]l, [An],, HEV] V} ;» [X];, [AB];, ri. For the second term one uses the
Is.

definition of the hybrid vertical coordinate, showing %—f and So the discretised form of the sum of 4 terms

writes:
e ] 2] 1) v ][5,

[ oen] (lze))-zwe]

Remark: term — EV} [%V%X] can be rewritten as —X EV} {%V%} - %V@ [EV] X to show the quantity

[AB], [
[An],

fv} 1,
a

[£] [2V32] easily available in the model.
s n

a

20.5.2 Other terms, and additional remarks.

F

See part 20.3 (replace II by ﬁ) For the time being vertical variations of g are always ignored in the é)anp term.
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21 Organigramme for the setup and control routines (direct
code).

x General architecture under CNTO: The organigramme will not be detailed (that will be too long),
but it is possible to give some basics of its organisation:

CNTO ->
* SUOYOMA —>
- setup before geometry (call tree not detailed)
- SUGEOMETRY (call tree not detailed)
- setup after geometry (call tree not detailed)
* SUOYOMB -> (call tree not detailed)
* some other routines not detailed here
* CNT1 ->
- SU1YOM -> (call tree not detailed)
- CNT2 -> CNT3 ->
* some routines not detailed here
* CNT4 ->
- some routines not detailed here
- STEPO -> (see below for more details)

e CNTO, CNT1, CNT2, CNT3, CNT4 control respectively the zero, first, second, third and fourth level
of the set-up.

e STEPO controls one time-step of the model integration.

*+ General architecture under STEPO:

STEPO ->

* Management of read/write: IOPACK

* Inverse spectral transforms: TRANSINVH -> TRANSINV_MDL

* Grid point computations: SCAN2M

* Grid-point coupling in LAM models: ECOUPL1 and ECOUPL2 (see below)
* Direct spectral transforms: TRANSDIRH -> TRANSDIR_MDL

* Spectral computations: (E)SPCM (see below), SPC2M.

The sequences of call to STEPO are controlled by a variable (often called CDCONF or CLCONF)
containing 9 letters or zeros [L1][L2][L3][L4][L5][L6][L7][L8][L9]

e L1 controls the file write/read.

e [2+L3 controls the inverse transforms.

e L4 controls the grid-point computations for dynamics and physics.
e L5 controls the grid-point computations for some diagnostics.

e L6 controls the grid-point computations for assimilation.

e L7 controls the coupling in LAM models.

e L8 controls the direct transforms.

e L9 controls the spectral computations.

For example a model integration time-step is defined by the sequence [L1]JAAAO0AAA.
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22 Organigramme under STEPO for the direct Eulerian 2D

model.
STEPO -> SCAN2M -> GP_MODEL ->
* CPG2 ->
- GPTF2
* CPG2LAG ->
- GPTF1

e CPG2: unlagged grid-point computations.

¢ CPG2LAG: lagged grid-point computations.

e GPTF1: first part of the Asselin temporal filter.

e GPTF2: second part of the Asselin temporal filter.

Communications between unlagged grid-point computations and lagged grid-point computations need a buffer
using pointers of module PTRSLB2.

x Basic description of the data flow under routine STEPQO: No detail will be given, one can
read the part 24 with the following changes:

e There is no GFL field.

e The distinction between GMV and GMV'S does not exist any longer, all fields can be considered as GMV or
GMVS ones. The current way of coding considers the wind components as GMV fields, and the equivalent
height as a GMVS field, but this way of coding is not satisfactory and has to be changed in the future.

e In the GMYV fields, there are no thermodynamic variables.

e The model is purely adiabatic, so there is no surface field for physics.

e The structure of the code has not been completely updated relatively to the equivalent one of the 3D model.
There are only two blocks in the grid-point calculations: a non-lagged block (CPG2) which is the equivalent
of CPG in the 3D model; a lagged block (CPG2LAG) which is the equivalent of CALL_SL+CPGLAG
in the 3D model.
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23

Organigramme under STEPO for the direct Eulerian 3D
model.

* Organigramme:

STEPO

-> SCAN2M -> GP_MODEL_HEAP or GP_MODEL_STACK -> GP_MODEL ->

* CPG_DRV -> CPG ->

CPG_GP ->
* GPTF2
GPMPFC
GP_SPV
surface_fields_mix.F90/GPPOPER
some GP.. and GNH.. routines computing intermediate grid-point quantities.
GPINISLB
* CP_FORCING (RHS of equations for 1D model with LSFORC=T)
GPINIDDH
EC_PHYS or EC_PHYS_LSLPHY (organigramme not detailed)
MF_PHYS_PREP
MF_PHYS (organigramme not detailed)
CPG_DIA -> (routines for some diagnostics, organigramme not detailed)
CPG_DYN ->
* CPEULDYN ->
- some GP.. routines computing intermediate g.p. quantities.
- some SI.. routines computing some linear terms used in SI scheme.
- VERDER (vertical derivatives for vertical finite elements scheme)
* VDIFLCZ (organigramme not detailed)
CPG_END ->
* surface_fields_mix.F90/GPPOPER
* WRPHTRSF (organigramme not detailed)
* GPMPFC

* ¥ X ¥ X

* RADDRV (radiation scheme used at ECMWF, organigramme not detailed)

*

EC_PHYS_DRV (organigramme not detailed)

* CPGLAG ->

GPTF1
GPRCP

%+ List of routines:

CPG_DRYV: driver for unlagged grid-point computations.
CPG: unlagged grid-point computations.

CPG_GP: beginning of unlagged grid-point computations; reads ¢ — At data in buffers, computes some
diagnostic grid-point quantities (call to some GP... and GNH... routines), does multiplications by the
mapping factor, applies the second part of the temporal filter.

CPG_DIA: interface for diagnostics (DDH,CFU,XFU) in the unlagged grid-point computations.

e CPG_DYN: interface routine for unlagged part of the Eulerian dynamics and simplified Buizza physics.

CPG_END: end of unlagged grid-point computations; writes data in buffer, first part of the temporal
filter, divisions by the mapping factor.

CPGLAG: lagged grid-point computations and final filling of ¢t + At arrays.

GPTF1: first part of the Asselin temporal filter.

GPTF2: second part of the Asselin temporal filter.

GPPOPER: Asselin temporal filter and some memory transfers for prognostic surface fields.

GPMPFC: multiplications or divisions by the mapping factor or a power of the mapping factor to convert
reduced quantities into geographical quantities or the inverse.

GPINIDDH: some initialisation for DDH diagnostics; a subset of data computed by this routine may be
modified by the unlagged physics.

GPINISLB: initialisation of the buffer SLB2....

EC_PHYS: calls unlagged physics used at ECMWF.

EC_PHYS_LSLPHY: calls split physics used at ECMWF.

MF_PHYS: calls unlagged physics used at METEO-FRANCE.

MF_PHYS_PREP: preparation of input data for MF_PHYS.

VDIFLCZ: simplified Buizza physics.

CPEULDYN: computes the RHS of Eulerian equations.

CP_FORCING: computes the RHS of Eulerian equations for 1D model with LSFORC=T.
RADDRYV: radiation scheme used at ECMWF.

WRPHTRSF: write out the trajectory for surface arrays to work file.
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x Part 3.1 of CPG_GP: calculations done at instant ¢: The following quantities are computed
in the following order:

e Hydrostatic pressure and quantities derivated from hydrostatic pressure:

— GPHPRE:
* computes half level hydrostatic pressure II.
* computes AII, ﬁ, ¢ and « at full levels; the ratio between BV] IT/II at full levels and EV} ILs;

% at half levels and ﬁ

* computes full level hydrostatic pressure II.

— GPGRXYB: [2V] 6, [2V]a and [2V] o + logIl at full levels.
e Dynamical quantities:

— GPRCP: R, ¢, and k = R/c;, at full levels.

— GPRT: RT and its horizontal derivatives at full levels.

— GPVC...: some specific quantities for LVERCOR=.T. .

— GNHPRE (NH only): p, p—1II, & and % at full levels.

— GNHPREH (NH only): p at half levels and Ap at full levels.

[£V]e

— GNHGRPRE (NH only): [ZV]p, and [ZV] Q at full levels.

— GNHDLR (NH only): r if (WS2003) deep-layer equations.

— GNHGRDLR (NH only): [gV] r if (WS2003) deep-layer equations.

— GPCTY: vertical velocities 7'7?)—1;1] (at half levels) and w/II (at full levels); the divergence integral
term.

— GPCTY_FORC: the same vertical velocities but for 1D model with LSFORC=.T. .

— GPGEO: gz at full levels and half levels.

— GPGRGEO: horizontal gradient of gz at full levels and half levels.

— Kinetic energy at full levels.

— GPHLWI.: weights for interpolation of winds to model half levels.

— GPHLUYV: horizontal wind components at half levels (needs some weights computed in GPHLWI).

— GPUVS: Usurt and Viure.

— GPGRP: pressure gradient force term used in the RHS of the horizontal wind equation.

— GPXX: X at full levels.

— d and its horizontal gradient at full levels.

— GPGW: gw at full levels and half levels.

— GNHGRGW (NH only): horizontal gradient of gw at full levels and half levels.

— GNHDS3 (NH only): D3 at full levels.

e Adiabatic tendencies:

— GP_.TNDLAGADIAB_UV: explicit adiabatic Lagrangian tendency of the horizontal wind.

— GNH_TNDLAGADIAB_UVS (NH only): explicit adiabatic Lagrangian tendency of the surface
horizontal wind.

— GNH_TNDLAGADIAB_GW (NH only): explicit adiabatic Lagrangian tendency of gw.

— GNH_TNDLAGADIAB_SPD (NH only): explicit adiabatic Lagrangian tendency of the pressure
departure variable.

— GNH_TNDLAGADIAB_SVD (NH only): explicit adiabatic Lagrangian tendency of the vertical
divergence variable.

We can do some remarks:
e Some of these calculations are required also at t — A¢ (this is not the case for adiabatic tendencies).
e The order of these calculations is more stringent in the NH model than in the hydrostatic model.

e For (WS2003) deep-layer equations, this is II (and quantities based on 1:I) which is computed, instead of
II.
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24 Basic description of the data flow under routine STEPO.
24.1 Introduction about OOPS-oriented structures.

Data are put into big structures, for example for the following items:
o Geometry: type GEOMETRY, variable YRGEOMETRY in CNTO.
e Model object: type MODEL, variable YRMODEL in CNTO.

Fields: type FIELDS, variable YRFIELDS in CNTO.

e Trajectory: type MTRAJ, variable YRMTRAJ in CNTO.

Variables referenced below are generally attributes of such structures. For simplification:
e One writes for example NPROMA (stands for YRGEOMETRY % YRDIM%NPROMA).
e One writes for example NFLEVG (stands for YRGEOMETRY % YRDIMV %NFLEVG).
e One writes for example NGPBLKS (stands for YRGEOMETRY % YRDIM%NGPBLKS).
e One writes for example GMV (stands for YRFIELDS%YRGMV%GMYV).
e One writes for example NDIMGMYV (stands for YRFIELDS%YRGMV %NDIMGMYV).
e One writes for example YT0%MT (stands for YRFIELDS%YRGMV %YT0%MT).
e One writes for example GFL (stands for YRFIELDS%YRGFL%GFL).
e One writes for example SP_SB (stands for YRFIELDS%YRSURF%SP_SB).

Prognostic variables can be split into different classes:
e GMYV variables.
e GFL variables.
e GMVS variables.
e 2D surface variables used in the physics.

A more detailed description of these classes has already been given in part 8.1. The GMV, GMVS, and a subset
of GFL variables, require spectral and grid-point arrays. The 2D surface variables used in the physics require only
grid-point arrays. Additional buffers are required to transmit data between the different parts of the grid-point
calculations.

24.2 The GMYV structure data.
Most grid-point space “GMV” variables referenced below are attributes of YRFIELDS%YRGMYV.

x Treatment of ¢t — At and ¢t data in grid-point space: In grid-point space, the
t — At and t GMV data are stored in the array GMV which is an allocatable array allocated with
(NPROMA ,NFLEVG,NDIMGMYV NGPBLKS). Attribute NDIMGMYV is the number of ¢t — At and
t GMV fields. It is always above or equal to the number of GMV prognostic variables; the number of
GMYV prognostic variables is NFTHER+2, where NFTHER . is the number of thermodynamic variables.
Calculation of NDIMGMYV and allocation of GMV are done in routine SETUP_GMYV (encapsulated in
gmv_subs_mod.F90). To identify each variable (for example T at instant t), one needs a pointer (in our
example it is YT0%MT). Note that GMYV contains not only prognostic variables (such as U, V, T') but also
horizontal derivatives, divergence, vorticity, and also some additional diagnostic quantities.

For quantities at instant ¢, pointers are YT0%M/[X] for a quantity [X], and YT0%M[X]L, YT0%M[X]M for
zonal and meridian derivatives. Attribute YTO is a variable of type TYPE_TO (this type is defined in module
TYPE_GMVS). Pointers are computed in routine SETUP_TO (encapsulated in gmv_subs_mod.F90) and
these calculations determine the order of storing the ¢t GMV fields in the array GMV.

For quantities at instant ¢t — At, pointers are YT9%M[X] for a quantity [X], and YT9%M[X]L, YT9%M[X]|M
for zonal and meridian derivatives. Attribute YT9 is a variable of type TYPE_T9 (this type is defined in module
TYPE_GMYVS). Pointers are computed in routine SETUP_T9 (encapsulated in gmv_subs_mod.F90) and
these calculations determine the order of storing the ¢t — At GMV fields in the array GMV.

x Treatment of t + At data in grid-point space: In grid-point space, the t +
At GMV data are stored in the array GMVT1 which is an allocatable array allocated with
(NPROMA NFLEVG,YT1%NDIM,NGPBLKS). YT1%NDIM is the number of ¢t + At GMV fields. It
is always above or equal to the number of GMV prognostic variables. Calculation of YT1%NDIM is done in
routine SETUP_T1 (encapsulated in gmv_subs_mod.F90). To identify each variable (for example T at instant
t + At), one needs a pointer (in our example it is YT1%MT).

For quantities at instant ¢ + At, pointers are YT1%M]I[X] for a quantity [X]. Attribute YT1 is a variable of
type TYPE_T1 (this type is defined in module TYPE_GMVS). Pointers are computed in routine SETUP_T1
(encapsulated in gmv_subs_mod.F90) and these calculations determine the order of storing the t + At GMV
fields in the array GMVT1.
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x Spectral GMYV data: Individual GMV fields are attributes of variable YRFIELDS%YRSPEC.

e Attributes VOR, DIV, T, SPD, SVD, NHX: contain spectral data respectively for vorticity, divergence,
temperature, pressure departure variable, vertical divergence variable, X.

e Attribute HV: collective array for thermodynamic variables. The “standard order” in this array is
temperature, pressure departure variable, vertical divergence variable.

e Attribute SP3D: collective array for all 3D variables.

Features about the SPECTRAL_FIELD structure can be found in some “algor/module” modules, the name
starts by “spectral_fields”.

* Number of variables: sum-up.

Number of GMV prognostic variables: NFTHER+2.

Number of thermodynamic GMV prognostic variables: NFTHER.

Number of fields in the array GMV: NDIMGMYV.

Number of fields in the array GMVT1: YT1%NDIM.

Position of a field X at the instant ¢ in the array GMV: YT0%M]I[X].

Position of the zonal derivative of a field X at the instant ¢ in the array GMV: YT0%M[X]L.
Position of the meridian derivative of a field X at the instant ¢ in the array GMV: YT0%M[X]M.
Position of a field X at the instant ¢ — At in the array GMV: YT9%M[X].

Position of the zonal derivative of a field X at the instant ¢ — At in the array GMV: YT9%M|[X]L.
Position of the meridian derivative of a field X at the instant ¢ — A¢ in the array GMV: YT9%M[X]M.
Position of a field X at the instant ¢ + At in the array GMVT1: YT1%M[X].

24.3 The GMYVS structure data.
Most grid-point space “GMVS” variables referenced below are attributes of YRFIELDS%YRGMYV.

x Treatment of t — At and t data in grid-point space: In grid-point space, the ¢t —
At and t GMVS data are stored in the array GMVS which is an allocatable array allocated with
(NPROMA NDIMGMVS,NGPBLKS). Attribute NDIMGMYVS is the number of ¢t — At and ¢t GMVS
fields. It is always above or equal to the number of GMVS prognostic variables. Calculation of NDIMGMVS
and allocation of GMVS are done in routine SETUP_GMYV (encapsulated in gmv_subs_mod.F90). To
identify each variable (for example logIls at instant ¢), one needs a pointer (in our example it is YT0%MSP).
Note that GMVS contains not only prognostic variables (such as logIls) but also horizontal derivatives.

Pointers YT0%M[X], YT0%M[X]L, YT0%M[X]M, YT9%M [X], YTI9%M[X]L, YT9%M[X]M (see part
24.2) are also used to determine the order of storing the GMVS fields in the array GMVS.

x Treatment of t + At data in grid-point space: In grid-point space, the t +
At GMVS data are stored in the array GMVT1S which is an allocatable array allocated with
(NPROMA,YT1%NDIMS NGPBLKS). YT1%NDIMS is the number of ¢ + At GMVS fields. It is always
above or equal to the number of GMVS prognostic variables. Calculation of YT1%NDIMS is done in routine
SETUP_T1 (encapsulated in gmv_subs_mod.F90). To identify each variable (for example logIl at instant
t + At), one needs a pointer (in our example it is YT1%MSP).

Pointers YT1%M|[X] (see part 24.3) are also used to determine the order of storing the GMVTIS fields in the
array GMVT1S.

x Spectral GMVS data: Individual GMVS fields are attributes of array YRFIELDS%YRSPEC.
e Attribute SP: contains spectral data for logIls.

e Attribute SP2D: collective array for all GMVS variables; also contains additional spectral data, such as
the surface orography.

* Number of variables: sum-up.

Number of GMVS prognostic variables: 1.

Number of fields in the array GMVS: NDIMGMYVS.

Number of fields in the array GMVT1S: YT1%NDIMS.

Position of a field X at the instant ¢ in the array GMVS: YT0%M[X].

Position of the zonal derivative of a field X at the instant ¢ in the array GMVS: YT0%M|[X]L.
Position of the meridian derivative of a field X at the instant ¢ in the array GMVS: YT0%M[X]M.
Position of a field X at the instant ¢t — At in the array GMVS: YT9%M|[X].

Position of the zonal derivative of a field X at the instant ¢ — At in the array GMVS: YT9%M|[X]L.
Position of the meridian derivative of a field X at the instant ¢ — At in the array GMVS: YT9%M [X]M.
Position of a field X at the instant ¢t + At in the array GMVT1S: YT1%M[X].
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24.4 The GFL structure data.
Most grid-point space “GFL” variables referenced below are attributes of YRFIELDS%YRGFL.

x Treatment of t — At and ¢t data in grid-point space: In grid-point space, the
t — At and t GFL data are stored in the array GFL which is an allocatable array allocated with
(NPROMA NFLEVG,YGFL%NDIM,NGPBLKS). Not that the array GFL contains not only prognostic
variables (such as ¢), but also horizontal derivatives, and non advectable pseudo-historic grid-point GFL variables
(such as gcpr)-

YGFL%NDIM is the number of ¢ — At and ¢t GFL fields in grid-point space. It is always above or equal
to the number of GFL prognostic variables; the number of GFL prognostic variables is YGFL%NUMFLDS.
Calculation of YGFL%NDIM is done in routines DEFINE_GFL_COMP and SET_GFL_ATTR (these
routines are encapsulated in gfl_subs_mod.F90). Allocation of GFL is done in routine SUSC2C.

To identify each variable (for example g at instant t), one needs a pointer (in our example it is YGFL%Y Q%MP;
variable YGFL is in YOM_YGFL). Note that GFL contains not only prognostic variables (such as g, qi, gi, ga,
03) but also horizontal derivatives.

For quantities at instant ¢, pointers are YGFL%Y[X]%MP for a quantity [X], and YGFL%Y[X]%MPL,
YGFL%Y[X]%MPM for zonal and meridian derivatives. Attribute Y[X] is a variable of type
TYPE_GFL_COMP declared in module yom_ygfl.F90; the attributes of this type are defined in the part
TYPE_GFL_COMP of module YOM_YGFL. Pointers YGFL%Y [X]%MP, YGFL%Y[X]%MPL and
YGFL%Y [X]%MPM are computed in routine DEFINE_GFL_COMP (encapsulated in gfl_subs_mod.F90)
called by SUGFL2, and these calculations determine the order of storing the ¢ GFL fields in the array GFL.
The “SUGFL2-standard order” of storing the different variables [X] is defined in routine SUGFL2. The purely
grid-point GFL variables (including the non advected pseudo-historic GFL variables) are stored first (in the
“SUGFL2-standard order”), then the GFL variables with a spectral representation are stored (in the “SUGFL2-
standard order”). Note that no horizontal derivative is available for purely grid-point GFL variables.

For quantities at instant ¢ — At, pointers are YGFL%Y [X]%MP9 for a quantity [X] (no zonal nor meridian
derivative is required for GFL variables at ¢t — At). Pointers YGFL%Y[X]%MP9 are computed in routine
SET_GFL_ATTR (encapsulated in gfl subs_mod.F90) called by SUGFL3. The GFL variables are stored
in the “SUGFL3-standard order” (no distinction between spectral and purely grid-point variables) and this
“SUGFL3-standard order” defined in routine SUGFL3 can be different from the “SUGFL2-standard order”.
Note that no t — At variable is available for the non advected pseudo-historic GFL variables (because in this case
the discretisation always writes X (¢ + At) — X (t) = AtFXx, even in a leap-frog scheme).

x Treatment of t + At data in grid-point space: In grid-point space, the t +
At GFL data are stored in the array GFLT1 which is an allocatable array allocated with
(NPROMA ,NFLEVG,YGFL%NDIM1,NGPBLKS). YGFL%NDIM1 is the number of ¢t + At GFL fields
in grid-point space. It is always above or equal to the number of GFL prognostic variables. Allocation of
GFLT1 is done in routine GP_MODEL in the direct code. Calculation of YGFL%NDIML1 is done in
routines DEFINE_GFL_COMP and SET_GFL_ATTR (encapsulated in gfl subs_mod.F90). To identify
each variable (for example ¢ at instant ¢ + At), one needs a pointer (in our example it is YGFL%YQ%MP1;
variable YGFL is in YOM_YGFL). Note that GFLT1 contains prognostic variables at ¢ + At.

For quantities at instant ¢ + At¢, Pointers are YGFL%Y [X]%MP1 for a quantity [X]. YGFL%Y[X]%MP1
is computed in DEFINE_GFL_COMP (encapsulated in gfl_subs_mod.F90) called by SUGFL2. The purely
grid-point GFL variables (including the non advected pseudo-historic GFL variables) are stored first (in the
“SUGFL2-standard order”), then the GFL variables with a spectral representation are stored (in the “SUGFL2-
standard order”).

x Spectral GFL data: There are individual arrays, and also a collective array for all GFL variables
(attributes of variable YRFIELDS%YRSPEC).

e Attribute GFL: collective array for GFL variables. In GFL, the spectral GFL variables are stored in the
“SUGFL2-standard order”.

e Attributes Q, L, I, O3: contain spectral data respectively for humidity, liquid water, ice and ozone.
Dimension of YRFIELDS%YRSPEC%GFL is (NFLSUR,NSPEC2YGFL%NUMSPFLDS). The
number of spectral GFL prognostic variables is YGFL%NUMSPFLDS. The total number of GFL prognostic
variables is YGFL%NUMPFLDS. The following relationship is always true:

YGFL%NUMSPFLDS < YGFL%NUMFLDS < YGFL%NDIM.
For example, if the GFL variables are ¢ and ¢ and if we assume additionally:

e ¢ is treated in spectral space and is advected, its horizontal derivatives are required.

e ¢ is treated as a purely grid-point data and is not advected, its horizontal derivatives are not required.

e the advection scheme is an Eulerian one.

In this case, the three above integer numbers have the following value: YGFL%NUMSPFLDS=1,
YGFL%NUMFLDS=2, YGFL%NDIM=6 (the last one corresponding to ¢(t), zonal and meridian derivatives
of q(t)7 q(t - At)7 ql(t)7 q1(t - At))

YGFL%NUMSPFLDS and YGFL%NUMFLDS are computed in the sequence SUOYOMA — > SUGFL2
— > DEFINE_GFL_COMP (encapsulated in gfl_subs_mod.F90).
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In spectral space, GFL variables can be accessed by each individual YRFIELDS%YRSPEC%[X] array, but
also via the collective array YRFIELDS% YRSPEC%GFL. In this case one needs to know the location of the
variable [X] which is searched for.

e If jnum is the numbering of the GFL field among the YGFL%NUMFLDS fields, the index
jnumsp among the subset of GFL fields which have a spectral representation is given by
YGFL%COMP (jnum)%MPSP (variable YGFL%COMP is in module YOM_YGFL); jnumsp
always matches jnumsp < jnum. In our above example, for ¢, jnum and jnumsp are equal to 1.

e If we want to know, for a specific variable [X], its location in YRFIELDS%YRSPEC%GFL, the answer
is given by YGFL%Y [X]%MPSP. In our above example, for ¢, YGFL%Y[X]%MPSP is equal to 1.

x Ordering of the GFL data: As seen previously, there are two standard orders, the first one defined
by SUGFLS3 and the other one defined by SUGFL2. See code sources of SUGFL2 and SUGFL3 to know
about GFL orderings. The purpose of having two different standard orders is only to limit the chance of hidden
bugs. The important rule to be kept in mind is the following: No reference to the ordering of the GFL
variables must appear elsewhere than in:

e the sequence of calls to SET_GFL_ATTR in SUGFLS3 .
o the sequence of calls to DEFINE_GFL_COMP in SUGFL2.

No hard coded explicit reference to this order must appear elsewhere in the code, the other parts
must work for an indifferent order of the GFL variables and must use the pointers defined by the
attributes of the variables YGFL%COMP and YGFL%Y[X] .

x Groups of GFL variables: Some generic names (like AERO) contain several variables: extra-GFL

variables, grorC, gEZDIAG, ¢GHG, JTRAC; CHEM, JAERO, JERA40; JAEROUT, JUVP, JPHYS, qNOGW, JSLDIA; CRM-
It is possible to add some new GFL variables in these groups without deeply modifying the code, but with some
minor modifications in the namelist (and also in the files to be read).

e The number of variables in each group is respectively NGFL_EXT, NGFL_FORC, NGFL_EZDIAG,
NGHG, NTRAC, NCHEM, NAERO, NERA40, NAEROUT, NUVP, NGFL_PHYS,
NNOGW, NSLDIA, NCRM (namelist NAMGFL). In YOM_YGFL, these variables are attributes
of YGFL.

e Some information for TFP_GFL(jgfl)%CLNAME (extra-GFL), TFP_GHG(jgf1)%CLNAME
(greenhouse gases), TFP_CHEM(jgf!)% CLNAME (chemistry), TFP_AERO(jgfl)% CLNAME
(aerosols), can be required in NAMAFN to give the name of the fields which appear in the files.

e Some modifications of the attributes of YEXT_NL, YFORC_NL, YEZDIAG_NL, YGHG_NL,
YTRAC_NL, YCHEM_NL, YAERO_NL, YERA40 NL, YAEROUT_NL, YUVP_NL,
YPHYS_NL, YNOGW_NL, YSLDIA_NL, YCRM_NL, can be required in NAMGFL.

e The numbering of these GFL is included in YGFL%NUMSPFLDS and YGFL%NUMFLDS.
e About extra-GFL, some variables in the code have kept the letters SV or SCVA (for scalar variables).

* Number of variables: sum-up.

e Number of GFL variables (spectral and grid-point, including the non advected pseudo-historic ones):
YGFL%NUMFLDS.

e Number of spectral GFL variables: YGFL%NUMSPFLDS.
e Number of purely grid-point GFL variables: YGFL%NUMGPFLDS.
e Number of advectable GFL variables (spectral and grid-point): YGFL%NUMFLDS_SL1.

e Number of advectable GFL variables (spectral and grid-point) which require a spline cubic vertical
interpolation in the semi-Lagrangian scheme: YGFL%NDIM_SPL.

e Number of GFL variables having a time ¢t — At representation: YGFL%NUMFLDS9.
e Number of GFL variables having a time t + At representation: YGFL%NUMFLDS1.
e Number of spectral GFL variables having a time t + At representation: YGFL%NUMSPFLDS1.
e Number of extra-GFL variables: YGFL%NGFL_EXT.

e Number of forcing variables: YGFL%NGFL_FORC.

e Number of easy diagnostics variables: YGFL%NGFL_EZDIAG.

e Number of greenhouse gases: YGFL%NGHG.

e Number of tracers: YGFL%NTRAC.

e Number of chemistry components: YGFL%NCHEM.

e Number of aerosols: YGFL%NAERO.

e Number of ERA40 fields: YGFL%NERA40.

e Number of output aerosol fields: YGFL%NAEROUT.

e Number of output fields from UV processor: YGFL%NUVP.
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e Number of GFL variables for physics diagnostics: YGFL%NGFL_PHYS.
e Number of diagnostic fields for NORO GWD scheme: YGFL%NNOGW.
e Number of SL dynamics diagnostic fields: YGFL%NSLDIA.

e Number of CRM extra fields: YGFL%NCRM.

e Number of fields in the array GFL: YGFL%NDIM.

e Number of fields at time ¢ in the array GFL: YGFL%NDIMO.

e Number of fields at time ¢ — At in the array GFL: YGFL%NDIM?9.

e Number of fields in the array GFLT1: YGFL%NDIM1.

e Number of fields in the array GFL, associated to variables which require a spline cubic vertical interpolation
in the semi-Lagrangian scheme: YGFL%NDIM_SPL.

e Position of a field X at the instant ¢ in the array GFL: YGFL%Y [X]%MP.

e Position of the zonal derivative of a field X at the instant ¢ in the array GFL: YGFL%Y [X]%MPL.

e Position of the meridian derivative of a field X at the instant ¢ in the array GFL: YGFL%Y [X]%MPM.
e Position of a field X at the instant ¢ — At in the array GFL: YGFL%Y[X]%MP9.

e Position of a field X at the instant ¢ + At in the array GFLT1: YGFL%Y [X]%MP1.

e Position of an advectable field X in an array of dimension YGFL%NUMFLDS_SL1:
YGFL%Y[X]%MP _SL1.

e Position of a spectral field X in the array SPGFL: YGFL%Y [X]%MPSP.
Note that some other dimensioning and logical variables are available in yom_ygfl.F90.

* How to add new GFL variables or new GFL attributes. A specific user’s guide IDNGFL)
has been written.

24.5 The 2D surface variables used in the physics structure data.

x Introduction: These fields are never transformed in spectral space and they are never advected (they
concern the inner soil or the surface where the wind is assumed to be zero). They describe mainly surface or soil
2D data, but some of them can describe an upper-air 2D data (for example 2 meter temperature, total convective
cloudiness), an upper-air 3D data, or a total atmospheric content (for example total column water vapour). Even
if these data are not always 2D surface data, we keep the generic name “2D surface data” for simplification.

The 2D surface variables are divided into two main classes: the prognostic surface variables and the diagnostic
surface variables. The class of diagnostic surface variables includes a couple of pseudo-prognostic variables which
need some care. The main code features describing these variables are in SURFACE_FIELDS_MIX and in
SU_SURF_FLDS.

All the wvariables SP_..., YSP_..., SD..., YSD... referenced below are attributes of variable
YRFIELDS%YRSURF (type TSURF). Denotations SP_.., YSP_.., SD_.., YSD_.. respectively stand
for YRFIELDS%YRSURF%SP_.., YRFIELDS%YRSURF%YSP_.., YRFIELDS%YRSURF%SD ..,
YRFIELDS% YRSURF%YSD ...

* Prognostic surface variables: This class of variables can be divided into several groups, each group
has a short two-letter code and a long 3 to 5-letter code.

e SB=SOILB: soil quantities for the different reservoirs.

e SG=SNOWG: quantities linked to surface snow.

e SL=LAKEB: quantities linked to lake (FLAKE model).

e RR=RESVR: soil quantities for the surface and sometimes the first (upper) reservoir.
e CL=CLS : surface boundary layer prognostic quantities.

e OM=OML : prognostic quantities for ocean mixed layer model (KPP).

o EP=EXTRP: extra 3D prognostic fields.

o X2=XTRP2: extra 2D prognostic fields.

e CI=CANRI: 2D fields used in CANARI.

The comprehensive list of variables is not detailed here and one can find it in SURFACE_FIELDS_MIX.
Ordering the individual variables inside each group is given by the content of SU_SURF _FLDS. It is desirable
that the ordering of the declarations in SURFACE_FIELDS_MIX match the ordering of SU_ SURF _FLDS.
No reference to variable ordering should appear elsewhere than in SU_SURF_FLDS and
SURFACE_FIELDS_MIX.

Buffers, pointers and number of variables in each group: sum-up:
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Group variables containing the data are SP_[group two-letter code].

Variable YSP_[group two-letter code]D contains some dimensions. For example, there are
YSP_[group two-letter code]D%NDIM fields in the above group variable.

Variable YSP_[group two-letter code] contains pointers and some other attributes. For example, if
[X] is the generic name of an individual variable in the current group, the pointer allowing to retrieve the
t-value (resp. t — At-value, t + At-value) of [X] is YSP_[group two-letter codté%Y[X %MPO (resp.
YSP_[group two-letter code] %Y [X]%MP9, YSP_[group two-letter code] %Y [X]%MP1).

Some other dimensioning variables and some other attributes can be found in routine
SURFACE_FIELDS_MIX.

x Diagnostic surface variables: This class of variables can be divided into several groups, each group
has a short two-letter code and a long 5-letter code or 6-letter code.

VF=VARSF : climatological/geographical parameters.
VP=VCLIP : deep soil parameters.

VV=VCLIV : vegetation parameters.

VN=VCLIN : cloudiness predictors.

VH=VCLIH : convective cloud parameters.

VK=VCLIK : convective cloud pseudo-historic fields.
VA=VCLIA : aerosols parameters.

VG=VCLIG : ice-coupler parameters.

VC=VO3ABC : climatological ozone profiles.

V2=VDIAGO2: 2-D climatological/diagnostic fields for an ocean mixed layer model (KPP).
V3=VDIAGO3: 3-D climatological/diagnostic fields for an ocean mixed layer model (KPP).
VD=VDIAG : diagnostic fields (generally used only at ECMWF).
SM=SATSIM : (ECMWF) simulated satellite images.
WS=WAVES : surface quantities over sea (used by IFS).
WW=WAM : surface quantities over sea (used by WAM).
VX=VCLIX : auxiliary climatological parameters.
XA=VEXTRA : extra 3D fields.

DI=VEXTRDI: targeted 3D fields.

XR=VEXTRR : extra 3D fields for radiation.

X2=VEXTR2 : extra 2D fields.

SFL=SFLUX : surface flux for EDKF.

SFO=SFORC : surface forcing for 1D model (MUSC).

PF : precipitation fraction.

The comprehensive list of variables is not detailed here and one can find it in SURFACE_FIELDS_MIX.
Ordering the individual variables inside each group is given by the content of SU_SURF_FLDS. It is desirable
that the ordering of the declarations in SURFACE_FIELDS_MIX match the ordering of SU_.SURF_FLDS.
No reference to variable ordering should appear elsewhere than in SU_SURF_FLDS and
SURFACE_FIELDS_MIX.

Note that we can also divide these variables into 3 sub-classes:

Constants: they have no time-evolution and they are always input data in the model dynamics and physics:
for example the land-sea mask.

Diagnostics: they are generally diagnosed by the physics and kept at the current time-step only: they
are computed for diagnostics (XFU, DDH for example). The content is not conserved at the following

timestep. Example: the total convective cloudiness.

Pseudo-prognostic variables: they are generally diagnosed by the physics and conserved until the following

timestep where they are used as input data by the physics. For MF purpose there are currently 7 pseudo-

prognostic variables:

VF=VARSF: variable ZOF (gravity * surface roughness length).

— VV=VCLIV: variable HV (resistance to evapotranspiration).

VV=VCLIV: variable ZOH (gravity * surface roughness length for heat).

— VH=VCLIH: variable PBLH (PBL height).

VH=VCLIH: variable SPSH (variable for ALARO prognostic convection scheme).

— VH=VCLIH: variable QSH (surface moisture historic variable, used by TOUCANS).
VK=VCLIK: variable UDGRO (convective cloud updraught top position).
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Buffers, pointers and number of variables in each group: sum-up:
e Group variables containing the data are SD_[group two-letter code].

e Variable YSD_[group two-letter code]D contains some dimensions. For example, there are
YSD_[group two-letter code]D%NDIM fields in the above group variable.

e Variable YSP_[group two-letter code] contains pointers and some other attributes. For example, if [X]
is the generic name of an individual variable in the current group, the pointer allowing to retrieve its value
is YSD_[group two-letter code]%Y[X]%MP.

e Some other dimensioning variables and some other attributes can be found in routine
SURFACE_FIELDS_MIX.

* Set-up:
e Pointer calculations, allocations are done in SU_SURF_FLDS.
e Some of the buffers (initial value of the prognostic variables, and input constants) are read on files via

SUGRIDA (ARPEGE files) or SUGRIDG (GRIB files). SUGRIDA and SUGRIDG directly fill the
surface buffers.

x Data flow under CPG: The buffers SP... and SD... are filled (they currently appear as dummy
arguments PSP... and PSD..., although YDSUREF is passed too), without any intermediate local variable.

e In CPG_GP, when leap-frog scheme, t data of SP... are copied in the ¢t — At part of SP... via routine
GPPOPER.

e In CPG_GP, when required, t — At part of SP... is copied in the ¢t + At part of SP....

e In MF_PHYS the t data (SL2TL) or ¢t — At data (leap-frog) of SP... is used as input data of the physics.
Constants of SD... are used as input data. Diagnostics of SD... are diagnosed via the physics output.
Pseudo-historic variables of SD... enter the physics (input value is used) and are updated by the physics.
In some cases (MF_PHYS called for only diagnostic purpose, without temporal evolution), it is necessary
to restore the input data at the end of MF_PHYS. The ¢t + At part of SP... is updated via routine
CPTENDS.

e In CPG_END the ¢t + At part of SP... is copied into the ¢ part, with a temporal filter for leap-frog
schemes (call to GPPOPER).

x Other groups of surface variables: There are groups which have not been reported in the new
surface data scheme:

e VU=VCLIU: reference variables for nudging: stored in arrays XVU[X] of YOMNUD.

e VR=VRADF: radiation fields: stored in some arrays of YOMRADF.

e VT=VTILE: tile surface scheme fields (ECMWF only): stored in arrays R[X]TI of YOE_TILE_PROP.

+ Additional remarks:

e ECMWF clearly makes a difference between the soil reservoirs (4 reservoirs) and the surface. The soil
reservoirs prognostic variables are always in the group SOILB, and the surface prognostic variables are
always in the group RESVR (this is not a very logical choice!).

¢ METEO-FRANCE does not always a distinction between the surface (“skin” variables) and the superficial
reservoir (there are 2 reservoirs: a superficial reservoir and a deep reservoir): the distinction is done for the
water content but not for temperature. The deep reservoir prognostic variables are always in the group

SOILB, and the surface (“skin”) and superficial reservoir prognostic variables are always in the group
RESVR.

e The surface buffer GPARBUF which is used in the externalised surface (SURFEX) still exists.

e The generic term “surface” is applied to several topics and the reader has to keep in mind the following
definitions in order to avoid confusions between the different topics called “surface”. The different topics
called “surface” are:

— The surface fields previously described, mainly stored in the buffers SP_... and SD_....

— The externalised surface projects SURFEX and MSE, using the array GPARBUF to communicate
surface data between the ARP/ALD routines and the SURFEX+MSE routines: it is currently used
in the AROME physics.

— The externalised ECMWF surface (project SUR) for ECMWF physics.

For example, to deallocate some buffers used in the ECMWF surface package one calls the
routine SURFDEALLO and to deallocate the SP_... and SD_... buffers one calls the routine
surface_fields_mix.F90/DEALLO_SURF.

x* How to add new surface variables or new surface attributes. A specific user’s guide
(IDNSUR) has been written.
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24.6 Treatment of the data flow under routine STEPO.

* Introduction: The purpose is now to describe all the steps done under STEPO (one timestep) and
what are the different arrays involved. We give an overview of the data flow for GMV, GMVS, GFL and
grid-point surface fields under STEPO. One focusses on the Eulerian direct model but a short reference of the
semi-Lagrangian scheme will be also done.

The time where arrays were frequently reallocated and deallocated is now behind us, computers provide enough
memory to keep them allocated during all the model integration. Most of the variables among YRGFL,
YRGMVS, YRGMV, YRSURF, YRSPEC, remain allocated during all the model integration.

These arrays, generally encapsulated, are now passed via dummy arguments to STEPO and callees.
We recall that a timestep integration under STEPO has the following steps:

e I/0 in spectral space.

e Inverse transforms.

e Grid-point calculations.

e Grid-point coupling for LAM models.

e Direct transforms.

e Spectral calculations.

x Spectral space: YRFIELDS%YRSPEC is passed as dummy argument to STEPO and its callees,
in particuliar to (E)SPCM. Dummy argument name is generally YDSPEC or YDSP. Individual quantities
YDSPEC%[X] or YDSP%[X] may appear in deeper pieces of the call-tree.

x Inverse spectral transformation: It is done under the routine TRANSINVH (ETRANSINVH
in LAM models) for the variable at instant ¢. The input spectral data is YDSPEC. The output grid-point data
(also containing derivatives) are YDGMV%GMYV, YDGMV%GMVS and YDGFL%GFL.

x Grid-point space: Dummy argument of STEPO is YDFIELDS, with attributes YRGMYV,
YRGMVS, YRGFL, YRSURF.

x Grid-point computations: It is done under GP_MODEL (called under SCAN2M). The code is
organized into several loops on NPROMA-blocks (each unit of the loop does calculations for one NPROMA-
block). These different loops are:

e CPG_DRV — > CPG: unlagged grid-point calculations.
e The ECMWF radiation scheme.
e The semi-Lagrangian interpolations (under CALL_SL.. routines).
e The lagged physics.
° 1?ﬁ)me) final lagged grid-point calculations (CPGLAG) (including the phase “1” of the Asselin temporal
ter).
Additional arrays are necessary to communicate data between the different parts of the grid-point calculations.

e For quantities to be interpolated in the semi-Lagrangian scheme: ZSLBUF1 in GP_MODEL (more
details will be given later about how it is used under CPG and CALL_SL).

e For other quantities to be transmitted: ZSLBUF2.
e For specific applications (PC schemes in particular) some specific arrays can be used: buffer GPPCBUF
and local array ZGPPC.
For more details:

e The array ZSLBUF'1 (the dimensions of which are (YRSL%NASLB1;NFLDSLB1)) is allocated or
declared in GP_MODEL _HEAP or GP_MODEL_STACK. It is needed to store all data which will be
used in the semi-Lagrangian interpolations. This array has the name PB1 under CPG.

e The array ZSLBUF2 is allocated or declared in GP_MODEL_HEAP or GP_MODEL_STACK (name
PB2 under CPG).

e Under CPG some local arrays are used. The collective arrays are ZGPPC (used in the predictor-corrector
scheme), ZSLBUF1AU (intermediate array, the data of which will be transferred in PB1 for semi-
Lagrangian interpolations).

e In CPG, input dummy or global arrays are PGMYV (GMYV fields at instants t — At and t), PGMVS
(GMVS fields at instants ¢t — At and t), PGFL (GFL fields at instants ¢ — At and t), and the surface
buffers PSP_.. and PSD_.. (surface fields for unlagged MF physics at instant ¢ or ¢t — At).

o CPG_GP:
— does the part two of the Asselin temporal filter (GPTF2).
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— converts the reduced variables into geographical variables via a multiplication by a power of the
mapping factor (GPMPFC); the output becomes semi-reduced data in the deep layer equations.

— computes some intermediate variables linked with the hydrostatic surface pressure (routine
GP_SPV).

— does memory transfers in the surface buffer PSP _...

— computes some intermediate grid point variables like 6, «, RT, cp, gz, P, etc..., which are used as
input of the physics, the dynamics and some diagnostics.

— computes adiabatic RHS of equations.
— calls GPINISLB which puts some results in PGMVT1, PGMVT1S, PGFLT1, PB2.

When exiting CPG_GP: in the semi-Lagrangian scheme PGMVT1, PGMVT1S and PGFLT1 contain
0; in the Eulerian scheme these arrays contains X (¢t — At) after modification by the phase two of the Asselin
filter.

Unlagged physics: it is the MF physics (managed by MF_PHYS). It uses as input the ¢ variables for a
SL2TL scheme and the t — At variables for a leap-frog scheme. After computation of the physical fluxes
and divergences of fluxes the physical tendencies are computed and added to the RHS of the equations; the
physical tendencies are put in the interpolation buffer in a SL scheme and in PGMVT1, PGMVT1S and
PGFLT1 in an Eulerian scheme. At the end of this stage: for an Eulerian scheme, these T1-arrays contain
X (t — At) + Fx(t — At); for a SL3TL scheme, ZSLBUF1AU then PB1 contains X (¢t — At) + Fx(t — At);
for a SL2TL scheme, ZSLBUF1AU then PB1 contains X (¢) + Fx(¢). The current physics has a vertical
dependency but no horizontal dependency (the only horizontal dependency is the computation of the
moisture convergence as input to the MF convection scheme, the moisture convergence needs the horizontal
derivatives of the moisture). Some diagnostics can be done after the physics (CFU, XFU, DDH).

Adiabatic dynamics: done under CPG_DYN: it includes the calculation of advections, linear terms.

— Eulerian scheme: adds 2At [A — L] at time ¢ to the arrays PGMVT1, PGMVT1S and PGFLT1;
stores AtBL time ¢ — At in the array P[X]SI.

— SL3TL scheme: increments the buffer (ZSLBUF1AU in CPG) with data which will be interpolated
at the origin point O, and PGMVT1, PGMVT1S and PGFLT1 with data which will be evaluated
at the final point. For more details, see the documentation about the semi-Lagrangian scheme.

— SL2TL scheme: does roughly the same thing as in the SL3TL scheme, and also updates the part of
PGMYV and PGMVS corresponding to the pointers YDGMV %Y T9%M|[X]NL.

CPG_END: end of the unlagged grid-point calculations.

— calls GPPOPER: updates the prognostic surface buffers with the ¢t + At surface variables.
— redivides some quantities by a power of the mapping factor in order to retrieve reduced variables
(GPMPFCQ).

CALL_SL: called in a semi-Lagrangian scheme only; does the trajectory research, the interpolations,
and adds the interpolated quantities. At the end of this stage, the arrays PGMVT1, PGMVT1S and
PGFLT1 contain a “provisional” value of X (t + At) equal to the true X (¢t + At) (to be computed after
resolution of the semi-implicit scheme) plus an increment equal to BALL(t+At)—BALL(t); the “provisional”
value of X (t + At) will be used as input data for the lagged physics.

Lagged physics (currently ECMWEF physics only): It uses as input the “provisional” value of X (¢t + At).
After computation of the physical fluxes and divergences of fluxes the physical tendencies are computed
and added to the RHS of the equations (arrays PGMVT1, PGMVT1S and PGFLT1).

CPGLAG:

— does the part “one” of the Asselin temporal filter via GPTF1.
— adds BALL(t) in order to get X (t + At) + BALL(t + At).
— divides the wind components by M in order to retrieve the reduced wind components.

at the end of CPGLAG:

— the t data have been moved in the ¢t — At part of PGMYV, PGMVS and PGFL.

— the t + At data are in PGMVT1, PGMVTI1S and PGFLT1.
At the end of GP_MODEL, ZSLBUF2
is deallocated. YRGMV%GMVT1 and YRGMV%GMVTIS contain X (¢t + At) + SBALL(t + At)

for GMV and GMVS variables. YRGFL%GFLT1 contains X (¢ + At) for GFL variables. Note that
X (t+ At) is a provisional value on which the horizontal diffusion has not still been applied.

x Direct spectral transformation: It is done under the routine TRANSDIRH (ETRANSDIRH in
LAM models) for the variable X (t+At)+BAtL(t+At) (GMV and GMVS variables) or X (t+At) (GFL variables).
The grid-point input array are YDGMV%GMVT1, YDGMV%GMVT1S and YDGFL%GFLT1, the
output spectral data is YDSPEC.
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x Spectral computations: They are done under routine SPCM (ESPCM for LAM models) on
attributes of YRFIELDS%YRSPEC. Some array copies are necessary for some applications, especially in
distributed mode on several processors.

x Lateral boundary coupling in LAM models: It is done just before the direct Fourier transforms
by the routine ECOUPL1 called by STEPO on variables YDGMV%GMVT1, YDGMV%GMVT1S and
YDGFL%GFLT1.

STEPO -> ECOUPL1 —>
* ESC2R (temporal interpolation to get coupler at current timestep)
* ESEIMPLS (add linear terms to coupler)
* ESRLXT1 (grid-point relaxation)

Upper boundary coupling is done in grid-point calculations:

STEPO -> ECOUPL2 ->
* ESC2R (temporal interpolation to get coupler at current timestep)
* ESEIMPLS (add linear terms to coupler)
* ESURLXT1 (grid-point relaxation)

Spectral nudging is done in spectral calculations:

STEPO -> ESPCM ->
* ESPSC2R (temporal interpolation to get coupler at current timestep)
* ESPCPL (spectral relaxation)

Reading coupling files, and transferring couplers in specific buffers is done in ELSRW.

CNT4 or DFI3 -> ELSRW -> ERLBC ->
* SUEINIF (read coupler in file)
* ELSWA3 ->
- inverse transforms to get grid-point coupler.
- intermediate memory transfers.
- EPAK3W and EPAK3WSP (memory transfers in specific buffers).

24.7 Restriction to a dry model.

The implementation of the GFL structure data would allow, in theory, to run a dry adiabatic model (with physics
it is more problematic, since the physical package uses the moisture in several parts; at least the radiation scheme,
the gravity wave drag scheme and the vertical diffusion scheme could be used in a dry model). This configuration
has indeed never been validated, and there probably remains some parts of the code where the use of moisture is
hard coded (in some GP... routines especially).
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25

List of GP... and GNH... routines computing intermediate
dynamical quantities (direct code).

* GP... routines:

GPCTY: computes the vertical velocities ﬁg—g (at half levels) and w/II (at full levels).
GPCTY_FORC: the same vertical velocities but for 1D model with LSFORC=.T. .

GPEPT: computes the equivalent potential temperature at full levels.

GPGEO: computes geopotential height gz at full levels and half levels.

GPGRGEO: computes the horizontal gradient of the geopotential height gz at full levels and half levels.
GPGRP: computes the pressure gradient force term used in the RHS of the horizontal wind equation.
GPGRXYB: computes the horizontal gradient of o and 9.

GPGW: computes gw at full levels and half levels.

GPHLUYV: computes the horizontal wind components at half levels (needs some weights computed in
GPHLWI).

GPHLWI: computes weights for interpolation of winds to model half levels.
GPIET: computes the isobaric equivalent temperature at full levels.

GP_KAPPA: computes the quantity x depending on deformation, which is used for example in the SLHD
diffusion (see documentation (IDSL)).

GP_KAPPAT: alternate way to compute x (SLHD applied to “thermic” variables).

GP_STDDIS: computes the quantity STDDIS used to compute COMAD interpolation weights in the
semi-Lagrangian scheme (see documentation (IDSL)).

GPNOX: computes NO2 concentration at full levels.

GPHPRE: computes hydrostatic pressure at full levels and half levels; computes different quantities linked
to hydrostatic pressure, like o, §, 1/T1.

GPPRSO0D: computes simulated reflectivities at full levels.

GPPVO: computes the potential temperature and potential vorticity at full levels.
GPPWC: computes the total content of specific humidity in columns bounded by the top and half levels.
GPRCP: computes ¢p, R and k¥ = R/c;, at full levels.

GPRH: computes relative humidity at full levels.

GPRH_2D: cf. GPRH but for specific applications.

GPRT: computes RT and its horizontal derivatives at full levels.

GP_SPV: computes Ils and its horizontal derivatives.

GPTCO3: computes total column ozone mass per surface unit.

GPTET: computes the potential temperature at full levels.

GPUVS: computes Ugyrr and Viyys.

GPVCMUS: computes us at full levels (and optionally its horizontal gradient).

GPVCRS: computes the ratio r/a and its inverse at full levels and half levels (and optionally its horizontal
gradient).

GPVCTS: computes the reference profile of temperature used in the definition of r/a.
GPVCW: computes the pseudo vertical velocity W at full levels.
GPXX: computes X at full levels.

Most of these routines have tangent linear and adjoint versions.
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* GP_.TNDLAGADIAB... and GNH_.TNDLAGADIAB... routines:

GP_TNDLAGADIAB_UV: explicit adiabatic Lagrangian tendency of the horizontal wind.
GNH_TNDLAGADIAB_GW: computes the explicit adiabatic Lagrangian tendency of gw.

GNH_TNDLAGADIAB_SPD: computes the explicit adiabatic Lagrangian tendency of the pressure
departure variable.

GNH_TNDLAGADIAB_SVD: computes the explicit adiabatic Lagrangian tendency of the vertical
divergence variable.

GNH_TNDLAGADIAB_UVS: computes the explicit adiabatic Lagrangian tendency of the surface
horizontal wind.

* Other GNH... routines:

GNHD3: computes D3 at full levels.
GNHDLR: computes r/a and a/r at full and half levels.

GNHDLRA: computes r/a and a/r at full and half levels, with additional preliminary calculations (hat
routine for GNHDLR).

GNHDLRA _STA: computes standard atmosphere r/a and a/r.

GNHDLRB: computes r/a and a/r at full and half levels, and converts II based quantities into IT based
quantities.

GNHGRDLR: computes [ZV] r at full and half levels.
GNHGRGW: computes the horizontal gradient of gw at full levels and half levels.

GNHGRPRE: computes [§V] P, @ and [§V] Q at full levels.

GNHGW2SVD: retrieves the vertical divergence d from gw.

GNHGW2SVDAROME: special version of GNHGW2SVD called after the AROME physics.
GNHPRE: computes p, p —II, & and % at full levels.

GNHPREH: computes p at half levels and Ap at full levels.

GNHSVD2GW: cf. GPGW but with additional intermediate calculations.

GNHX: cf. GPXX but with additional intermediate calculations.
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26 Tangent linear code.

26.1 Basics about TL code.

The coded linearised formulae will not be detailed in this documentation: the tangent linear code is taken line
by line, thus it depend on the way the direct code is written. The main features of the tangent linear code are
roughly the following ones:

e the tangent linear code looks like the direct code but with a differentiated shape. For example if the direct

code contains an instruction like
Z=XY

the tangent linear code will contain at the same place the instruction
7 =XY;+ X5Y

using some trajectory variables subscripted by index “5”. In the tangent linear code, X is a perturbation.
e There is additionally a “trajectory” code which is a copy of the direct code, but applied to the trajectory
variables subscripted by index “5”.

The tangent linear code performs the evolution of a “linear” perturbation; for example if the direct model

discretizes the scalar 2D equation:
dX

= = KX?
dt
where K is a constant, the tangent linear model discretizes the equation:
% =2KX[0X]

One can see that the evolving variable is now [0.X] and that the “trajectory” information provided by the direct

model (here X) is also required. In our case [6X] is assumed to be small enough to match the identity:
K[X + AX]? - KX? ~ 2K X[0X]

which means that [6X] has to remain negligible compared to 2X. At each time step the matrix defining the linear
transformation is in our case [2K X].

26.2 Tangent linear code for the 2D model: organigramme under STEPOTL
for the Eulerian 2D model.

STEPOTL -> SCAN2MTL -> GP_MODEL_TL ->
* CPG2TL ->
- GPTF2
* CPG2LAGTL ->
- GPTF1

e CPG2TL: TL of unlagged grid-point computations.
¢ CPG2LAGTL: TL of lagged grid-point computations.

e GPTF1: first part of the Asselin temporal filter.
e GPTF2: second part of the Asselin temporal filter.

Communications between unlagged grid-point computations and lagged grid-point computations need a buffer
using pointers of module PTRSLB2.
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26.3

Tangent linear code for the 3D model: organigramme under STEPOTL
for the Eulerian 3D model.

STEPOTL -> SCAN2MTL -> GP_MODEL_TL ->
* CPG_DRV_TL -> CPGTL ->

Allocations
CPG5_GP (for trajectory) ->
* some routines reading trajectory (RDPHTRAJM)
* GPMPFC5 (for trajectory)
* GP_SPV (for trajectory)
* some GP.. routines computing intermediate grid-point quantities for trajectories.
CPG_GP_TL ->
* GPTF2
* GPMPFC (for model variables)
* some GP..TL routines computing intermediate grid-point quantities for model variables.
* GPINISLB
MF_PHYSTL (organigramme not detailed)
CPG_DYN_TL ->
* CPEULDYNTL ->
- some SI.. routines computing some linear terms used in SI scheme.
* VDIFLCZTL (organigramme not detailed)
CPG_END_TL ->
* GPMPFC (for model variables)
GPMPFC5 (for trajectory)
Deallocations

* EC_PHYS_TL (organigramme not detailed)
* CPGLAGTL ->

GPTF1

CPG_DRV _TL: driver for TL of unlagged grid-point computations.
CPGTL: TL of unlagged grid-point computations.

CPG_GP_TL: TL of beginning of unlagged grid-point computations; reads t— At data in buffers, computes
some diagnostic grid-point quantities (call to some GP... routines), does multiplications by the mapping
factor, applies the second part of the temporal filter.

CPG_DYN_TL: TL of interface routine for unlagged part of the Eulerian dynamics and simplified Buizza
physics.

CPG_END _TL: TL of end of unlagged grid-point computations; writes data in buffer, first part of the
temporal filter, divisions by the mapping factor.

CPGLAGTL: TL of lagged grid-point computations.

GPMPFC: multiplications/divisions by the mapping factor.
GPMPFCS5: trajectory version of GPMPFC.

GPTF1: first part of the Asselin temporal filter.

GPTF2: second part of the Asselin temporal filter.

VDIFLCZTL: TL of simplified Buizza physics.

EC_PHYS_TL: calls TL of lagged physics used at ECMWF.
MF_PHYSTL: calls TL of unlagged physics used at METEO-FRANCE.
CPEULDYNTL: computes the RHS of TL of Eulerian equations.

Communications between unlagged grid-point computations and lagged grid-point computations need a buffer
using pointers of module PTRSLB2.
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26.4 Testing the tangent linear code: configurations 501, 521 and 522.

* Aim, and configurations: The aim is to test that the tangent linear code provided in the code, is the
genuine tangent linear code of the direct code and that there is no bug in it. Configuration 501 performs this test
for the 3D primitive equation model or the 3D non-hydrostatic model. Configurations 521 and 522 perform this
test respectively for the 2D shallow water model and for the 2D “vorticity” equation model.

* Algorithm: The algorithm will be described for a “generic” 2D variable X (that can be for example log(Ils))
but it can extend to a vector of variables containing all layers of different 3D variables and some additional 2D
variables. The number of timesteps run is denoted by Ngtop-

e The test configuration reads two files and computes a perturbation. The two files can be identical. One of
these files contains the initial state; for our generic 2D variable X the initial state is denoted by Xo. An
initial perturbation [6X]o is also computed.

e First the model performs a direct integration of Nyop timesteps, like in the configurations 1, 201 or 202.
That provides the different forecast steps of X: X1, Xa, ..., Xny,,- This trajectory is stored in a buffer;
it will be used to run the tangent linear model.

e The model then performs a tangent linear integration to compute the evolution of the perturbation [§X];
this integration uses the trajectory Xo to Xn,,,, and provides [6.X]1 to [0.X]| N,y -

e The model then does a loop (index j from 0 to 10); for each value of jx the model runs a direct integration
with an initial state of Yo = [X 4+ 107720 X]o and forecasts Y1 to YNuop- In spectral space, for each couple
of wavenumbers (m,n), the following ratio is computed:

YNstop (m7 n) - XNstop (m? n)
10_j/\ [6X]Nstop (m7 n)

R’Nstop (mr n) =

(what is printed on the listing is a subset of Rn,,,(m,n) taken at random). The test must show that
RN,iop (M, 1) converges towards 1 when jy increases.

* Organigramme: Only the basic features of the organigramme of configurations 501, 521 and 522 is given
here (for example the canonical injections and the printing routines are omitted); for details about STEPO and
STEPOTL see above.

e From CNTO to TESTLI: CNTO — >

— SUOYOMA — > (0-level setup; organigramme not detailed)
SUOYOMB — > (0-level setup; organigramme not detailed)
CTL1 — > SU1YOM — >

* SUVAZX — > SUSPEC — > (reads the second file (name ICMSH[.]JIMIN))
x SUSPEC — > (reads the initial conditions file (name ICMSH[.]JINIT))

— TESTLI — > (see below; controls all the algorithm of testing the tangent linear code)

e Under TESTLI:

— SUPERT — > (computes the perturbation [6X]o).

— CNT3 — > CNT4 — > STEPO — > (direct model integration which computes X1, Xa, ...,
XNstop)'

— CNT3TL — > CNT4TL — >

* STEPO — > TRANSINVH — > (converts the trajectory X1 to Xn,,, into grid-point space).
* STEPOTL — > (runs the tangent linear model to provide [0X]1 to [0 X]N.op)-

in a loop on j from 0 to 10:

* CNT3 — > CNT4 — > STEPO — > (direct model integration which computes Y1, Y2, ...,
YNutop from the perturbed initial state Yo = [X 4+ 107726 X]o)
* computes the ratio Rn,,., and prints it for a subset of wavenumbers (m,n).
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27 Adjoint code.
27.1 Basics about AD code.

One starts from the linear tangent code and “adjoints” the code: for example a matricial expression of the
following type
Y=MX

leads to the expression
X=X+ 'MY

in the adjoint code.

27.2 Adjoint code for the 2D model: organigramme under STEPOAD for
the Eulerian 2D model.

STEPOAD -> SCAN2MAD -> GP_MODEL_AD ->
* CPG2LAGAD —>
- GPTF1AD
* CPG2AD ->
- GPTF2AD

CPG2AD: AD of unlagged grid-point computations.
CPG2LAGAD: AD of lagged grid-point computations.

e GPTF1AD: AD of first part of the Asselin temporal filter.

e GPTF2AD: AD of second part of the Asselin temporal filter.

Communications between unlagged grid-point computations and lagged grid-point computations need a buffer
using pointers of module PTRSLB2.

27.3 Adjoint code for the 3D model: organigramme under STEPOAD for
the Eulerian 3D model.

STEPOAD -> SCAN2MAD -> GP_MODEL_AD ->
* CPGLAGAD ->
- GPTF1AD
* EC_PHYS_AD (organigramme not detailed)
* CPG_DRV_AD -> CPGAD ->
- Allocations
- CPG5_GP (for trajectory) ->
* some routines reading trajectory (RDPHTRAJM) .
* GPMPFC5 (for trajectory)
* GP_SPV (for trajectory)
* some GP.. routines computing intermediate grid-point quantities for trajectories.
- CPG_END_AD —>
* GPMPFC
- CPG_ZERO_AD
- CPG_DYN_AD —>
* VDIFLCZAD (organigramme not detailed)
* CPEULDYNAD ->
- some SI.. routines computing some linear terms used in SI scheme.
- MF_PHYSAD (organigramme not detailed)
- CPG_GP_AD ->
* some GP..AD routines computing intermediate grid-point quantities for model variables.
* GPMPFC (for model variables)
* GPTF2AD
- GPMPFC5 (for trajectory)
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¢ CPG_DRV_AD: driver of AD of unlagged grid-point computations.
e CPGAD: AD of unlagged grid-point computations.

e CPG_GP_AD: AD of beginning of unlagged grid-point computations; reads ¢t — At data in buffers,
computes some diagnostic grid-point quantities (call to some GP... routines), does multiplications by
the mapping factor, applies the second part of the temporal filter.

e CPG_DYN_AD: AD of interface routine for unlagged part of the Eulerian dynamics and simplified Buizza
physics.

e CPG_END_AD: AD of end of unlagged grid-point computations; writes data in buffer, first part of the
temporal filter, divisions by the mapping factor.

e CPG_ZERO_AD: zeroing some arrays before adjointing.

e CPGLAGAD: AD of lagged grid-point computations.

e GPMPFC: multiplications/divisions by the mapping factor.

o GPMPFCS5: trajectory version of GPMPFC.

e GPTF1AD: AD of first part of the Asselin temporal filter.

e GPTF2AD: AD of second part of the Asselin temporal filter.

e VDIFLCZAD: AD of simplified Buizza physics.

e EC_PHYS_AD: calls AD of lagged physics used at ECMWF.

e MF PHYSAD: calls AD of unlagged physics used at METEO-FRANCE.
¢ CPEULDYNAD: computes the RHS of AD of Eulerian equations.

Communications between unlagged grid-point computations and lagged grid-point computations need a buffer
using pointers of module PTRSLB2.

27.4 Testing the adjoint code: configurations 401, 421 and 422.

x Aim, and configurations: The aim is to test that the adjoint code provided in the code, is the genuine
adjoint code of the tangent linear code and that there is no bug in it. Configuration 401 performs this test for
the 3D primitive equation model or the 3D non-hydrostatic model. Configurations 421 and 422 perform this test
respectively for the 2D shallow water model and for the 2D “vorticity” equation model.

x Algorithm: The algorithm will be described for a “generic” 2D variable X (that can be for example log(Ils))
but it can extend to a vector of variables containing all layers of different 3D variables and some additional 2D
variables. The number of timesteps run is denoted by Nstop.

e The test configuration reads two files and computes two perturbations. The two files can be identical. One
of these files contains the initial state; for our generic 2D variable X the initial state is denoted by Xo. An

initial perturbation [0X]o and a “final” perturbation [0Y]n,,,, are also computed.

e First the model performs a direct integration of Ngop timesteps, like in the configurations 1, 201 or 202.
That provides the different forecast steps of X: X1, Xo, ..., Xn,.,- This trajectory is stored in a buffer;
it will be used to run the tangent linear and the adjoint models.

e The model then performs a tangent linear integration to compute the evolution of the perturbation [§X];
this integration uses the trajectory Xo to Xn,,,, and provides [6X]1 to [0.X] N, -

e The model then performs an adjoint integration to compute the “adjoint” evolution of the perturbation

[0Y]; this integration uses the trajectory Xo to Xn.,,,, starts from [0Y]n,,,, and provides [0Y]n,,,—1 to
[6YTo.

e If one denotes by M the matricial operator verifying:
[0X]Nstop = M[0X]o
(this is a product of Ngtop matrices), the two following scalar products are computed:
S1 = (M[5X]o, [6Y ] Narop )
52 = {[6X]0,M" [0Y | Nerop )

These scalar products are defined in spectral space. These scalar products are compared; they must be
identical if the provided adjoint code is correct relative to the tangent linear code.
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* Organigramme: Only the basic features of the organigramme of configurations 401, 421 and 422 is given
here (for example the canonical injections and the printing routines are omitted); for details about STEPO,
STEPOTL and STEPOAD see above.

e From CNTO to TESADJ: CNTO — >

SUOYOMA — > (0-level setup; organigramme not detailed)
SUOYOMB — > (0-level setup; organigramme not detailed)
CAD1 — > SU1YOM — >

* SUVAZX — > SUSPEC — > (reads the second file (name ICMSH[.]JIMIN))
* SUSPEC — > (reads the initial conditions file (name ICMSH[.]JINIT))

TESADJ — > (see below; controls all the algorithm of testing the adjoint code)

e Under TESADJ:

SUPERT — > (computes the perturbations [0X]o and [§Y]n,.,)-

CNT3 — > CNT4 — > STEPO — > (direct model integration which computes X1, X, ...,
XNstop)'

CNT3TL — > CNT4TL — >
* STEPO — > TRANSINVH — > (converts the trajectory Xi to Xn,,, into grid-point space).
* STEPOTL — > (runs the tangent linear model to provide [0.X]1 to [0 X]N.cop)-

CNT3AD — > CNT4AD — >
* STEPO — > TRANSINVH — > (converts the trajectory X1 to Xn,,,, into grid-point space).

* STEPOAD — > (runs the adjoint model from the perturbation [0Y]n,,,, in order to provide
[6Y ] Nogop—1 t0 [6Y]o).

Checks comparing the two scalar products S1 and S2 that the adjoint code is really the adjoint of
the tangent linear code.
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28 Some distributed memory features.

Note that some variables referenced below may be attributes of structures.

28.1 Message passing division into processors, structure of grid-point data.

The total number of processors is NPROC. There are two levels of parallelisation. Distribution on these two
levels is different in the different spaces of calculations.

NPROC=NPRGPNS+«NPRGPEW. The total number of processors involved in the A-level parallelisation is
NPRGPNS. The total number of processors involved in the B-level parallelisation is NPRGPEW.

One 2D model field has NGPTOTG points divided into NPRGPNS*NPRGPEW sets of NGPTOT points
treated by each processor. NGPTOT may be processor-dependent (with very small variations): the maximum
value of NGPTOT is NGPTOTMX. A processor treats complete columns in grid-point space.

For one given processor, the NGPTOT points are divided into packets of length NPROMA (the useful number
of values in each packet is lower or equal than NPROMA). NPROMA is identical for all processors. There are
NGPBLKS blocks of NPROMA packets:

NGPBLKS = int(NGPTOT + NPROMA — 1)/NPROMA]|

A NPROMA -packet does not always contain a set of complete latitudes.

There are necessary transpositions (reorganisation of data) between grid point computations and Fourier
transforms because Fourier transforms need complete latitudes.

28.2 Transmission of data used in several “JKGLO” blocks in the grid-point
computations.

There are several “JKGLO” blocks in the grid-point calculations. Calculations start for the first block, for the
NGPBLKS packets of NPROMA points. Calculations for the second block follow then, and so on. Some data
may be needed in more than one block.

Some of these data can be stored in the arrays GMVT1, GMVT1S, GFLT1, GMV, GMVS, GFL, but
some other more specific data require a special buffer, allocated and deallocated in GP_MODEL (local name is
ZSLBUF2, dummy name is generally PB2 under CPG, CALL_SL and CPGLAG). This array is used both
in the Eulerian and semi-Lagrangian schemes. Each individual quantity stored in ZSLBUF2 can be retrieved
by a pointer with a name looking like MSLB2... (in PTRSLB2). Pointers starting by letters MSLB2... are
pre-computed in the set-up routine SUSLB.

For example the “t” linear contribution which is used in the semi-implicit scheme and which appears in the RHS of
temperature equation, can be stored in ZSLBUF2(.,MSLB2TSI:MSLB2TSI+NFLEVG-1,.); it is currently
computed under CPG_DYN, and needed for example under CPGLAG which is in a different JKGLO block.
No halo computation is necessary for this buffer.

28.3 Case LEQ_REGIONS=T.

This case is relevant only when NPRGPEW>1 (B-level parallelisation at least in the grid-point calculations),
and use a global model with a reduced Gaussian grid. This is an optimised version of the LEQ_REGIONS=F case
which is well designed for reduced Gaussian grid and it improves the load balance in this case. A comprehensive
description can be found in (Mozdzynski, 2006). To sum-up, we can say that:

e the A-level grid-point distribution splits the Earth into N_REGIONS_NS bands. N_ REGIONS_NS
can be slightly different from NPRGPNS.

e for each band jroca, the B-level grid-point distribution splits the band into N_.REGIONS(jroca) zones:
the minimum value of N_REGIONS is at the poles of the computational sphere (equal to 1 in the examples
provided by Mozdzynski); the maximum value of N_.REGIONS is at the equator of the computational
sphere and this maximum is equal to N_ REGIONS_EW. The meridian variations of N_REGIONS are
highly correlated to those of NLOENG.

e In the examples provided by Mozdzynski, NPRGPNS=NPRGPEW=NPRTRW=NPRTRYV and we
notice that N_REGIONS_NS is slightly below NPRGPNS, and that N_.REGIONS_EW is slightly
below 2« NPRGPEW.

When LEQ_REGIONS=F, variables N_ REGIONS_NS, N.REGIONS and N_.REGIONS_EW are still
used but in this case:

¢ N_REGIONS_NS=NPRGPNS.
¢ N_ REGIONS=NPRGPEW everywhere.
¢ N REGIONS_EW=NPRGPEW.
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29

Specific Eulerian model variables in modules and namelists.

These modules are auto-documented so description of each variable is provided in the code source. We can recall
here the most important variables to know for each module:

PARDIM (parameter dimensions).

PTRSLB2 (pointers for arrays to communicate information between the different blocks in the grid-point
calculations).

PTRGPPC (pointers for grid point array (GPPC) for PC schemes).

ELBC.. modules for lateral or vertical coupling and spectral nudging: all variables. Some of these variables
are in namelists NEMELBCOA and NEMELBCOB.

YEMDYN (LAM model dynamics): LESIDG, RTHRESIDG. RTHRESIDG is in namelist NEMDYN.
YOMARG (0-level control, former command line) and YOMCTO (0-level control):

— All NAMARG variables: for ex. NCONF, LELAM, LECMWF, UTSTEP, LSLAG, NSUPERSEDE.
— LR3D, LR2D, LRSHW, LRVEQ.

— LTWOTL.

— LREGETA, LVFE_REGETA.

— LNHDYN.

— LRPLANE.

— LAROME.

— LCALLSFX, LSFXLSM.

— LSFORC, LSFORCS.

Some of these variables are in namelist NAMCTO.

YOMCVER (vertical finite element discretisation keys). Some of these variables are in namelist
NAMCVER.

YOMDIM, YOMDIMYV and YOMDIMF (dimensioning): most of variables. Some of these variables
are in namelist NAMDIM.

YOMDYNA (adiabatic dynamics: first part):
— LAPRXPK, NDLNPR, RHYDRO (vertical discretisation).
— L3DTURB (3D turbulence).
— LSLDIA, LRPRSLTRJ (diagnostics).
— LRUBC.
— NPDVAR, NVDVAR, ND4SYS, LNH_PDVD, LNHX, LNHXDER, RC_PD1 (NH model).
— LGWADV, NGWADVSI, LRDBBC (treatment of vertical divergence equation in NH model).
— LVERCOR, LRWSDLW, LRWSDLR, LRWSDLR2, LRWSDLG, LCURVW (deep layer models).

Some of these variables are in namelist NAMDYNA.
YOMDYN (adiabatic dynamics: second part):

— REPS1, REPS2, REPSM1, REPSM2, REPSP1 (Asselin filter).

— RKRF, NMAXLEVRF, RRFZ1, RRFPLM (Rayleigh friction).

— RTEMRB, NRUBC (upper radiative boundary condition).

— LSIDG, BETADT, RBT, RBTS2, NITERHELM, LIMPF (semi-implicit scheme).

— REFGEOQ, SIPR, SITR, SITRA, SITRUB, SIPRUB, SITIME, SIRPRG, SIRPRN (reference values
used in the semi-implicit scheme).

— NSITER, NCURRENT._ITER, LRHDI_LASTITERPC (predictor-corrector scheme).
— NCOMP_CVGQ, LDRY_ECMWF.

— LRFRIC, LRFRICISOTR (Rayleigh friction).

— VCPR, VCTR, VCAK, LADVFW, NITPRHS (deep-layer equations formulations).

Some of these variables are in namelist NAMDYN.
YOMGPPCB (contains buffer for gridpoint workfile needed for PC schemes).
YOMGPPB (contains buffer for the externalised SURFEX surface scheme).

YOMMPO and YOMMP (distributed memory environment, see documentation (IDDM) for more
details).

YOMRIPO (model date). Some of these variables are in namelist NAMRIPO.
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¢ YOMRIP (timestep dependent variables), in particuliar TSTEP, TDT and NSTOP. Some of these
variables are in namelist NAMRIP.

e YOMSTA (constants for standard atmosphere).

¢ YOMSTADLR (additional quantities for standard atmosphere used in WS2003 formulation of NH deep-
layer equations).

e TYPE_FADS (to define the Field Arpege Descriptors).
e Modules for trajectory stored for TL and AD models:

— TRAJECTORY _MOD (manages trajectory for TL and AD runs in a unified way).
— TRAJ_MAIN_MOD (manages main trajectory).

— TRAJ_PHYSICS_MOD (manages physics trajectory).

— TRAJ_SEMILAG_MOD (manages semi-Lagrangian trajectory).
TRAJ_SURFACE_MOD (manages surface trajectory).

e Modules for geometry:
— YOMGSGEOM (geographic space grid-point geometry)
— YOMCSGEOM (computational space grid-point geometry)
— YOMOROG (orography)
— YOMGEM (horizontal geometry): some variables are in namelist NAMGEM.
— SPGEOM_MOD (spectral geometry).
— YOMVERT (vertical geometry and VFE operators).
— YOMVV1 (namelist variables for vertical geometry): variables are in namelist NAMVV1.
— YEMGEO (LAM model geometry): some variables are in namelist NEMGEO.
— YEMGEOLBC (LAM model geometry for LBC).
— TYPE_.GEOMETRY, TYPE_SPGEOM.

e Modules for GMV dataflow:

— YOMGMYV (grid-point arrays for GMV fields).
— TYPE_GMYVS (derived types for GMV).
— GMV_SUBS_MOD (contains encapsulated routines for GMV management).

e Modules for GFL dataflow:

— YOMGFL (grid-point arrays for GFL fields).
— YOM_YGPFL (descriptors of GFL arrays). Some of these variables are in namelist NAMGFL.
— GFL_SUBS_MOD (contains encapsulated routines for GFL management).

e Modules for surface dataflow:
— SURFACE_FIELDS_MIX (surface dataflow).
¢ YOMSP and YOMSPS5 (spectral arrays).

We give there a sum-up of the main modules and structures belonging to ifs_init part, geometry part, and model
structures. This is important to understand what is OOPS-compliant.

e Part ifs_init: the set-up is done before calling SUGEOMETRY; content of these modules should not be
modified by SUGEOMETRY or after calling SUGEOMETRY. List contains at least:

- YOMMPO

— YOMGSTATS
— YOMLUN

- YOMMSC

— YOMCST

- YOMARG

— YOMCTO0 and YEMCTO
— ENKF_MIX
- YOMJFH

— YOMDYNA
- YOMCVER
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— YOMDYNCORE
— ELBCOA_MOD
- YOMVAR

— YOMRIPO

— YOMINI

- YOMIOP

- YOMTIM

- YOMVWRK

- YOMNUD

- YOMTRANS
— INTDYN_MOD

e Geometry: sets-up the following structures and modules; some of these variables are attributes of variable
YRGEOMETRY,; content of these variables should not be modified after the call to SUGEOMETRY.

— YOMVV1: not encapsulated, vertical geometry only
- YOMDIM

- YOMDIMV

— YEMDIM

— YOMVERT

- YOMGEM

- YEMGEO

— YEMGEOLBC
- YOMMP

- YEMMP

- YOMLEG

— YOMLAP

— YEMLAP

— YOMSTA

— YOMSTADLR
— SPGEOM_MOD
- YOMCSGEOM
- YOMGSGEOM
— YOMVSPLIP
— YOMVSLETA
— YOMHSLMER

e Model structures and fields structures: all what is computed after SUGEOMETRY. For example, content
of the following modules:

- YOMGMV

- YOMGFL

— SURFACE_FIELDS_MIX
- YOMSP

- YOMSPS5

— YOMTRAJ

— ELBC0OB_MOD

— ELBC0C_MOD

— FIELDS_MOD

To be OOPS-compliant, the code should pass these variables via dummy arguments (and never via use of
modules) in routines called under STEPO/AD/TL.
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30 An example of namelist.

x Introduction: In order to avoid to have to recompile all the code when changing the value of a variable
(for example a dimension), as it was the case in the old PERIDOT/EMERAUDE system, some variables are
provided in different namelists, so it is possible to change the value in the namelist without recompiling the code.
All variables which have to be modified compared to the default value can be specified in the namelist, but there is
also an option where the model retrieves some data (date and geometry) by reading the frame of some ARPEGE
files.

x+ Example of namelist for an ARPEGE Eulerian forecast: The example provided below is
coming from the forecast namelist “namelistfc” which has been used in the ARPEGE (TL1198L105¢2.2 stretched
version) operational suite on 01/07/2016, with minor modifications (use the Eulerian advection scheme and reduce
the timestep, no VFE, adapt the namelist for cycle 45, remove activation of FULL-POS diagnostics, reduce the
number of processors, no IO server). This suite used the cycle 41t1_opl. The namelist is:

&NACIETEO
&NACOBS
éNACTAN
&NACTEX
éNACVEG
&NADOCK
&NAEAEM7
&NAEAER
&NAECOAPHY
éNAEPHLI
%NAEPHY

&NAERAD
LRRTM=.TRUE.,
LSRTM=.FALSE. ,
NMCICA=O0,
NRADFR=-1,
NSW=6,
RLWINAF=0.9,

éNAERCLI
&NAETLDIAG
&NAEVOL
éNAIMPO
&NALORI
?NAMAERDET

&NAMAFN
TFP_I%LLGP=.TRUE.,
TFP_L%LLGP=.TRUE. ,

/

&NAMARG
CNMEXP=’ARPE’ ,
NCONF=1,
LELAM=.FALSE.,
LECMWF=.FALSE. ,
CUSTOP=h102’,
UTSTEP=60. ,
LSLAG=.FALSE.,
NSUPERSEDE=1,

/
&NAMARPHY
?NAMCA
&NAMCAPE

&NAMCFU
LCUMFU=.TRUE. ,
LFDUTP=.TRUE. ,
LFPLC=.TRUE.,
LFPLS=.TRUE.,
LFR=.TRUE.,
LFSF=.TRUE.,
LFSOIL=.TRUE.,
LMOON=.TRUE.,
LNEBPAR=.TRUE.,
LSTRD=.TRUE.,
LSTRT=.TRUE.,
LFRRC=.TRUE.,
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LRAYD=.TRUE.,
éNAMCHEM
&NAMCHET
éNAMCHK
&NAMCLA
&NAMCLDP
&NAMCLI
&NAMCLOP15
éNAMCLTC
&NAMCOK
&NAMCOM
&NAMCOMPO
?NAMCDSJD

&NAMCTO
LFBDAP=.TRUE. ,
LFDBOP=.FALSE. ,
LTWOTL=.FALSE. .
NDHFZTS (0)=-9,
NDHFZTS(1:9)=-6,-12,-18,-24,-36,-48,-60,-72,-96,

NHISTS(0)=-28,
NHISTS(1:10)=-0,-3,-6,-9,-12,-15,-18,-21,-24,-27,
NHISTS(11:20)=-30,-33,-36,-39,-42,-45,-48,-51,-54,-60,
NHISTS(21:28)=-66,-72,-78,-81,-84,-90,-96,-102,
NSDITS(0)=-1,

NSDITS(1)=0,

NSPPR=1,

LREGETA=.FALSE. ,

LVFE_REGETA=.FALSE.,

NFRGDI=1,

NGDITS(0)=-1,

NGDITS(1)=0,

NUNDEFLD=-99999999,

/

&NAMCT1
LRFILAF=.FALSE.,
N1P0S=0,
N1iRES=0,

/
%NAMCUMF
&NAMCUMFS

&NAMCVER
LVERTFE=.FALSE.,
NVSCH=0,

/

&NAMCVMNH
0TADJS=10800. ,
XCDEPTH=1. ,
XCDEPTH_D=4000. ,
XDTPERT=0. 3,
XENTR=0.013,

/

&NAMDDH
LHDEFZ=.TRUE. ,
LHDHKS=.TRUE. ,
LHDZON=.TRUE.,
NDHKD=30,

/

&NAMDFI

&NAMDIM
NPROMA=-3582,

/

&NAMDIMO
&NAMDIM_TRAJ
%NAMDPHY

&NAMDYN
RDAMPDIV=2.,

&NAMDYNA
LAPRXPK=.FALSE.,
NDLNPR=0,

/
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&NAMDYNCORE
&NAMEMIS_CONF
&NAMENKF

ENAMFA
NBITCS=30,
NBITPG=30,
NSTRON=-1,
YFALYNBITS=16,
YFAIYNBITS=16,
YFARYNBITS=16,
YFASYNBITS=16,
YFALRADYNBITS=16,
YFAIRADYNBITS=16,
YFACLFYNBITS=6,
YFATKEYNBITS=16,

éNAMFAINIT
&NAMFPC
&NAMFPD
éNAMFPDYQ
&NAMFPDYF
éNAMFPDYH
&NAMFPDYI
&NAMFPDYP
éNAMFPDYS
&NAMFPDYT
éNAMFPDYV
&NAMFPF
&NAMFPG
éNAMFPIDS
&NAMFPMOVE
éNAMFPPHY
éNAMFPSC2
&NAMFPSC2_DEP
&NAMGEM

&NAMGFL
YI_NLY%LGPINGP=.TRUE.,
YI_NLYLGP=.TRUE.,
YI_NLYLT1=.TRUE.,
YI_NLYLPHY=.FALSE.,
YI_NLYNREQIN=1,
YI_NLY%LREQOUT=.TRUE.,
YI_NLYLADV=.FALSE.,
YI_NLYLQM=.FALSE.,
YL_NLY%LGPINGP=.TRUE.,
YL_NLY%LGP=.TRUE.,
YL_NLYLT1=.TRUE.,
YL_NLY%LPHY=.FALSE.,
YL_NLY%NREQIN=1,
YL_NLY%LREQOUT=.TRUE.,
YL_NLY%LADV=.FALSE.,
YL_NLY%LQM=.FALSE.,
YR_NLY%LGPINGP=.TRUE.,
YR_NLYLGP=.TRUE. ,
YR_NLYLT1=.TRUE.,
YR_NLY%LPHY=.FALSE. ,
YR_NLY%NREQIN=1,
YR_NLY%LREQOUT=.TRUE. ,
YR_NLY%LADV=.FALSE.,
YR_NLYLQM=.FALSE. ,
YS_NLYLGPINGP=.TRUE.,
YS_NLY%LGP=.TRUE.,
YS_NLYLT1=.TRUE.,
YS_NLYLPHY=.FALSE. ,
YS_NLYNREQIN=1,
YS_NLY%LREQOUT=.TRUE. ,
YS_NLYLADV=.FALSE.,
YS_NLY%LQM=.FALSE.,
YTKE_NLYLGPINGP=.TRUE.,
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YTKE_NLYLGP=.TRUE. ,
YTKE_NLYLT1=.TRUE. ,
YTKE_NLJNREQIN=1,
YTKE_NLYLREQOUT=.TRUE. ,
YTKE_NLY,NCOUPLING=0,
YTKE_NLYLADV=.FALSE.,
YTKE_NLYLQM=.FALSE.,
YIRAD_NLY%LGP=.TRUE.,
YIRAD_NLYNREQIN=0,
YIRAD_NLYLREQOUT=.TRUE.,
YLRAD_NLYLGP=.TRUE.,
YLRAD_NLY%NREQIN=0,
YLRAD_NLYLREQOUT=.TRUE. ,
YA_NLY%LGP=.TRUE.,
YA_NLY%NREQIN=0,
YA_NLY%LREQOUT=.TRUE.,

/

&NAMGRIB

gNAMGWD

&NAMGWDIAG

gNAMcwwms

?NAMIAU

&NAMICE

&NAMINI
LDFI=.FALSE.,

/
%NAMINTFLEX
&NAMIOMI
&NAMIOS
&NAMIO_SERV
&NAMJBCODES
%NAMJG
&NAMLCZ
?NAMLSFURC
&NAMMARS
&NAMMCC
%NAMMCUF
&NAMMETHOX
?NAMMKODB
&NAMMODERR
&NAMMTS
&NAMMWAVE
&NAMNPROF
?NAMNUD
&NAMOBS
%NAMUOPS
&NAMOPH
CFNHWF=’ECHIS’ ,
LINC=.TRUE.,
/
&NAMOPTCMEM
&NAMPARO
NOUTPUT=1,
NPROC=2,
NPRGPNS=2,
NPRGPEW=1,
NPRTRW=2,
NPRTRV=1,
MP_TYPE=2,
MBX_SIZE=128000000,
LOPT_SCALAR=.FALSE. ,
/
&NAMPAR1

NSTROUT=2,
NCOMBFLEN=1638400,
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LEQ_REGIONS=.FALSE.,
/
&NAMPARAR
?NAMPHMSE

&NAMPHY
CGMIXLEN=’AY’,
LAERODES=.TRUE.,
LAEROLAN=.TRUE.
LAEROSEA=.TRUE.,
LAEROS00=.TRUE.,
LCONDWT=.TRUE. ,
LDIFCONS=.TRUE.,
LFPCOR=.TRUE. ,
LNEWD=.TRUE. ,
LNOIAS=.TRUE.,
LO3ABC=.TRUE.
LPROCLD=.TRUE. ,
LRAY=.FALSE.,
LRAYFM=.TRUE. ,
LRAYLU=.TRUE.,
LRNUMX=.TRUE. ,
LSSD=.TRUE. ,
LSTRA=.FALSE.,
LVGSN=.TRUE. ,
LCVPPKF=.TRUE. ,
LECDEEP=.TRUE. ,
LECSHAL=.TRUE. ,
LECT=.TRUE.,
LFLUSO=.TRUE. ,
LNEBECT=.FALSE.,
LO3FL=.TRUE.,
LECTFL=.TRUE. ,
LECTFLO=.TRUE. ,
LZOHSREL=.TRUE. ,
LADJCLD=.TRUE. ,
LSMITH_CDEV=.TRUE.,
NCALLRAD=2,
LGLACIERS=.TRUE.,
NDPSFI=0,

/
&NAMPHYO
EDD=1.,

EDK=1.,
GCVNU=5.E-05,
GCVPSI=1.,
GCVPSIE=1.,
GWDCD=5.4,
GWDSE=0.005,
GWDVALI=0.5,
QSNEBC=-1.,
QSSUSC=5. ,
RCVEVAP=0.25,
REVASX=2.E-07,
RICRLM=0.5,
TDDGP=0.6,
TUDGP=0.6,
USURIC=0.175,

XMAXLM=5000. ,
XMINLM=10.,
ALMAVX=1000.,
GCVHMIN=30000. ,
RFACNSM=1.2,
RFLCHCE=0.25,
RKFBTAU=7200.,

SXNBCO=1.,
ALMAVE=0. ,
RQCRNS=0. ,
RQICRSN=1.,
TFVI=0.08,
TFVL=0.02,
TFVS=1.5,
GCVOMGE=1.0,
ECTMAX=35. ,
AECLS4=3.,
GDDEVA=0.2,
GCVOMGQ=-1.0,
REFLKUO=5000. ,

/

&NAMPHY1
ALBMIN=0.65,
ALCRIN=0.81,
EMMGLA=0.98,
EMMMER=0.99,
ALRCN1=0.01,

/
&NAMPHY2

FACRAF=4.5,
XMULAF=0. ,
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LRAFTKE=.TRUE.,
HTKERAF=20.0,

éNAMPHYS
&NAMPHYDS
&NAMPPC
&NAMPRE
éNAMRADlS
&NAMRADCMEM
&NAMRCF
&NAMRCOEF
&NAMRES
éNAMRGRI
&NAMRINC
éNAMRIP
&NAMRIPO
&NAMRLX
éNAMSATS
&NAMSCC
&NAMSCEN
&NAMSCM
&NAMSEKF
éNAMSENS
&NAMSIMPHL
éNAMSPNG
&NAMSPP
&NAMSPSDT
éNAMSTA
&NAMSTOPH
éNAMSWE
&NAMTESTVAR
&NAMTHLIM
éNAMTOPH
ETCVIM=5000.,
ETNEBU=5000. ,
ETPLUI=5000.,
XDRMTK=2.E-08,
XDRMTP=800. ,
XDRMTX=4 .E-07,
XDRMUK=1.E-07,
XDRMUP=800. ,
XDRMUX=2.E-06,
éNAMTRAJP
éNAMTRANS
LUSEFLT=.FALSE.,
LUSERPNM=. TRUE. ,
LKEEPRPNM=. TRUE. ,
éNAMTRANSO
éNAMTS
éNAMVAR
&NAMVARBC
éNAMVARBC_AIREP
&NAMVARBC_ALLSKY
&NAMVARBC_GBRAD
&NAMVARBC_RAD

%NAMVARBC_SFCOBS
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&NAMVARBC_TCWV
&NAMVARBC_TO03

&NAMVAREPS
&NAMVDF
éNAMVDOZ
&NAMVOLCANO
éNAMVRTL
&NAMVVO
&NAMVV1
éNAMVWRK

%NAMWAVELETJB

&NAMXFU

LXCLP=.TRUE.,
LXCLS=.TRUE.,
LXFU=.TRUE.,
LXHHCLS=.TRUE. ,
LXICV=.TRUE.,
LXNEBPA=.TRUE. ,
LXNEBTT=.TRUE.,
LXQCLS=.TRUE.,
LXSOIL=.TRUE.,
LXTGST=.TRUE.,
LXTTCLS=.TRUE.,
LXXGST=.TRUE.,

/
&NAM_CANAPE

&NAM_DISTRIBUTED_VECTORS

éNAPHLC
&NEMCTO
&NEMDIM
éNEMDYN
&NEMELBCOA
éNEMELBCOB
&NEMFPEZ0
&NEMGEQ
éNEMJK
&NEMVAR
éNEMWAVELET

Explanation

of some elements of this namelist:

e NAMARG:

CNMEXP=ARPE: four letters code of the job, which appears in the local name of some files; for
example the local name of the initial conditions file in this case has the name ICMSHARPEINIT.

NCONF=1: means that the job runs in configuration 1.
LELAM=.FALSE.: means that the model is the global one.

LECMWF=FALSE.: means that the job runs with the default METEO-FRANCE options and
not the ECMWF options.

CUSTOP="h102": means that the forecasts has a range of 102 h.

UTSTEP=60.: means that the timestep is 60 s.

LSLAG=.FALSE.: means that the advection scheme is an Eulerian one.
NSUPERSEDE=1: means that geometry and date are read from initial file frame.

¢ NAMCEFU: LCUMFU=.TRUE. means that the CFU diagnostics are activated.

e NAMCOCTO: in this namelist one finds some information about the temporal advance scheme and the
frequency of some outputs. For example LTWOTL=.FALSE. means that the advection scheme is a leap-
frog one; NFRHIS=1, NHISTS(0)=-28, NHISTS(1)=-0, NHISTS(2)=-3, ... NHISTS(28)=-102,
means that the output of historical files is asked for 28 times during this 102h range model integration,
and that the occurrence number 1 (resp. 2, ..., 28) is at range Oh (resp. 3h, ..., 102h).

¢ NAMDYN: in this namelist one finds information about horizontal diffusion coefficients, Asselin temporal

filter,

some options of the semi-Lagrangian scheme. In our case we use the default values and this namelist

can remain empty.
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e N AMINI: in this namelist one finds information relative to the initialisation; LDFI=.FALSE. means that
there is no initialisation.

e NAMPARO and NAMPARI1: in this namelist one finds information relative to the distributed memory
architecture. In our case there are 2 processors in the first level of distribution and one processor in the
second one.

e NAMPHY, NAMPHYO0, NAMPHY1, NAMPHY2, NAMPHY3, NAMTOPH give information
about the set of physical parameterizations and the coefficients used in the physics, NAERAD is designed
for the “ECMWEF” FMR-radiation scheme.

e NAMXFU: LXFU=.TRUE. means that the XFU diagnostics are activated.

The reader will remark that some information does not appear in the above namelist: the truncation, the geometry
(stretching, high resolution pole, type (reduced or not) of Gaussian grid), the number of latitudes of the Gaussian
grid, the maximum number (and also the number for each latitude) of longitudes of the Gaussian grid, the number
of layers and the definition of these layers. In our example where NSUPERSEDE is set to 1, all this information
is read in the frame of the initial conditions file.

* ALADIN and AROME: The namelist looks like the one used in ARPEGE, with some additional
elements, the name of them generally starting by NEM. For example in the forecast namelist “namel_previ” of
AROME which was operational on 01/07/2016, the reader will find additional elements starting by NEM... and
some additional information about the lateral coupling (for example the information TEFRCL=3600. present
in NEMELBCOB means that the coupling frequency is 1h).

In NAMARG, LELAM=.TRUE. means that the model is now a LAM model.
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Appendix 1: expressions for [gV] a and EV} 0 at full levels.

a) Expressions for [%V]a and EV]é at full levels if LVERTFE=.F. and
NDLNPR=0.

x For 0:

I Lv|m- |[zV] O] B- B
519,27 () = o -] et - L1 s e
a ! a I;_, a a 117 I;_, I; I, | la
Thus: B
r B; T r
ro]s] = [B B [ro]n, )
|:|:av:| :|l |:Hl H271 av (5 6)
This formula can be rewritten as follows:
A-B; . — A B-
T 1-1-1 -1~ | T
IR = et PR (527)
This is the last formula (527) which is coded in the model.
* For a: - -
T _ 1—1 r _|r 1—1
HEV} O‘L_ 1L, Hav} 5}1 {av} [HlHlJ o
IT; V| 105
N LEvIm, 7] [1} s
I -1, lla v =1 a I [H—1I_,
Expressions m and BV] Il are put in factor. The term containing [[%V] 5] . yields:
B- B
=1 (0 = 10_y) [n% - nf_l} ,
7 -1 [7v} IL
(HZ - H271)2 a
The sum of terms containing ¢§; writes:
(G -1 B &+ 15 B — 1, By 16 [
: “5]n.
(HZ - Hz_l) a
_CIEB  + 15, By A1, B -1, By )0 [CV] 0
(HT — H271)2 a
mr_ (2 — Pt
(5 By —1zB; )b [Iv} oot [I-TT B Hm} ! [fv} I
(Hi - Hz_1)2 a s (HZ — Hi—l 2 a s
From the previous equations, [[éV] a]l can be rewritten:
II-
[[59]a] Mty tog (L, ) ~ T~ ) 15 5 [Zv|m (528)
- ol = — - s
a 1 (Hi — HZ—1)2 HT Hi—l a

* For a + logIl: Horizontal gradient of this term is used in the discretization of the pressure gradient term
in the RHS of momentum equation: it expression is in fact significantly simpler than the ones of the horizontal

gradients of o and ¢ taken separately. Starting from formulae giving @ and EV] a (formula (528)) at full
levels one can see that:

e the sum of terms containing B;d; is zero.
e the sum of terms containing B;_,4; is zero.

e the sum of the other terms containing B;_, is zero.

(Il; — II;_,)? can be eliminated at the numerator and denominator of the other terms containing B;_,.

The consequence is that [EV] (a+log H)]z can be rewritten:
r _ By
Hgv} (a—|—logH)L - { v} L, (529)
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b) Expressions for EV}Q and BV}é at full levels if LVERTFE=.F. and
NDLNPR=1.

x For 0: Al Al
_ l 1
=T = T (530)

T

One applies operator [EV] to equation (530):

(2514, = (8] (o o]

) (531)
!

Expression of HgV] 5]1 contains the two quantities [%L and [EZ]H} the equations of which (equations (264)
l
and (257)) have to be used. That yields:
—A-  B-
1 [ ] _,’_ 6[ ( —1 — 1— )1 l
Hiv} 5] =— | 2B, - (I;-11_,) B Fv} T,
a ! IGILG (I; - 11;_,) a

The sum of terms containing [AB], is zero, so the previous equation can be rewritten as:
va} 6} _ 0 [ABi, — A By [
a ! VIEE (T - 15, ) La

If the hydrostatic pressure at the top of the model is zero:

v} T, (532)

* For a:

1t (533)

T

One applies operator [gV] to equation (533):

which can be rewritten:

(), )

Expression of H%V] a]l contains the two quantities [%]l and [ o } , the equations of which (equations (264)
l
and (257)) have to be used. That yields:

A- BT

A-B-  —
[ABL +6l 1 1—1 l—
I-—1II

[5)e), = gt | o o |

This expression is rewritten in order to factorise the two terms A;B; | — A; | B;and 1/ (Hf — Hffl)'

Hi—l [AB]l / (HZ - HZ_1) - Bi—l
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= (W, B; =14, By, — By + 1, B _y) / (I~ T,
= (B~ 1;B;,) / (I - 1;_,)
= ((Ar_, + B \IL) By — (A7 + BlL) B;_,) / (I — Th;_, )

=~ (4Bi_, — A, By) / (I - T1_,)

Thus:
va} a} _ 1 AB, = A Bl ol [[V} -
a l WG, | (-1, (I —1m_,) | ta
The following term in factor:
—14 o,/ (T = T;_)
can be still rewritten:
R -
0, -1 . 1y _ g,
(I — 1k, ) 1L
Thus:
oy |A-B- . — A-  B-
va} a} _ l[ P11 -1 l] [ZV] I, (535)
a ! VI (T - 15, ) La

If the hydrostatic pressure at the top of the model is zero:
[&¥)e] =0
a =1

c) Expression for [§V} 0 at full levels if LVERTFE=.T. and NDLNPR=0.

Equation:
[AIT]),

6=",

can be rewritten:
log(81) = log([AIT)) — log(I1,)

Applying BV} yields:
[[evsl, _ [[Ev]iam],  [[5v]m],

& [amg, I
But:

[ ], - . [15]
and:

(551, - ]
So:
(15919, = | - ) o [5¥]
Factor: B, B
[[AH}Z B Hl]

can also be rewritten:
[AB|I1; — [AIL]; By

[ATT]; 1T,
ie.:
A [AB}Z + BZ[AB]ZHS — [AA][B; — [AB}ZBZHS
(AT I,
ie.:

A[AB], — [AA] B
[ATT) 1T,
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Appendix 2: modified formulation of continuity equation in the
(WB1995) deep layer system of equations.

a) Introduction.

This equation is significantly modified by the deep layer formulation. One has to start from the pressure-coordinate
expression of continuity equation, which is not modified too much by deep layer formulation. Formula (4.17) of
(White and Bromley, 1995) writes:
1 9(r*w)
VuV + — =0 536
nV + 2ol (536)
2
Compared to the thin layer formulation of this equation, there is an additional term Bg}R which means that
when a particle goes up, its horizontal section increases. One multiplies equation (536) by r and one uses property
Vinr = 0, that yields:

10(r*w)
b) Adiabatic Eulerian formulation.
2
x Treatment of term containing %% One develops w = 4l in vertical coordinate 7:
dir oIl o1l
iR VA v4 | (I s
T TRAALS L (538)
. : el a om \.
That yields, using property % = (%) (%)
1 9(r2w)
a1l
_ 1 8(7‘2w)

G

(r2 ol 2 o 1"27']@

T R
_ ( 1) 8(?%) 41 8((rvg(rv)n) +( 1) 3(7?%)

% r n gI‘I % r n

2 200 ” . o(r2pon
= (i)ra( ) (gj ~(rV) G (gé)r((rv)ﬂ)a(a,}’) + (%;)T ( ;6") (539)

n n n n

*x Treatment of term containing Vi (rV): One uses the following coordinate-transformation
formulae, between to vertical coordinate n; and 72 for a variable X:

(), = (), + (&) (&), (40

0X\ [(0X on
()= (o) () (10

In our case, n1 =n, n2 =11, X = rV. That yields:

forz = A, © ort.

a(rV)

Vn(rV) = V(rV) + o

Vin (542)

Applying transformation formula (540) to X = II yields:

(50).- 5+ () (), =
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for £ = A or ©, what can be written in a vectorial way:

oIl
0=VII+ —Vr, 544
VII + an Vi.n (544)
or:
1
(%)
Equation (542) can be rewritten:
1 o(rV
Vn(rV) = V(rV) — %" )y (546)
(55) on

x Final calculations: The sum of terms containing %:) is zero. Thus expression

2
Vn(rv) + %a(gnw)
writes: ( 2311) ( ) an)
1 0(r % 1 A((rv)II) 1 9(r g,
VvV V(rv _
@y, o @ e Y @y

Multiplying by g—gr, expression

o1l 19(r*w)
<a77r) |:VH(7‘V)+ T :|

writes:

a(r*5}) A(rv)I) | (ol o (r*i%5y)
=G+ V)R (E) (1) (V) + = T

The operator (rV) can be inverted with the vertical derivative operator; thus one can write:

(rv) 20D (9 (77 (1 V)

on
= (V)(rV) (22) + (5F) (rV)(rV)
= (V) (rvgl) (547)
Thus the n-coordinate form of continuity equation writes:
o (r?eld d (r2n2d
(%) 877‘”) +rv <7’Vgl;7[) + 2(r*n5,) ana’?) =0 (548)

One can notice that not any of the properties of the vertical coordinate 7 has been still used.

* Vertically integrated formulation of continuity equation. One has to integrate vertically
this equation on dn from 1 = 0 (top) to n = 1 (ground). Equation (548) becomes:

Il I =t Il I I
[ﬁa—} - [7"28—} +/ AY (TV8> dn + |:r27'78:| - [7'27'78] =0 (549)
ot Jy=1 Ot lymo " J,—o on |, _, M, _,
One uses the following properties: [%—?]W:O = 0 (this is one of the properties of the n-vertical coordinate), n-

coordinate vertical velocity zero at the top and the bottom (true if variables NDPSFI=0 and LRUBC=F).
Equation can be rewritten, after a normalisation by the mean Earth radius a:

R = e e
LQL_l ot __/n_o [Ev} (avan> dn (550)

oIl a? =ty r. OIl
ot —‘Mn:l / B Rl <avan> dn (551)

which can be rewritten:
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c) Adding a physical contribution (case “0m = 1”) and an upper radiative
condition.

* Non vertically integrated formulation of continuity equation: One adds a physical
contribution F' to equation (536) in pressure coordinate, that yields:

1 9(rw)
VnV + = om r (552)
Doing the same calculations than in the adiabatic case, equation (548) yields:
9(r*5t) on\  9(*ig;) on
— L 4V (V= |+ ——— = —'F 553
p +r <r 877>+ o anr (553)
The physical tendency F' involves the diabatic flux F, (assumed to be zero at the top of the model) via formula:
o1 a’ OFw
=g 4
on 972 on (554)
Thus equation (548) can be rewritten:
2 (%) o\ 9(r*ig;) OF,
v (rves = _g?g= 2 555
on tr <T 877>+ on g@n (555)

* Vertically integrated formulation of continuity equation: The vertically integrated
formulation of continuity equation shows additional terms related to physics and to the fact that 7'7%—1;7[ can be
non-zero at the top and the bottom. Equation (550) becomes:

r? oIl /n_l {r (r 61_[) |:r2 81‘[} {73 6H:|
— =— fV] -V— |dn— | —=n— + | =05 -
[aQ ] 1 ot g=0 L0 a On " a on et a on =0 9 ([

Dividing by {Z—i} , and considering that [Fm]n:O is zero, this equation becomes:
n=1

|

iyt~ [F],—o) (556)

2e——[5] IS B GVED @
B [ﬁg%]ﬁzl * [%} n=1 [Zé] n=0 [ﬁg%]nzo —9 [Fm]n:1 |:i7§:| n=1 (557)

It can be transformed into an evolution equation of logIls.

2ot =[] [V (V) an
ool 3 I o B = I -3 = M (535)

d) Semi-Lagrangian formulation.

For a variable Xop which does not depend on 7, vertical advection is zero, so relationship between Lagrangian
derivative and Eulerian derivative writes:

dXop  0Xop
Ot
Equation (123) is valid for all 2D variables, even for the deep layer formulation. In particular it is valid for the
following variables:
e Xop = log(Ils).

o Xop = logHs + 5TR%-

+ % FV] Xop (559)
T a

When vertically integrating this equation, one obtains:

n=1 o n=1 2o n=1 2
r* 0B dXop r* 0B 0Xap r“ 0B a r
— dn = — d ——-V |-V| Xopd
/no a’ On dt ! /no a’ on Ot " /no a’ onr [av} 2pe (560)

The introduction of Z—z in the vertical integrals is due to the fact that one has to take an air volume in the vertical
integration.
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Appendix 3: discretisation of [gV} is at full levels for spherical
geometry (WB1995 formulation of deep-layer equations).

Expression of [gV] Us is:
2 2
[zv:| Ms = _@ [tv:| (Ugnordm cosf — Vgnordl CcoS 9) - 1 [zv:| (l]H/)
a g la g la r
This expression can be written as a sum of several terms:
£5]-
a
_@gnordm COs 9 |:£Vj| U + @gnordl COSQ [CV} V- @U [rvj| (gnordm COsS 9) + @V [CV} (gnordl COs 9)
g a g a g a g a
2 2
J [Zv]r= = (v [Ev]u+ov 29| v)
gr a rg a a

In this sum there are three different types of quantities, the horizontal gradient of which has to be computed.

e Horizontal wind components: meridian derivatives are eliminated, and the expression is rewritten using
divergence, vorticity and some curvature terms containing tan fpne.

[£V] U writes:

1 au
acos Opne OAppe
10U _ _a 1 By U
( 10U _acy T + < tan G

90pne acos Oppne OApne

[g V] V' writes:

1 oV
acos Opne OAp
( 1OV _ap_ bt 3t +Ztan0bne>

a 99pne T acosfpne OApne
One transforms these formulae in order to use the system of computational sphere coordinates (A, ©) and
the reduced components of the wind: that allows to write formulae with some quantities easily available
in the model.

[§V] U writes:

acos© OA

M2 [ 1 ou’
4 ! " [2tan0 ne
M2 |:_C +ac;s® aa‘j\} + |:M2U ( : ab )j|

[£V] V writes:
’
2 1 oV
M acos® OA

M2 D s e + [ (e

e The pseudo-radius 7: see formulae (110) and (112) for the computation of its horizontal gradient.

e The geometrical quantities Gnorai cos @ and Gnordm cos 6.

Equation (22) can be rewritten as:

Gnord1 cos § = — cos pe sin A (561)

Applying the reduced horizontal gradient operator v yields:

’ [ S
\v4 (gnordl cos 0) — ( acos © C%S epe cos A ) (562)
Multiply by the mapping factor M:
M
[£V} (gnordl COS 0) = ( acos© C%S epe cos A ) (563)

This gradient is zero when the computational sphere geometry is untilted (high resolution pole = true
North pole).
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Equation (23) can be rewritten as:

2¢8in Ope c0s © — ((¢* — 1) 4 (c? + 1) sin ©) cos Ope cos A

nordm S0 = p 4
Grordm cos (@11 +(@—1)sn0) (564)
The reduced zonal derivative is simple to compute:
-1+ (P?+1)sin®
L 9(Gnoram c0s0) I (( )+ ( ) - ) cos Ope sin A (565)
acos© oA acos® ((¢2+1)+ (2 —1)sin®)

Multiply by M to obtain the semi-reduced zonal derivative. This quantity is zero when the computational
sphere geometry is untilted (high resolution pole = true North pole).
The reduced meridian derivative is more difficult to compute, one has to develop the formula and remove

some terms, the sum of which is zero:
1 0(Gnoram cos0) _
a CIS)

o (c?2—1) cos ©
u((c2+1)+(¢:271) sin @)

+a(

o (2csin Ope cos © — ((02 — 1)+ (2 +1)sin @) cos fpe cOS A)

(C2+1)+(162_1) o) (—20 sin fpe sin © — (c2 + 1) cos © cos Ope cOS A) (566)

Developing this expression yields:
— denominator: a ((82 +1) + (¢ — 1) sin @)2.
— Terms containing sin fp. in the numerator:
(—(c2 — 1) cos ©2ccos © — 2esin O(c? + 1) — 2¢(c® — 1) sin® (9) sin Ope
= (726(62 —1)cos®© — 2¢(c* — 1) sin” © — 2¢(c¢® + 1) sin @) sin Ope
= (—2¢(c® = 1) — 2¢(c” + 1) sin ©) sin Oy
= (—26((02 —1) 4 (¢® +1)sin 6)) sin Ope

— Terms containing cos fpc cos A in the numerator:

((02 —1)%cosO© + (2 = 1)(¢® +1)cos Osin® — (¢* + 1)*cos O — (¢* — 1)(¢® + 1) cos Osin 9) cos fpe cos A

= ((02 —1)%cos© — (* +1)* cos 6) cos Ope cos A
= (7402 cos @) cos Ope cos A

Thus:
1 (Guordm cos 0) (—20((02 — 1)+ (c® + 1) sin ©) sin fpe — 4c? cos O cos Ope COS A) (567)
a 90 - a((c241)+ (2 —1)sin©)°
Multiply by M to obtain the semi-reduced zonal derivative. When the computational sphere geometry is
untilted (high resolution pole = true North pole) formula (567) becomes significantly simpler but gives a
quantity which remains non-zero.

T

One finally obtains for [EV} (Gnordm cos 0) the vector of coordinates:

1 ((c2fl)+(c2+1)sin®)

acos © ((C2+1)+(L‘271> sin @)

(—2c((c2—1)+(c2+1) sin ©) sin 6'1,5—4(:2 cos © cos Ope cos A)
a((02+1)+(c271) sin @)2

cos Ope sin A

M

These formulae become simpler when rewritten with the mapping factor M at the numerator and the
denominator. Vector [gV} (Gnoram cos 0) writes:

2 2 s
1 (c®—=1)+(c*+1)sin©® .
2ca cos © ( ) COS gpe sin A

M
—((02—1)+(c2+1) sin ©) sin fpe —2c cos © cos Ope cos A)
a]\/[((c2+l)+(c271) sin @)

m

ie.:

1 (((02—1)+(c2+1) sin ©) sin Ope+2c cos © cos Ope cos A)
a ((62+1)+(0271)sin@)

< gcacl()s@ ((62 -1+ (02 + 1) sin 9) cos Ope sin A )
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Concerning the second element of this vector, one can notice that:

(2 —=1)+(c*+1)sin@®

sin Oppe = (F+1)+(2—1)sin® o
2ccos ©
COS ebne - (62 4 1) + (82 — 1) Sin@ (569)
thus the second element can still write:
M OGnortn €090) _ 1 (i, sim e+ cos e cos Oy cos A) o

When the geometry of the computational sphere is untilted, fpne becomes equal to # and the vector
(sin Ope; cos Ope ) becomes equal to the unit vector (1,0), thus the second element writes in this case —1 sin ¢:
this result can be easily retrieved using property % oX — %%—ig with X = cosf. One can furthermore notice

96
that formula (564) writes:

Gnordm €08 6 = €08 Opne SN Ope — Sin Gpne €OS Ope cos A (571)
%w can be reformulated as %a(g%:cose)’ what provides the previous formula in a simpler
ne
way.

About the first element of this vector, it can be also written as % cos fpe sin A.
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Appendix 4: inertial Coriolis/centrifugal terms in a 3D primitive
equation model, deep layer formulation, for spherical geometry.

Equations are written with the vertical velocity w: replace w by W for the (WB1995) formulation of deep-layer
equations.

a) Coriolis and inertial terms.

There are four terms, one of them which does not appear in equations because it is “hidden” in the gravity
constant g.

e The centrifugal force due to the Earth rotation: this term involving Q%7 is omitted in the equations because
it is “hidden” in the gravity constant g.

e The Coriolis force due to the Earth rotation.

e A mixed Coriolis/centrifugal inertial term due to the zonal displacement of the particle on an apparent
latitude of the computational (tilted and stretched) sphere.

e A mixed Coriolis/centrifugal inertial term due to the meridian displacement of the particle on an apparent
latitude of the computational (tilted and stretched) sphere.

One will now detail the computation of the three terms which appear in equations. These terms appear not only

in the horizontal components of the momentum equation, but also in the diagnostic relationship which allows to
compute the total geopotential ®.

b) Coriolis force due to the Earth rotation.

Earth rotation has an angular velocity € directed from the geographical South pole towards the geographical North
pole, the modulus of which is Q. Its coordinates are (0, cos,Q2sinf) in a local system of coordinates linked to
the geographical sphere. Its coordinates become (€2 cos, )y, cos 0,2 sinf) in a local system of coordinates linked
to the computational sphere. To compute €2 and €2y one has to take the horizontal matricial transformation which
allows to go from one to the other one of these two systems. This transformation is defined from the unit vector
directed towards the geographical North pole; the apparent coordinates of this unit vector in the computational
sphere are (Gnordl, Gnordm ). Applying equations (24) and (25) t0 Xapp = Qx, Yapp = Oy, Xgeo = 0, Yeeo = 2, that
yields Qx = QGnoral and Qy = QGnordm. S0, in a local system of coordinates linked to the computational sphere,
term —2Q A (U, V,w) has the following coordinates:

Gnoraif2 cos U — [2Gnoram 2 cos fw — 2Q sin OV
—2| GuoramQcosfd | A | V = — [2928in OU — 2Gn0rai€2 cos fw] (572)
Qsin w — [2Gnorai2 cos OV — 2G,0ram 2 cos OU |
Vertical component —[2Gnord1€2 08 0V — 2Gn0ram 2 cos QU] appears in the relationship giving the total geopotential
®. Introducing the deep layer formulation brings the following new terms:
e —[2Gnordam§? cos Bw] in the zonal component of momentum equation.
o —[—2Gnoraif2 cos w] in the meridian component of momentum equation.

e —[2Gnorai2 cos OV — 2G0rdm 2 cos QU] in the relationship giving the total geopotential ®.

c) Inertial mixed centrifugal/Coriolis force due to the zonal displacement of
the particle.

The angular velocity which is responsible of this force is directed from the low resolution pole towards the high
resolution pole; its modulus is:

U]
7 €08 Bpne
Its coordinates in a local system of coordinates linked to the computational sphere geometry is:

€08 Obne; sin Gbne>

( " 1 cos Opne 7 oS Bbne

(0; Q; v tan ebne)
T T
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The latitude which appears in this vector is the one on a tilted unstretched sphere. So, in a local system of
coordinates linked to the computational sphere, term:

- (0; g; v tan 0bne> A (U, V,w)
r’r
has the following coordinates:
— L - UV an ]

r

0 U U2
u Al V)= - [T tan 9bne} (573)

4]

Vertical component — [7%2} appears in the relationship giving the total geopotential ®. Introducing the deep

g

s
% tan Opne

layer formulation brings the following new terms:

e the curvature term —[%%] in the zonal component of momentum equation.

° 7[7%2] in the relationship giving the total geopotential ®.

For the other terms, the mean Earth radius a is replaced by the pseudo-radius r in the denominator.

d) Inertial mixed centrifugal/Coriolis force due to the meridian displacement
of the particle.

The angular velocity which is responsible of this force is directed towards the apparent western direction (on the
computational sphere); its modulus is:
|V
T
Its coordinates in a local system of coordinates linked to the computational sphere geometry is:

(o)
s

So, in a local system of coordinates linked to the computational sphere, term:

— (= L50:0) AU, Vyw)

has the following coordinates:
\% 0
VA v )= -
— 0 Al V= T

o S

Vertical component — {—%2} appears in the relationship giving the total geopotential ®. Introducing the deep

(574)

layer formulation brings the following new terms:

e the curvature term —[%] in the meridian component of momentum equation.

° —[—VTZ] in the relationship giving the total geopotential ®.

e) Horizontal advection term.

Considering a geographical wind and geographical derivatives, the horizontal advection of the horizontal wind
writes as follows, in the coordinate system (Abne, Obne):

_ 1 U2u_ _ 1y _ou
( reosfbne ~ OApne ivag o ) (575)
T

T rcosOpne ~ Obne 00pne
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f) Combination of advection terms with the curvature terms.

Curvature terms containing tan 6y, are combined with horizontal advection terms; the meridian derivatives of
the wind are eliminated and rewritten using the divergence, vorticity, zonal derivative and some curvature terms.
Formulae (57) and (58) are used. These formulae are applied to geographical variables, and written in the system
of coordinates (Abne, Obne); that yields:

1 oUu 1 O(V cos Opne)

D= 7 08 Opne OAbne + 7 C0S Opne 00pne (576)
o % 1 AU cosBone)
_ _ COS Ubne
¢= 7 COS Opne OApne 7 €OS Opne 00bne (577)

These two relationships yield the meridian derivatives of the horizontal wind, knowing the zonal derivatives of
the horizontal wind, the divergence and the vorticity:

1., 0V 1 o v?
—=V =-VD4+ —V — — tan Opne 578
r O0bne + rcosObne  OMbne r anvo (578)
and: 1. oU 1 ov UV
—-V =V(— —V — —— tan Oppne 579
r 00bne ¢ 7rcoSOpne  OAbne r anvb (579)
The “horizontal advection + curvature terms” sum vector
1 au 17y, 08U Uv Uw
T T cosOpne Uaxbnc - ;V 90pne + TZ tan ane - (580)
1 OV _ 1y OV U” ton Qppe — LY
7coSOpne ~ OApne T’ 90ppe T ne r

becomes, after elimination of the meridian derivatives of the wind and after summing together the curvature
terms:

1 ou 1 A% Uw

VC 7 cos Oppe U Obne 7 cos Oppe 4 8)\5,)16 s 7 (581)

—VD— 1 oV 1 ou U4V tan 6 _ Vw
7 €08 Oppe ~ OApne 7cosOppne  OAbne T bne

r

Note the additional relationships: U = MU', V.= MV', D = ¢M?D’, ¢ = e M?¢’,

L 0U _a,»f 1 oU
708 Opne ONbpe T acos©® OA

1 ov CLMQ 1 ov
708 Obne ONbne T acos© OA
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Appendix 5: transformation in the plane of the contribution
“horizontal advection + horizontal curvature terms”, in plane
geometry.

a) Vector to transform.

The components of the vector “horizontal advection + horizontal curvature terms” write (see part (6.2.1)):

o first element: ,

!’ ! ! 2
—C?U V'U — CSV V'U + ﬂVV(Ucose) _ v VY (U cos6)
cos @ cos @
s’ csv’

+CSU' VUV + S2V' VUV — VY (V cos ) + ———V"*(V cos 6)
cos cos 0
2 2
+MS¥ tan 6

e second element:

’ ’ 2 ! !
_osu'viU - sV v+ 2V VY (U cos ) — ﬂvv(Ucos 0)

cos cos 0

, , /7 2 /7
_c2u' v v —osv' vV + S0 v cos ) — CV 97 (V cos 0)

cos 0 cos O

2 2
etV e
T

The aim is to rewrite this vector using 8,/(U/, O;U/, G,LV/, 8;,V/ instead of VU, V'V, VV(U cos®) and
VY(V cos ©).

b) Expressions of V'U, V'V, VY(U cos©) and V'(V cos ©).
e Computation of V'U:
VU = VY(MCU' + MSV') = U VY (MC) +V VY (MS) + (MC)V'U + (MS)V'V'
One uses the following relationships:

. 1
VY(MC) = ——— MKLS

1
YW(MS) = MK,
VE(MS) r cos 0 LC
ViU = %MC@,@U' + %MSE);U'
/ a a

vV = SMoaV + SMSaV
So expression of V*'U becomes:
1

ViU = — MELSU +— MELOV + S M2C20.U + S MP0So,U +  M2CSo. v + 22520,V
rcos 6 rcosf r r r r

e Computation of V"V
VUV = VY(=MSU + MCV')=—U V" (MS)+V V" (MC) — (MS)V'U + (MC)V"V'
The same method already applied to V"U is now applied to V"V, that yields:
1 1

MELCU = —— MELSV =2 M*CS0.U = 2 M*§*0,U" + 2 M CP0,v + 2 MPCso, V!

VV:_TCOSG rcos 6
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e Computation of V¥ (U cos 0):
V(U cos) = VY (MCU cosf + MSV' cost)
C' and S do not depend on 0, so they can be put out of the meridian derivative:
V(U cos) = CVY (MU cos) + SV¥(MV' cos0)

= CU/VV(M cosf) + SV/VV(M cosf) + MC cos OV'U + MScosoV'V'

One uses the following relationships:

V(M cos ) = _KuM
.
VU = —%Msa;U' + %Mca;U’
a a

vV = -SMsav + Smoa
So expression of V¥ (U cos ©) becomes:
VY(U cos ) = —%MKLCU/ - %MKLSV/ - %M2CS(‘9;U/ + %M"‘CQa;U' - %MZSQa;V' + %MQCSG;V/
e Computation of V¥ (V cos ©):
V¥(V cosb) = Vv(—MSU/ cosf + MCV' cos 0)
C' and S do not depend on 8, so they can be put out of the meridian derivative:
VY(V cos) = —SVV(MU, cosf) + CV” (MV, cos )
= —SU/VV(M cos ) + CVIVV(M cos ) — MS cos OV U + MC cos V'V
The same method already applied to VY (U cos 6) is now applied to VY(V cos ©), that yields:
V¥ (V cos ) = +%MKLSU/ - %MKLCV/ +EMPSPOU — SMPCSOU - SMPCSOV + SMPCROLV

One now do substitutions in both elements of the vector “horizontal advection + horizontal curvature terms”,
that yields, putting % in factor:

o first element:

’ 1 ’ 1 ’ ’ ’ / ’ ’ ’ ’ ’
ey [— MKLSU + ——MKLCV + M?C?0,U + M?CS3,U + M>CSd, V' + M?S29, V]
r acosf acosf Y Y

’ 1 ’ 1 ’ ’ ’ ’ ’ ’ ’ ’ ’
_Z2osv [—7MKLSU + ——MKL,CV + M?*C?0.U + M2CSo,U + M?CS8. V' + M?529, V}
r acosf acosf Y Y

’ 1 !’ 1 /7 ! ’ / ’ !’ ! /7 ’
+— 5CSU {—fMKLCU — ~MKLSV — M?CScos00,U + M>C?cos00,U — M?S? cos 00,V +M205coseayv]
T COS a a
’ 1 ’ 1 ’ ’ ’ ’ ’ / ’ ’ ’
i 002V [—fMKLCU — =MKLSV — M?CScos08,U + M>C?cos00,U — M?S? cos 00,V +MQCSCOSGBYV}
T COS a a ; ;
! 1 / 1 ’ ! ! ! ! ’ ! ’ ’
+2osu {—7MKLCU — ——MKLSV — M?CS8,.U — M?S%0,U + M2C?0, V' + M2CSd v}
r acos 6 acosf Y Y
+2g2y [— MEKLCU — MELSV — M2CSa.U — M2829,U" + M2C?9. V' + M2CSo, v/]
r acosf acosf Y Y
’ 1 ’ 1 ’ !’ ’7 ! /7 ’ ’/ ! !
S GSQU [7MKLSU — ~MKLCV + M?S?cos00,U — M?CS cos00,U — M>CS cos 09,V +M20200598yV}
T COS a a
’ 1 ’ 1 ’ ’ ’ ! ’ ’ ’ ’ ’
¢ ecsv [fMKLSU — “MKLCV + M?S?cos00,U — M?CScos00,U — M>CScos0d,V + M>C? coseayV}
T COS a a

U24+v'?
-l-MSL tan 6
T
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e second element:

’ 1 ’ 1 / U ’ ’
~2osu {fiMKLSU + ——MKL.CV' + M2C?0,U + M?CS9,U" + M?CSa, V' + M2528;,V/}
r acosf acosf

’ ]. ’ 1 ’ ’ ’ ’ ’ U ’ ’ ’
~252v [7 MKLSU + MEKLCV + M*C?0.U + M?CSo,U + M>CSd,V +M2526yv]
r acosf acos @

! 1 ’ 1 ’ / ’ ’ ’ / ’ ’ ’
5 5°U [—fMKLCU — —MKLSV — M?CScos00,U + M>C?cos00,U — M?S? cos 00,V +M205coseayv}
7 COS a a

’ 1 ’ 1 ’ ro ;o ro ’
508V [ffMKLCU — ~MKLSV — M?CScos00,U + M>C?cos00,U — M?S? cos 00,V +M2cscos98yv]
T COS a a

—ECQU/ {_

T

’ 1 ’ U ’ ’ ’ ’ ! ’ ’
MKLCU — MKLSV' — M2CS0.U — M?2S?0,U + M2C?9,V' + M?CSd V}
acosf acosf Y Y

MKLCU —
a cos a Cos

ffcsv’ [f MKLSV' — M2cso.U’ 7M2526 U+ M2C29. V' + M2CSo, V}

’ 1 ’ ’ ’ / ’ / ’ ’ ’
MEKLSU — =MKLCV + M?S?cos00,U — M?>CScos00,U — M?>CScosb0,V + M>C? cosﬁayV}
a

+rcosc9 [

1 ’ ’ ’ ’ ’ 2
0 MKLSU’ — SMELOV + M252 cos 09, U — M2CS cos 00,U" — M2CS cos 00, V' + M2C? cos 60,V }
T COS a

'2 '2
eV e
T
One obtains very long mathematical expressions, but one can show that they can be rearranged in a considerably
simpler way.

c) Simplification of the first element.

T cos 6

e Sum of terms containing U 2: My’ [KL(CQS —C?S — C?8 — $25) + Ssin 0]

Using C? + S? = 1 this expression becomes: 24U S [sinf — K1

7 cos 0

T cos 6

e Sum of terms containing Vv'2 My'2 [KL(—CQS +0%S — §%5 — 025) + Ssin@]

’
: 2 2 ; : MV 28 [
Using C* + 5% = 1 this expression becomes: ~-—2 [sinf — K]

e Sum of terms containing Uy, MUV K, [—03 +CS?—-CS*+C*—-CS? - CS* +CS* + C’SQ] =0

T cos 6

e Sum of terms containing U/(?,/(U/:

MQU;(’);U/ [704 o2 org? 54] _ MQU;E);U, [(CQ>2 ao?s? (SQ>2] _m2ulo [02 . SQ} 2 _ MQU;a;UI
e Sum of terms containing U/(‘?;,U/ m [ 38+ 035 —CS3 + CSB] =0
e Sum of terms containing U/a,/(V/ m [ C35 - CS®+C3S + CSB] =0
e Sum of terms containing Ul(?;V/ M [ C?8% +(C%8% + 8% — 0252]
e Sum of terms containing vio.u': w [ 35S +C35 —CS* + 083] 0
e Sum of terms containing Vla}/,U g
M2V;3;U' [~c2st ot~ 51— cst] Vo (€2 + 20257 4 (57] = - M2y o U’ (0% 4 2] - - sz;a;U'

e Sum of terms containing V/(‘?,/(V/: M [—025’2 +C?82% + (0?%5? — 0252] =0

, , , 2 7 ’
e Sum of terms containing V' 9,V : w [—053 - C*S+CS* + C’SS] =0
e Total:
M "2 2 N N
@ | MUZHV S (o k) — MPU 00 — MPV OLU
r acosf
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d) Simplification of the second element.

e Sum of terms containing U'%: MU [ (CS? — CS + C2C + $°C) — C'sin )

T cos 6

. 2 @2 : . Mu'2c
Using C* + 5% = 1 this expression becomes: —=-—* [sin0 — K]

e Sum of terms containing V'>: MV,Q [KL(752C + S2C + S*C + C2C) — C'sin 9]

T cos 6

Using C? + 5% = 1 this expression becomes: — Afi/oszgc [sinf — K1

e Sum of terms containing Uuv' % [—C2S+ S% - 834+ C?S+C*S +C%S —C?S — C2S] =
m2u'olu’

e Sum of terms containing Ula,/(U/: -

[-C%S —CS? +C*S+CS%] =0
m2v oy u'

e Sum of terms containing Ula;U/: -

[—C?8% + C?S* + C*8% - C*S%] =0

e Sum of terms containing Ula,/(V':

/2 i ’ 2 i ’ 2 ’ 2 ’
M2U 8, v [7025273470470252}:7MUBXV [<02)2+20252+(52)2]:7MUBV [c +s]2 M2U 8,V
T T
’ ! ’ 2
e Sum of terms containing U 0,V : M [ CS*+C83—(C35 + CSS] =0
N 2
e Sum of terms containing V' 0,U : M [ S2C? 4+ §%2C? + §%2¢C? — 5202} =0
’ ’ ’ 2
e Sum of terms containing V' 0, U : M [ CS? —C3S+CS% + 035] =0
e Sum of terms containing VoLV’ M [ CS*4+CS* —C3S + C3S] =0
e Sum of terms containing v'a;v’:
2 N ’ 2 ! ! 2 7 ’ 2 7 ’
m2v o v [734 o 704] _ MoV [(02)2 ©ac?s? (52)2] _ MoV [02 +52]2 MV v
o Total: , ,
M 2 2 A ror
_a MUV OO Gno— k) + MU 0LV + M2V OV
r acosf
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Appendix 6: expression of the horizontal gradient of i in plane
geometry.

a) Vector to transform.

The way of calculation is different from the one used in sperical geometry, because it is not convenient to develop
the derivatives of C'cos@ and S cosf (too tricky to compute), but the derivatives of MC and MS for the zonal
part and of M cos @ for the meridian part. What has to be computed is the following vector:

1 (cCc =S [fv} | HCEVY e — 35S s
M\ s ¢ Jla' [T Ls[iv ]+ LC e

First [gvu] s and [ Vv] us are developed, then one applies the matricial operator giving B;MS and a;us.

r
a

T v
Y%
T v
Y%

b) Zonal derivative [EV“} Ls-

T

, , 2772 2v/'2
[fv“} e = 28 [ﬁv"} [MU Ccosd+ MV’ S cos 9] _! [ﬁv“} [W}
a g la g La

VU] (MS), [V U et [V V'

r r r
a a a

One has to make appear the following derivatives: EV“] (MC), [
T ou 2 " ou 22 " ou 2q2 T ou T ou
[fv } (M?) = PV } (M2C2) + PV } (M2S82%) = 2MC [fv } (MC) +2MS {fv } (MS)
a a a a a

QM2 K7,
acosf

[~CS+SC =0

=2MC [— !
acosf

Zonal derivative BV“} s can be rewritten:

T _u 20 T _u ’ ’ T _u ’ T 4
-V ps=——([MCcos0] | -V"|U +U cos@ |-V"| [MC]+ MU C |—-V"| cosb
g a a a

MKLS} +2MS [ !
ac

MKLC} =
os 6

a
2Q T _u ’ ’ T _ 4 ’ T _u
—— [ [MScosh] | -V"|V +V cosb | -V"| [MS]+ MV S |—-V"| cosb
g a a a

M2 s r ’ s r ’ IMZ(UI2 +V’2) s
- (QU Pv“} U +2V [7v“} \% ) +—_ {7V“} r
gr a a gr? a

On the sphere,  has a gradient equal to zero (BV‘*] cosf = 0). [gvu] [MC] and [EV“] [MS] are replaced by
their expressions:

T _u 2Q T _u ’ ’ 1 20 r ’ ' 1
-V ps=——([MCcosb] | -V"| U +U cosb |— MKy, S — — | [MScos6] | -V"|V 4V cosé MK, C
a g a acos 6 g a a cos 0

M? rr ’ rlr ’ ]VIz(U,2+VI2) s
-—— (20 |[-V"|U +2V |-VY|V |4 —F— = |-V | r
a

gr2 a

That can be rewritten:

[fvu] o = =22 ([Mocose} FVU} U+ [MS cos 6] [fvu} V’) _ MK (cv' —su')
a g a a ga
2 , , , , 2017’2 2
_M= (2U {Evu} U 4oy {fvu} v ) n L;rv)vur
gr a a gr
c) Meridian derivative EVV} JT
20 ’ / 1 M2 2 M2 2
[ﬁvq o = 2 [qu [MU Ccosd+ MV Scose] 1 [va} [M
a g la g la r
One uses the following properties:
[EVV] c=0
a
[5VV] S=0
a



Ky, M
a

[EVV] fcos 0] = 10cosf _ sinf
a a

[gvv] [M cos ] = —

0  a

and develops [gVV] [M cos 6]:
T v T v T v
[fv } [M cos 6] = cosf [fV } M+ M [fV } cos 6
a a a

That yields:

_KLM — cosd [EV"} M M sin @
a a a
Hence:

[fv"} M= (ing— )
a cos fa

One puts C and S out of EVV] and one makes appear BV"] [M cos 6] in the expression of g, that yields:
|:r v:| 2QC ( ’ [r v:| |:r V] /) 2QS ( ’ |:r v:| [r V] /)
-Vl ps=——— U |=V"'|[McosO]+ [Mcosf] |-V |U | — — [V |-V | [Mcos] +[Mcosb] |-V" |V

a g g9

M2 /[ , /[ / M2U'2 V' T v'z4v’? r
- <2U Pv"} U +2V Pv"} \% ) B Pv"} r— — [QM Pv"} M:|
a a

gr2 a gr a

2QC 1 K1, M Ty ’ 2QS r Ky, M Ty ’
=—-——|-U + [Mcosf] | =VV | U —— -V —— 4+ [Mcost] |[-VY |V
a

a g a a

M2 /T / /T / M2U'2 V' v yv'? M2
—— | 2U vVl U +2v —-vV|lv + - |-V | — |2 (sin® — Ky,)

gr a a gT2 a gr a cos
which can be rewritten as follows:
20MKT, (

20 , ,
FVV} s = — = ([MCcose] [fVV} U’ + [MS cos 6] FV"] 1% )
a g a a ga

M2 , , , N O M2U2+V'2 U2 4+ V'2)M? sing — K
= (2U FVV] U +2v FV"} 1% ) + % FVV] p UV )M sin L
a a gr a gr acosf

—ou' - SV/)

d) Writing derivatives in the plane.

1/ C =8
M\ S C
at the left and right of vector [EV] s -
e Terms containing [gV“] and [gvﬁ: couple ([%Vu] ; [gw]) has simply to be replaced by (8,/(; 8;,)
e Terms containing (2QM K1,)/(ga): they can be rewritten as follows:

1 (¢ —s )\ (20MKy evi —su’ \_1( c -s) (20MKL c s v\ L (20K
M s c ga —cu’ —sv’ M s c ga -5 C -uv' - ga
e Terms containing sin @ — K1,: they can be rewritten as follows:
1 c _s M? Iy /5y sinf — Kp, 0 M? /o 9\ sin@ — K, _s
— 2— +v) ——% —2— (U?4v?2) ——%
M ( S C ) gar ( ) cos @ 1 gar ( ) cos 6 c

Vector of coordinates (8;;13; B;MS) finally writes:

One has now to apply the following operator:

e first element:

20 f 20 b 2M2? o 2M2_ o M2U?2+V'2)
~ 2 [MCcosb)0.U — 22 [MScosb) 0,V — Z—U o.U — VoV +¥axr
g g gr gr gr
_2QKL v/ " 25M (U/2 +V/2)sin9— K,
ga gar cos 6
e second element:
20 F 20 b 2M2 o 2M? . M2U2+V'?) .,
~22 i coso) o U — 22 s cos) v — 2Ly g - 2y gy MOV Dy
g g gr gr gr
20Ky, s 2CM 1 ’ inf — K
S N (A R VAR ik it )
ga gar cos 6
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Appendix 7: expression of the vertical integration and of the
vertical derivative matricial operators (vertical finite element
scheme).

The content of this section is valid for the code provided by ECMWF in 2004 (LVFE_INT_ECMWF=T). New
formulations used if (LVFE_INT_ECMWF=F) are not described in detail (see (Smolikovd and Vivoda, 2013),
(de Boor, 2001)); in this case set-up is done by routine SUVERTFEB.

a) Introduction.

The algorithm is described in (Untch and Hortal, 2001), (Untch and Hortal, 2004). A vertically-dependent field
X can be projected on a finite element basis e;, ¢ being the layer numbering.

X = Xiea(n) (552)

Its vertical integral
n ’ ’
S(m) =/ X(n )dn
top

has the following finite element representation:

Stm) =Y Sidi(n) (583)

The basis d; is the same as e; excepted for some boundary values (top and bottom) where some differences can
occur. One can show that the discretisation of vertical integration is equivalent to write the matricial product:

A(S) = B(X) (584)
which is equivalent to write:
(S) = A7 B(X) = [Rinte] (top) (X) (585)

where (S) is the vector of components (S1, S, ..., Sr, St+1) and (X) is the vector of components (X1, X2, ..., X1).
For ¢ =1 to ¢ = L quantities X; and S; are defined and computed at full levels. Sr11 is the vertical integral on
the whole atmosphere. The setup code of the model successively computes A, A~!, B and the product A™'B.
[Rinte](top) is a (L + 1) * L matrix and [Rinte](top,1) is the vector containing the I-th line of [Rinte)(top)- St is given
by the scalar product:

Sl = [Rinte}(top,l) <X>

The L + 1-th line of [Rinte](top) contains [Rinte](top,surf) (discretisation of the integral on the whole atmosphere):

SL+1 = Ssurf = [Rintc](top,surf) <X>

One can also discretise an integral from the surface (for example to compute the geopotential height).

n ’ ’
/ X(n )dn
surf
can be rewritten: ;
7] 7 ’ sur 7 ’
[ xhan =[xt = s - s6=1
top top

discretised by operator [Rinte](surf,i) = [Rinte](top,1) — [Rinte](top,surf)-

b) Basis used in the vertical finite element scheme.

* Linear finite elements. For 0 <i < L+ 1: d;i(n) = ei(n). Definition of e; is:
e ¢;(n) =0 forn < mi-1.

i(n) = (n—ni—1)/(m — ni—1) for mi—1 <n <.

e ci(n) = (Mit1 —n)/(Miv1 — i) for ;i <m < Migr.

e ¢;(n)=0forn>nit1.

e ¢;i(n
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x+ Hermite cubic finite elements. d;(n) is generally equal to e;(n) excepted for i < 2 and n < 71.
Definition of e; is:

e ¢;(n) =0 forn < mi—o.

e for ni—a < m < 1, ei(n) is a third-order polynomial which matches with e;(n:—2) = 0, e;(n:) = 1,
[j—f]] Z_(171-,2) =0, [g—;] 1(772) = 0. After some long calculations which are not detailed in this documentation

that yields:

1 ) )
e« == F [=20” + 3(mi—2 + m)n” — 6(mimi—2)n + (-2 — 3ni—ams)]

e for n; < n < mniy2, ei(n) is a third-order polynomial which matches with e;(ni+2) = 0, e;i(n:) = 1,

[j—f]] i(17¢+2) =0, [j—;] l(m) = 0. After some long calculations which are not detailed in this documentation

that yields:
1 )
ei(n) = ———— [-20> + 3(nit2 + ni)n® — 6(mimir2)n + (1542 — 30ivami)]
["h - 771+2}
e ¢;(n) =0 for n > nito.

c) Vertical integration matricial operator.

*x General expression of matrices A and B. After equation (4.3) of (Untch and Hortal, 2001),
(Untch and Hortal, 2004) and taking ¢ = d (what is done in the code) one obtains:

n=1
Ay = / du(n)dd (n)e (586)
n=0

n=1 7]/ =n , ,
Bon = | [dj o [, aoan ] an (587)
n=0 n =0

A and B are (L + 1) x (L 4+ 1) matrices. A is a symmetric one.

x More details about matrices A and B for linear finite elements. The vertical integrals
of equations (586) and (587) can be analytically computed using formulae giving e; and d;. For A that yields:

e A is a symmetric tridiagonal matrix.
o Anyy =%
o Ay =" for2<i<L—1.

1-nr_
o Awny = —5=

1—n
o Ant1,n41) = —35&.

o AGi—y = Agi—1,) = % for 2 <i< L.

o Ay = A,y = gk

e The other coefficients are equal to zero.
For B that yields:

o By =m>+ im(ne —m)
o By = 3mmj+1 —mj—1) for 2 < j < L.
o Birtiy = 3(1=mne)(n; —nj-2) for 2<j < L.
o By =31 =n0)* + 500 —ne—1)(1 —nz)
o Bty =30z —ne—1)+ 10 —ne—1)(1 —nz) + §(1 —nr)?
o By = 1(mi —ni—2)(nj+1 —mj—1) for i < j.
o By = 1(mi—1 = nj—2)(mj —nj—1) + (0 — m-1)* + 3 (0j+1 = 15) (5 — nj—2)
o Bt =sm5—ni—1)% + 105 = nj—1) M1 — m5) + §(nj1 —ny)?
o Bjjro) = g5(ni+1 — 1)
o By =0fori>j+2.
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x More details about matrices A and B for Hermite cubic finite elements. The vertical
integrals of equations (586) and (587) can be analytically computed using formulae giving e; and d;. Expression
of the coefficients of B and A is rather tricky and is not detailed in this documentation; Matrix A4 is symmetric
with a non-zero main diagonal and three non-zero upper and lower side diagonals.

d) Vertical derivative matricial operator.
Not yet described.

e) Where to find the code?

x Vertical integral. The setup routines computing the matrix A~ 'B are SUVERTFEL1 for the linear
finite elements and SUVERTFES for Hermite cubic finite elements. The product A~'B is stored after one
line shift in the array RINTE (module YOMVERT) which actually contains a matrix (L + 1) * L. The
intermediate quantities A, A~! and B are stored in the local arrays ZAMAT, ZAMATI and ZBMAT. The
vertical integration, giving (S) for layers 1 to L and the additional layer L matching with the surface, knowing (X)
for layers 1 to L, is done by routine VERINT. One can notice that the matrix product A~ '8 is a full matrix,
contrary to the one which is used in the case LVERTFE=.F. which is triangular with some additional good
properties (currently the routine VERINT is used only in the case LVERTFE=.T.). For most applications and
uses of ARPEGE/IFS and ALADIN, the content of routines SUVERTFE1L and SUVERTFE3 can be seen as
a “black box”.

* Vertical derivative. The vertical derivative operator Raeri is stored in the array RDERI, or RDERB
if top and bottom boundary conditions are taken into account (module YOMVERT). RDERI is computed
in the setup routine SUVERTFE3D or SUNH_VERTFE3D. RDERB is computed in the setup routine
SUNH_VERTFE3DBC. The vertical derivation is done by routine VERDER. More details will be given in a
future version of this documentation.

f) Additional remark: operator R;,. for case LVERTFE=.F. .

If LVERTFE=.F. the vertical integration is also a matricial product but in this case the operator Rinte is
considerably simpler and tridiagonal. One can compute an operator Rinte giving integrals at half levels (from the
top), the matrix is L « L and has the following content:

[Anl; 0 0 0
[An]1 [An]2 0 0
[An]1 [An]2 0 0
[Anl1 [An)2 [An) 0
[Ani [Anlz ... [An) .. 0
[Anli [Anlz ... [Anli ... [AnlL

Since coefficients are constant on a column, but not temporally constant, the use of routine VERINT is not very
interesting in this case (mode multiplications) and the code can be let as it is currently, but VERINT and a
pre-computation of RINTE could be possible in the model set-up. The operator Rinte which provides integrals
at full levels (from the top) has the following shape:

(Al (1-4) 0 0 0
[An) [Anz (1 - 52) 0 0
[An]y [An]2 0 0
(A A, e (1- ) 0
[An) [An]2 [Anlu 0
[Anh [An]2 [An), [An]r (1 - $%)

e In the linear model, replace ?—IL by L.
l

;-1 )
o Sl = remains close to 1/2.

o Hp=Ih

We can also provide the vertical integration matrix for integrations from the bottom:

[Anlist [Anle o [Agl o [Anfe
0 [Anl252 .. [An .. [An]L
0 0 [A’I]](l1 e [A?’]]L
0 0 [An]i 5 [An]L
0 0 0 vee [An]L
0 0 0 e [An]L %
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