1 ARPEGE, ALADIN, ALARO, HIRALD, AROME.

* Several models in the same code: one code, but several models shared between different European (and also some non-European countries):
 - ARPEGE: spectral global model for METEO-FRANCE applications.
 - IFS: spectral global model for ECMWF applications.
 - ALADIN: spectral limited area model (mesh-size often between 3 km and 10 km).
 - ALARO: cf. ALADIN but for some ALADIN partners.
 - AROME: non-hydrostatic spectral limited area model for METEO-FRANCE applications (mesh-size 1.3 km).
 - ARPEGE/CLIMAT and IFS/CLIMAT: climate versions of ARPEGE and IFS.
* Code stored under GIT.
* Around 14000 routines (around 4 millions code lines) spread among sub-projects.

* Brief history:
 - ARPEGE/IFS: project started in 1987.
 - First operational implementation of IFS: 1994.
 - ALADIN: project started in 1990.
 - First operational implementation of AROME: end 2008.

2 CODE IS STRUCTURED IN PROJECTS.

* Projects used in forecasts:
 - ARPIFS: ARPEGE or common ARPEGE-ALADIN routines.
 - TRANS: spectral transforms for spherical geometry.
 - IFSAUX: some application routines (IO on files, distributed memory environment).
 - ALGOR: linear algebra, minimizers other than CONGRAD.
 - ALADIN: specific LAM routines (LAM, not used at ECMWF).
 - ETRANS: spectral transforms for plane geometry (LAM models).
 - BIPER: bi-periodicisation package (LAM models).
 - COUPLING: coupling package (LAM models).
 - SURF: ECMWF surface scheme.
 - MPA: upper air MESO-NH/AROME physics.
 - MSE: surface processes in MESO-NH/AROME (interface for SURFEX).
 - SURFEX: surface processes in MESO-NH/AROME.
* Remark: there are mirror routines between ARPIFS and ALADIN. ETOTO is the LAM counterpart of routine TOTO; SUETOTO is the LAM counterpart of set-up routine SUTOTO. For example, ELARMES is the LAM version of LARMES; SUEMP is the LAM version of SUMP.
Projects used in assimilation:
- AEOLUS: package for pre-processing satellite lidar wind data.
- BLACKLIST: package for blacklisting.
- OBSTAT: statistics of observation feedback data (only used at ECMWF).
- ODB: ODB (Observational DataBase software).
- SATRAD: satellite data handling package.
- SCAT: scatterometers handling.

Miscellaneous utilitaries:
- UTILITIES: utilitary package (not used at ECMWF).
- SCRIPTS: scripts used at ECMWF.

3 AND EACH PROJECT IS SUBDIVIDED IN DIRECTORIES.

Example for project ARPIFS (not comprehensive):
- adiab: adiabatic dynamics, adiabatic diagnostics, semi-implicit scheme, horizontal diffusion.
- control: control routines, like CNT4 or STEPO.
- module: all the types of modules.
- namelist: all namelists.
- phys_dmn: physics parameterizations used at METEO-FRANCE.
- setup: a subset of setup routines.
- transform: hat routines for spectral transforms.

4 Variable NCONF.

Range of configurations:
- 0-99: 3-D integration job.
- 100-199: variational job.
- 200-299: 2-D integration job.
- 300-349: KALMAN filter.
- 350-399: predictability model (currently not used).
- 400-499: test of the adjoint.
- 500-599: test of the tangent linear model.
- 600-699: eigenvalue/vector solvers.
- 700-799: optimal interpolation.
- 800-899: sensitivity experiments.
- 900-999: miscellaneous other configurations.
- There are actually around 20 existing configurations.

Examples of configurations:
- 1: forecast.
- 131: 4DVAR-assimilation.
- 401: test of the adjoint.
- 501: test of the tangent linear model.
- 601: make eigenvectors (for example for PEARP).
- 701: CANARI surface assimilation.
- 903: some off-line FULL-POS configurations.
- 923: make climatology files.
5 GEOMETRY ASPECTS.

* Global models:
 - Spectral model: fields have a spectral representation defined by a couple of wavenumbers \((m, n)\) \((n\) and \(m\) are respectively the total and zonal wavenumbers).
 - Triangular truncation \(N_t\). \(n\) varies between 0 and \(N_t\); for each \(n\), \(|m|\) varies between 0 and \(n\).
 - Grid-point calculations on reduced Gaussian grid. There are \(\text{NDLON}\) longitudes and \(\text{NDGLG}\) latitudes. \(\text{NDLON}\) is very close (or equal) to \(2 \times \text{NDGLG}\).
 - Variable mesh: stretching/tilting defined by a high resolution pole and a stretching coefficient \(\text{RSTRET}\) (Schmidt, 1977).

* LAM models:
 - Spectral model: fields have a spectral representation defined by a couple of wavenumbers \((m, n)\) \((n\) and \(m\) are respectively the meridian and zonal wavenumbers).
 - Elliptic truncation, with a zonal truncation equal to \(N_{ms}\) and a meridian truncation equal to \(N_s\). Couple \((m, n)\) matches \(0 \leq [(n/N_s)^2 + (m/N_{ms})^2] \leq 1\).
 - Grid-point calculations on a limited area plane projection (Lambert, Mercator). There are \(\text{NDLON}\) longitudes and \(\text{NDGLG}\) latitudes.
 - Limited area domain is divided into three zones: C (inner), I (intermediate), E (extension).
 - Bi-periodicity is done via extension zone.
 - For \(\text{LBC} (= \text{lateral boundary conditions})\), Davies relaxation in I zone (Davies, 1976).

6 FORECASTS AND DYNAMICAL CORES.

* Dynamical cores for forecasts:
 - Hydrostatic (primitive equation) model (configuration 1).
 - Fully elastic non-hydrostatic model (configuration 1 with \(\text{LNHDYN} = \text{T}\)).
 - Shallow-water model (configuration 201).

* Prognostic and diagnostic variables:
 - A prognostic variable is a variable defined by a temporal equation \(\frac{dX}{dt} = \text{RHS}\).
 - Example of prognostic variables in a hydrostatic model: \(U\) and \(V\) (horizontal wind components), \(T\) (temperature), \(q\) (specific humidity).
 - Other computed variables are diagnostic variables.
 - Example of diagnostic variables: \(\omega/\Pi\) (where \(\omega = d\Pi/dt\)), \(\Phi\) (geopotential).

7 EQUATIONS.

* Eulerian and semi-Lagrangian aspects:
 - Eulerian formulation:
 \[
 \frac{\partial X}{\partial t} = -\vec{V} \nabla X - \vec{v} \frac{\partial X}{\partial \eta} + A + F
 \]
 \((A = \text{non linear (NL) + linear adiabatic terms, } F = \text{physics})\).
 Stability condition = CFL criterion.
 Always discretised as a leap-frog scheme.
 - Semi-Lagrangian formulation:
 \[
 \frac{dX}{dt} = A + F
 \]
 Stability condition = Lipschitz criterion, less stringent (the trajectories \(O - F\) must not cross each other).
 Physics often impose a slightly more stringent stability condition.
 Can be discretised as a leap-frog (three-time level) SL scheme or as a two-time level SL scheme (cheaper).

* Prognostic variables: \(X\) represents the prognostic variables:
 - In a hydrostatic model, \(X\) may be \(U, V, T, \log \Pi, q\).
 - Link with definitions of GMV and GFL (see below).
* Dynamics: \(A \) represents all the effects which can be explicitly represented (often called “adiabatic effects”). Examples:
- The Coriolis force (momentum equation).
- The pressure-gradient force term (momentum equation).
- The conversion term (temperature equation).
- The divergence term (continuity equation).

* Physics: \(F \) represents all the sub-scale effects (often called “diabatic effects” or “physics”). Examples:
- Radiation.
- Stratiform precipitations.
- Convection, and convective precipitations (example: PCMT).
- Vertical diffusion.
- Microphysics.
- Orographic gravity wave drag.
- Exchanges with the surface, interaction with the surface vegetation (examples: ISBA, SURFEX).
- Remark: there are several physics packages in the code.

* Eulerian and semi-Lagrangian discretisations:
- Eulerian discretisation:
 \[X(t + \Delta t) - \Delta t \mathcal{L}(t + \Delta t) = X(t - \Delta t) - 2\Delta t \left[\vec{V} \nabla X(t) - 2\Delta t \left[\frac{\partial X}{\partial \eta} \right] (t) + 2\Delta t [A(t) - \mathcal{L}(t)] + \Delta t \mathcal{L}(t - \Delta t) + 2\Delta t F(t - \Delta t) \right] \]
 \(\mathcal{L} \): linear terms.
 All terms are evaluated at the same model grid-point \(F \).
- LSETTLS-type two-time level semi-Lagrangian discretisation without uncentering:
 \[X(t + \Delta t, F) - 0.5\Delta t \mathcal{L}(t + \Delta t, F) = X(t, O) + \{ [0.5\Delta t A(t) - 0.5\Delta t \mathcal{L}(t)] \}_F + \{ [\Delta t A(t) - \Delta t \mathcal{L}(t)] - [0.5\Delta t A(t - \Delta t) - 0.5\Delta t \mathcal{L}(t - \Delta t)] + [0.5\Delta t \mathcal{L}(t) + \Delta t F(t)] \}_O \]
 Requires the calculation of an origin point \(O \) and interpolations at this point.
 - Trajectories are great circles on the geographical sphere in global models, and straight lines on the projection plane in LAM models.
 The computation of the origin point \(O \) is performed by an iterative method (2 to 5 iter) described by Robert (1981) and adapted to the sphere by M. Rochas.
 In LAM models, \(O \) bounded inside C+I except for the analytical calculation of the Coriolis term.
 - Interpolations: generally 32 points or trilinear interpolations, but possible choice of quasi-monotonic interpolations, SLHD interpolations, spline cubic interpolations.
- Remark: in the literature one finds denotation \(N \) for non-linear terms (i.e. \(A - \mathcal{L} \)).

* Calculations in grid-point space:
- Explicit dynamics.
- Advection, if Eulerian advection.
- Physics.
- Lateral coupling for LAM models.

* Calculations in spectral space:
- Inversion of Helmholtz equations in the semi-implicit scheme (treatment of term \(\mathcal{L} \)).
- Horizontal diffusion.
- Spectral nudging (near the top) for LAM models.
8 THE DIFFERENT OOPS-ORIENTED OBJECTS.

∗ List of objects:
 • There are around 10000 variables; need to gather them in objects.
 • Variables are shared into some main objects, for example:
 – INIT: variables like NCONF, LNHDYN.
 – GEOMETRY: variables describing horizontal and vertical geometry (examples: number of latitudes, longitudes, levels).
 – FIELDS: fields, like GMV, GFL (see below).
 – MODEL: model variables (for example horizontal diffusion coefficients, some linear operators used in the semi-implicit scheme).
 – MTRAJ: trajectory variables.

 • Each of these main objects has subdivisions.
 • In a model execution under OOPS, several model versions (or “instanciations”) may be launched, for example with different horizontal resolutions.
 – “INIT” object variables are identical for all instanciations.
 – GEOMETRY, FIELDS, MODEL, TRAJ objects variables may be different for each instanciation.
 – Variables YRGEOMETRY, YRMODEL, YRFIELDS, YRMTRAJ (declared in CNT0) respectively contain GEOMETRY, FIELDS, MODEL, TRAJ objects variables.

∗ Groups of prognostic variables in “FIELDS” object: this object is divided into GMV, GMVS, GFL, surface fields.
 • Upper-air quantities:
 – For a given dynamical core, GMV+GMVS defines the dynamical core. That means that if one changes the dynamical core (for example adding prognostic variables), one changes the list of GMV+GMVS variables.
 – For GMV (3D) variables, A and L are non-zero. Example: wind components (VOR/DIV in spectral calculations), temperature, additional NH variables. The GMV variables other than the wind components or divergence/vorticity are the "thermodynamical variables" (there are NFTHER thermodynamical variables in the model).
 – GMVS (2D) variables (A and L are non-zero). Example: logarithm of surface pressure.
 – For a given dynamical core, GFL variables are additional variables which do not change the definition of the dynamical core. Specific humidity q is a GFL variable. That means for example that if you remove specific humidity in a hydrostatic model, that remains a hydrostatic model. A hydrostatic model may be used on a dry planet.
 – For GFL (3D) variables, A and L are zero. Example: humidity, liquid water, ice, TKE, ozone, etc...
 – This list also contains some pseudo-historic variables (ex CPF = convective precipitation flux).
 • Surface prognostic quantities: buffers SP... of the surface dataflow. Examples: temperature and water content of the soil reservoirs.

∗ Spectral variables in “FIELDS” object:
 • YRFIELDS%YRSPEC%[X]: spectral variable for [X]. Example [X]=VOR,DIV,T,Q,SP.
 • YRFIELDS%YRSPEC%GFL: all GFL spectral variables.
 • YRFIELDS%YRSPEC%SP3D: all 3D variables.
 • YRFIELDS%YRSPEC%SP2D: all 2D variables (+ the spectral orography).
 • YRFIELDS%YRSPEC%SP1D: mean wind, in LAM models only.

∗ Grid-point variables in “FIELDS” object and in some additional buffers:
 • YRFIELDS%YRGMV: gathers the $t - \Delta t$ and t GMV variables (including horizontal derivatives).
 • YRFIELDS%YRGMV1: gathers the $t + \Delta t$ GMV variables.
 • YRFIELDS%YRGMVS: gathers the $t - \Delta t$ and t GMVS variables (including horizontal derivatives).
 • YRFIELDS%YRGMVS1: gathers the $t + \Delta t$ GMVS variables.
 • YRFIELDS%YRGLF1: gathers the $t - \Delta t$ and t GFL variables (including horizontal derivatives).
 • YRFIELDS%YRGLFT1: gathers the $t + \Delta t$ GFL variables.
 • YRFIELDS%YRSURF%SP[group]: prognostic surface dataflow. In particular contains 2D surface variables used in the physics.
• YRFIELDS%YRSURF%SD.[group]: diagnostic surface dataflow.
• Individual variables:
P[X]T0: X at t; (P[X]T0L, P[X]T0M): grad(X) at t.
P[X]T9: X at $t - \Delta t$; (P[X]T9L, P[X]T9M): grad(X) at $t - \Delta t$.
P[X]T1: X at $t + \Delta t$.
Sometimes appendix F for full level, H for half level.
• Additional buffers are needed for some applications.

9 TANGENT LINEAR AND ADJOINT CODES.

* Why? Some configurations, like minimisation in a 4D-VAR assimilation, require tangent linear (TL) and adjoint (AD) codes.

* Tangent linear (TL):
 • If the direct code computes the evolution of X ($\frac{dX}{dt} = f(X)$), the tangent linear code computes the evolution of a small perturbation δX, assuming that the evolution of this perturbation is linear ($\frac{d[\delta X]}{dt} = f'(X)[\delta X]$).
 • The tangent linear version of a routine TOTO has name TOTOTL.
 • Before running the tangent linear code it is necessary to run the direct code, which provides a trajectory (stored in YRMTRAJ).

* Adjoint (AD):
 • The TL code can be represented by the matricial product: $[\Delta X]_{N_{stop}} = M[\Delta X]_0$
 • Taking the scalar product between $[\Delta X]_{N_{stop}}$ and another vector denoted by $[\Delta Y]$ writes: $\langle [\Delta X]_{N_{stop}}, [\Delta Y] \rangle = \langle M[\Delta X]_0, [\Delta Y] \rangle$
 • It can be rewritten: $\langle [\Delta X]_{N_{stop}}, [\Delta Y] \rangle = \langle [\Delta X]_0, M^T[\Delta Y] \rangle$
 • M^T is the adjoint operator of M.
 • The adjoint version of a routine TOTO has name TOTOAD.

10 CODE ARCHITECTURE AND ORGANIGRAMMES.

* Setup: MASTER − $>$ CNT0 − $>$
 • SU0YOMA (setup of level 0, part A) − $>$
 − set-up before SUGEOMETRY: object INIT
 − SUGEOMETRY: object GEOMETRY
 − set-up after SUGEOMETRY: part of object MODEL
 • SU0YOMB (setup of level 0, part B): part of object MODEL
 • Most namelists are read under SU0YOMA and SU0YOMB
 • CNT1 for conf 1-99 or 200-299
 • CUN3 or CVA1 for conf 100-199
 • CSEKF1 for conf 301-349
 • CAD1 for conf 401-499
 • CTL1 for conf 501-599
 • CUN1 for conf 601-699
 • CAN1 for conf 701-799
 • CGR1 for conf 801-899
 • CPREP1 for conf 901
 • CPREP3 for conf 903
 • INCLI0 for conf 923
 • CSSTBLD for conf 931
 • CSEAICE for conf 932
* Setup for configuration 1: CNT1 – >
 • SU1YOM (setup of level 1)
 • CNT2 – >
 – SU2YOM (setup of level 2)
 – CNT3 – >
 * CSTA – > SUINIF (reads the initial files)
 * SU3YOM (setup of level 3)
 * CNT4 – > some setup routines of level 4 and STEPO

* Management of one timestep: STEPO – >
 • X(t) available as spectral variable.
 • Write historic file [IOPACK].
 • Inverse transforms + compute horizontal derivatives [(E)TRANSINHV]. Provides grid-point X(t) and \(\nabla X(t) \).
 • Grid-point calculations [GP_MODEL] (explicit dynamics, physics, SL interpolations).
 • Coupling (LAM models only) [ECOUP1].
 • Direct transforms [(E)TRANSDIRH] on provisional X(\(t + \Delta t \)) variables. Remark for spectral transforms: Fourier + Legendre in ARPEGE (code in the TRANS library), double Fourier in LAM models (code in the ETRANS library).
 • Spectral calculations [(E)SPCM] (SI scheme, horizontal diffusion).
 • Provides final X(\(t + \Delta t \)), which becomes X(t) at the following timestep.

* Grid-point calculations for semi-Lagrangian scheme: STEPO – > SCAN2M – > GP_MODEL – >
 • CPG_DRV – > CPG (unlagged dynamics, unlagged MF physics)
 – CPG_GP (dynamics calculations)
 – MF_PHYS (MF unlagged physics or AROME physics)
 – CPG_DIA – > (routines for some diagnostics: DDH, CFU, XFU)
 – CPG_DYN – >
 * CPEULDYN (Eulerian dynamics)
 * LACDYN (Semi-Lagrangian dynamics): calls several LA.. routines, for example to fill PB1 (interpolation buffer), computes some linear terms.
 * VDIFLCZ (Buizza simplified physics)
 – CPG_END
 • RADDRV (ECMWF lagged radiation scheme used at ECMWF)
 • CALL_SL (semi-Lagrangian only) – >
 – some parallel environment routines spread in the code (SLCOMM.., (E)SLEXTPOL.. routines).
 – LAPINEA – > (E)LARMES: trajectory research, interpolation weights computation.
 – LAPINEB – > LARCINB and LARCINHB (interpolations, updates GFLT1,GMVT1,GMVT1S with the interpolated values).
 • EC_PHYS_DRV (ECMWF lagged physics)
 • CPGLAG (additional dynamics calculations)

* Naming routines: some routines names start by a specific prefix; examples:
 • SU..: set-up routines.
 • CA..: CANARI surface assimilation.
 • LA..: semi-Lagrangian advection routines.
 • CP.. or GP..: grid-point space calculations.
 • GNH..: non-hydrostatic grid-point space calculations.
 • SP..: spectral space calculations.
11 DIAGNOSTICS.

* Inventory:
 - Write historic files.
 - Post-processing: FULL-POS.
 - Horizontal domains diagnostics: DDH.
 - Cumulated fluxes: CFU.
 - Instantaneous fluxes: XFU.
 - Spectral norms and grid-point norms printings.
 - There are other diagnostics spread in the code (for example in SURFEX, physics).

* FULL-POS:
 - Post-processing for different types of variables: 3D dynamical variables, 2D dynamical variables, surface fields used in the physics, fields computed by the CFU or the XFU.
 - Post-processing on different surfaces: hydrostatic pressure (ex: Z500), geopotential height, hybrid coordinate, potential temperature, potential vorticity, temperature, flight level, surface, sea level (ex: MSLP).
 - Post-processing on different domains: whole Earth in spectral, grid-point or “lat-lon” grid representation; LAM sub-domain in spectral or grid-point representation; “lat-lon” sub-domain in grid-point representation.
 - One application of FULL-POS is to change resolution (examples: to make coupling files, to change horizontal resolution in 4DVAR).

12 DISTRIBUTED MEMORY, CODE PARALLELISATION, DATA ORGANISATION.

* Two ways of distribution:
 - Message passing (MPI): call to MPI.. routines.
 - OpenMp: use of directives.

* MPI distribution:
 - Two levels of distribution.
 - There are NPROC processors.
 - Two levels in grid-point calculations: NPROC=NPRGPNS*NPRGPEW.
 - Two levels in spectral calculations: NPROC=NPRTRW*NPRTRV.
 - There are other variables for IO server, IO.

* Horizontal representation in spectral space:
 - In global models, NSMAX is the truncation.
 - In LAM models, NSMAX and NMSMAX are the meridian and zonal truncations.
 - A processor treats a subset of zonal wave numbers.

* Horizontal representation in grid-point space:
 - For a 2D field, there are NGPTOTG grid-points, NDGLG latitudes, NDLON longitudes.
 - A processor treats NGPTOT points (NGPTOT is processor dependent).
 - In grid-point calculations, the NGPTOT points are sub-divided into NGPBLKS packets of NPROMA points.
 - NPROMA is a tunable variable.

* Vertical representation:
 - There are NFLEVG levels.
 - When the second level of distribution is activated, some part of spectral calculations work on a subset of NFLEVL levels..
 - Vertical discretisation can be with finite differences (VFD) or finite elements (VFE).

13 MORE DOCUMENTATION.

* Where to find it?
 - Yessad, K., 2017: Basics about ARPEGE/IFS, ALADIN and AROME in the cycle 45 of ARPEGE/IFS.