
USER’S GUIDE TO ADD NEW GFL VARIABLES OR NEW

GFL ATTRIBUTES IN ARPEGE/IFS, ALADIN, AROME:

CYCLE 44.

YESSAD K. (METEO-FRANCE/CNRM/GMAP/ALGO)

March 6, 2017

Contents

1 Introduction. 2

2 Basics about GFL dataflow. 2

3 Add a new GFL variable: main features. 3

4 Add a new GFL variable: additional features when read/write GFL on ARPEGE files. 6

5 Add a new GFL variable: additional features when post-processing of GFL. 6

6 Add a new GFL variable: additional features when assimilating GFL. 8

7 Add a new GFL variable: additional features when applying horizontal diffusion to GFL. 8

8 Add a new GFL variable: additional features when applying nudging to GFL. 9

9 Add a new GFL variable: additional features for LAM models (coupling and spectral
nudging). 9

10 Add a new GFL attribute. 9

11 References. 10

1



1 Introduction.

The GFL structure has been introduced since several years for “conservative” prognostic variables and also
pseudo-historical variables, and more and more GFL variables have been recently introduced. Some recent
contributions show that people involved in the introduction of new GFL variables or attributes have not always
a comprehensive knowledge of the GFL data flow, the consequence being misplaced pieces of code or forgotten
pieces of code able to generate “hidden” bugs. This is due to the fact that some parts of the code deal with
GFL individually and not in a global way. Adding GFL is not so easy that one could believe and the purpose
of the present paper is to provide a user’s guide for people wanting to introduce new GFL variables or new GFL
attributes. This is not a comprehensive documentation of all the GFL features. A partial description of the GFL
data flow can be found for example in (Tudor, 2004).

GFL variables can be divided into two main classes: the genuine prognostic variables (like specific humidity)
and the pseudo-historical variables. Some of them are simply diagnosed in the code, some other ones have an
initial state which is read on a file. Some of them can be post-processed. Some of them can be assimilated. Some
of them can be diffused (in spectral space). There are individual GFL (for example specific humidity) and groups
of GFL (for example aerosols “AERO”).

We first start to list the common features to be added when introducing GFL (read or not on a file, post-
processed or not, assimilated or not). Some details will be then given to describe:

• how to read/write GFL on files.

• how to post-process GFL.

• how to assimilate GFL.

• how to apply horizontal diffusion on GFL.

• how to apply nudging on GFL.

• how to add new attributes.

2 Basics about GFL dataflow.

Structures are defined in the following modules:

• yom ygfl.F90 contains:

– TYPE GFL COMP for attributes.

– TYPE GFL NAML: subset of attributes which are in namelist NAMGFL.

– TYPE GFLD for dimensions and variables typed by TYPE GFL COMP and TYPE GFL NAML.

– maximal number of GFL variables in a sub-group (example JPTRAC).

– TYPE GFL COMP typed variables YGFL%Y[X] for each variable [X], and YGFL%YCOMP.

– TYPE GFL NAML typed variables read in NAMGFL: YGFL%Y[X] NL for each variable [X].

– TYPE GFLD typed variable YGFL.

• type gflflds.F90: additional type definitions, used currently in FULL-POS.

• yomgfl.F90 contains:

– buffers, for example GFL, GFLT1, GFL5, GFL DEPART.

– TGFL type definition: allows to gather all variables declared in yomgfl.F90 in one global structure.

– several encapsulated subroutines (like ZERO YOMGFL) which do operations on GFL buffers.

• gfl subs mod.F90 contains:

– additional declarations (complementary to yom ygfl.F90 ones).

– several encapsulated setup routines (to fill attributes of YGFL%Y[X] NL, YGFL%Y[X],
YGFL%YCOMP), allocation and deallocations routines.

All the set-up is now gathered under SU0YOMA − > SUGFL. SUGFL calls SUGFL1, SUGFL2 and SUGFL3.

• SUGFL1 − >

– default value for some dimensions declared in yom ygfl.F90.

– SUDEFO GFLATTR: default values for YGFL%Y[X] NL attributes (often depend on LECMWF or
the physics package used).

2



– reads NAMGFL.

– SUCTRL GFLATTR: does checkings (and sometimes resettings) of YGFL%Y[X] NL attributes.

– reads additional namelists (like NAMCHEM) under some conditions.

• SUGFL2: partially fills YGFL%Y[X] and YGFL%YCOMP; calls DEFINE GFL COMP (encapsulated in
gfl subs mod.F90) for each GFL variable for that.

• SUGFL3: ends to fill YGFL%Y[X] and YGFL%YCOMP; calls SET GFL ATTR (encapsulated in
gfl subs mod.F90) for each GFL variable for that.

3 Add a new GFL variable: main features.

∗ List of routines to update: For the time being we assume that we do not add any new attribute.
There is a minimal list of routines which should be updated:

• module/gfl subs mod.F90

• module/type gflflds.F90

• module/yom ygfl.F90

• namelist/namgfl.nam.h

• setup/sugfl1.F90

• setup/sudefo gflattr.F90

• setup/suctrl gflattr.F90

• setup/sugfl2.F90

• setup/sugfl3.F90

• setup/sudyn.F90

• adiab/cptend.F90

• adiab/cptend new.F90

• adiab/cptendsm.F90

• adiab/cptend flex.F90

• adiab/gprcp.F90

• phys dmn/cpchet.F90

• phys dmn/mf phys.F90

• adiab/cpg pt.F90

• module/yomphyder.F90, phys ec/ec phys.F90, phys ec/callpar.F90 and routines under phys ec/callpar.F90
(for ECMWF applications only).

∗ module/gfl subs mod.F90: Some GFL are linked to clouds (for the time being, liquid water,
ice, cloud fraction, rain, snow, graupels, hail, convective precipitation flux), and in some applications they
need to be deallocated (routine DEACT CLOUD GFL) or reallocated (routine REACT CLOUD GFL). If
a new GFL (of generic name [VGFL]) enters this series of cloud variables, some code must be added in
module/gfl subs mod.F90 at three locations: declaration of Y[VGFL] SAVE, in routine DEACT CLOUD GFL
and in routine REACT CLOUD GFL.

∗ module/type gflflds.F90: New GFL variables must be added in the type definitions present in this
module.

∗ module/yom ygfl.F90:

• Value of JPNAMED GFL must be updated: this is the number of individual GFL.

• If an existing group (generic name [GRUP]) has to include some new GFL variables, JP[GRUP] must be
updated.

• If a new group (generic name [GRUP]) has to be created, the new variable JP[GRUP] must be created.

• Type TYPE GFLD:

– For a new individual GFL (generic name [VGFL]), TYPE GFL COMP-typed attribute Y[VGFL]
must be added.

3



– For a new group of GFL (generic name [GRUP]), TYPE GFL COMP-typed attribute Y[GRUP](:)
must be added.

– For a new group of GFL (generic name [GRUP]), variable N[GRUP] (or NGFL [GRUP]) must be
added.

– Sometimes a new logical variable must be declared.

– For a new individual GFL (generic name [VGFL]), TYPE GFL NAML-typed attribute Y[VGFL] NL
must be added.

– For a new group of GFL (generic name [GRUP]), TYPE GFL NAML-typed attribute
Y[GRUP] NL(JP[GRUP]) must be added.

– Dimension of YEXT NL when a new group [GRUP] is added: JP[GRUP] should be subtracted to
the original dimension.

∗ namelist/namgfl.nam.h:

• For a new individual GFL (generic name [VGFL]), variable Y[VGFL] NL must be added.

• For a new group of GFL (generic name [GRUP]), variable Y[GRUP] NL must be added.

∗ setup/sugfl1.F90:

• Part 1.1: for a new group of GFL (generic name [GRUP]), a default value must be given to the new variable
N[GRUP].

• Part 1.2: in some cases this part may have to be modified.

• Parts 5, 6, 7: in some cases these parts may have to be modified.

• Part 8: update the value of NGEMS when relevant.

∗ setup/sudefo gflattr.F90:

• Part 1a: for a new individual GFL (generic name [VGFL]), a default value must be given to all the
attributes of Y[VGFL] NL.

Rules of coding are the following ones: for each attribute and each case, ALL the individual GFL appear
and ALWAYS in the same order.

Attribute LT1 must be T for allocated prognostic GFL, F otherwise.

• Part 1b: for a new group of GFL (generic name [GRUP]), a default value must be given to all the attributes
of Y[GRUP] NL, for all values of JGFL in 1 to JP[VGFL]. Attributes SHOULD always appear in the same
order, this is the only way to easily check that there is no attribute forgotten or repeated several times.

∗ setup/suctrl gflattr.F90:

• Part 1: some consistency checks for GFL attributes:

– 1.1: Attribute LVSPLIP:
if the “LVSPLIP” semi-Lagrangian interpolator is not coded for the new GFL, the test generating
an ABOR1 must be updated; add the new GFL in the definition of the final value of LVSPLIP.
if the “LVSPLIP” semi-Lagrangian interpolator is allowed for the new GFL, a test must be added
to check that the other attributes linked to semi-Lagrangian interpolators are .F. (see what is coded
for ozone).

– 1.2: Attribute LHV:
if the “LHV” semi-Lagrangian interpolator is not coded for the new GFL, the test generating an
ABOR1 must be updated.
if the “LHV” semi-Lagrangian interpolator is allowed for the new GFL, a test must be added to
check that the attribute LSLHD is .F. (see what is coded for ozone).

– 1.3: Attribute LSLHD:
it is a priori assumed that the “LSLHD” semi-Lagrangian interpolator is coded for the new GFL;
add the new GFL in the definition of the final values of LLSLHD GFL, LLSLDHV, LLSLDLIN.

– 1.4: Attribute LGP:
It should be .T. for some GFL variables (no spectral representation).
For some grid-point GFL, we should ensure that the Eulerian horizontal advections are not called
(check that if NSTOP>0, the semi-Lagrangian scheme is switched on).

– 1.5: Attribute LADV:
For some of the GFL variables, LADV can be set to .T. only if LSLAG=T (because they are grid-point
GFL).

4



– 1.6: Attribute LCOMAD:
it is a priori assumed that the “LCOMAD” semi-Lagrangian interpolator is coded for the new GFL;
add the new GFL in the definition of the final values of LLCOMAD GFL and LLSLDMAD.

• Part 2: some consistency checks for GRIB codes for GFL: some additional consistency checks can be added
when required (case NGRIBFILE=1).

• Part 3: reset the GFL attributes LSP and LGP for configurations where there is no GFL at all: reset the
attributes LGP and LSP for the new GFL introduced.

• Part 4.1: check for all GFL that LGP and LSP are not both TRUE: do the checking for the new GFL
introduced.

• Part 4.2: check for all grid-point GFL required in the AROME physics that, when the AROME upper air
physics is switched on, the attribute LGP is set to .T. for all these GFL; if a new grid-point GFL required
in the AROME physics is added, the test should be added for this new GFL.

• Part 4.3: some GFL should be present when the ALARO prognostic convection scheme is switched on; if
a new GFL required in the ALARO prognostic convection scheme is added, the test should be added for
this new GFL.

• Part 4.3b: some convective precipitation GFL should be present when option LGPCMT is T; if a new GFL
required for option LGPCMT is added, the test must be updated for this new GFL.

• Part 4.4: check that attribute LTDIABLIN is T only for advected GFL; LTDIABLIN=T has a sense only
in a semi-Lagrangian job.

• Part 4.5: check that attribute LHORTURB is T only for advected GFL and when L3DTURB=T;
LHORTURB=T has a sense only in a semi-Lagrangian job.

• Part 4.6: consistency checkings between attribute LPHY and variable LSLPHY.

• Part 4.7: add additional checkings for the new GFL introduced, in particular when the spectral or grid-point
should be present for some options (for example when some physics packages are used).

• Part 5: add a new item checking that N[GRUP] is not greater than JP[GRUP] if a new group of GFL is
introduced. When relevant, additional tests on N[GRUP] should be coded in this part.

• Part 6: checkings for GFL with mass fixer applied on.

• Part 7: check that no more than one monotonic interpolator key is switched on for the new GFL or GFL
group introduced.

∗ setup/sugfl2.F90: There are three parts (1.1, 1.2 and 1.3) which must be updated. Order of the GFL
SHOULD be the same in these three parts (but the order can be different of the one of part 1 of SUGFL3).

• For purely grid-point GFL, part 1.3 must be updated by a call to ABOR1 if the attribute LSP=T. This
ABOR1 SHOULD be in part 1.3, never in part 1.2.

• For some groups of GFL, it may exist a constraint like “the GFL of the group are either all grid-point ones
or all spectral ones”: if a new group of GFL has this constraint, a test must be done in part 1.2 to check
if, when there is at least one of them which is purely a grid-point one, all of them are grid-point ones. The
corresponding test and CALL ABOR1 should be done in part 1.2.

∗ setup/sugfl3.F90:
• Part 1: Call to SUCSLINT, calculation of LLPT, LLPC, and call of SET GFL ATTR must be coded for

the new GFL added.

∗ setup/sudyn.F90:
• In part 3.15 the only GFL checking currently remaining is about the moisture convergence. Only the

checkings requiring YOMDYN/NAMDYN variables are allowed to be done in SUDYN (and they should
be in part 3 of SUDYN). All the checkings which can be done in SUCTRL GFLATTR should go in
SUCTRL GFLATTR.

∗ adiab/cptend.F90, adiab/cptend new.F90, adiab/cptendsm.F90,
adiab/cptend flex.F90: Introduction of the new GFL if they are true prognostic ones and if they have a
diabatic tendency (MF physical packages).

∗ adiab/gprcp.F90: There are still calls to GPRCP which require individual GFL variables. These calls
to GPRCP may have to be modified for prognostic GFL which enter the definition of moist air constant.

∗ phys dmn/cpchet.F90: cf. adiab/cptend.F90.

5



∗ phys dmn/mf phys.F90: The following updates may be required according to the type of physics
called.

• call to INIT APLPAR, APLPAR, APLPAR AROME, INITAPLPAR, WRITEPHYSIO, PROFILECHET:
take account of the new GFL variable if required; compute the diabatic flux for the new GFL variable if
required: if relevant, APLPAR, APLPAR AROME and some of their callees must be updated too.

• call to CPTEND, CPTEND NEW, CPCHET. take account of the new GFL variable if required (true
prognostic GFL with a diabatic tendency).

• in MF PHYS pseudo-prognostic GFL updated by a physical flux at each time step are currently not treated
like true prognostic GFL (compute the tendency inside CPTEND or CPTEND NEW and update PGFLT1
in CPUTQY): PGFLT1 is updated in part 2.9 of MF PHYS. For a new pseudo-prognostic GFL containing
a time-dependent physical flux, an update must be added in part 2.9.

• in some cases additional operations may be required to fill arrays ZTENDGFL or ZTENDGFLR.

∗ module/yomphyder.F90, phys ec/ec phys.F90 and phys ec/callpar.F90 (and
probably some routines under callpar.F90): Introduction of the new GFL if they are true
prognostic ones and if they have a diabatic tendency for the ECMWF physics.

∗ adiab/cpg pt.F90: Introduction of the new GFL if they are true prognostic ones, if they have a diabatic
tendency at least for one of the physical packages, and if they are supposed to be used with a predictor-corrector
scheme (attribute LPT=T in this case): in this routine, currently GFL is treated globally but the diabatic
tendencies are treated individually for each GFL. Note that this routine is now used only for the interface with
ECMWF physics.

∗ adiab/cpg pt ulp.F90: Modern version of cpg pt.F90, used for the interface of physics called under
MF PHYS. This routine uses GFL arrays so there is nothing to do when adding new GFL variables.

∗ module/yomnsv.F90: to be modified only if the list of AROME chemicals (currently put in the GFL
“EXT”) is modified.

4 Add a new GFL variable: additional features when read/write
GFL on ARPEGE files.

There is a minimal list of routines which should be updated:

• module/yomfa.F90

• namelist/namfa.nam.h

• setup/sufa.F90

∗ module/yomfa.F90:

• Type FAD: for the new individual GFL [VGFL], add variable YFA[VGFL]. Such variables are not used for
groups of GFL, where the GFL attribute CNAME is directly used.

∗ namelist/namfa.nam.h: For the new individual GFL [VGFL], add variable YFA[VGFL].

∗ setup/sufa.F90: For the new individual GFL [VGFL], variable YFA[VGFL] must be setup in part 1, and
printed at the end of part 3.

5 Add a new GFL variable: additional features when post-
processing of GFL.

This is not compulsory to make the new GFL post-processable, but if desired there is a minimal list of routines
which should be updated:

• module/parfpos.F90

• module/yomafn.F90

• namelist/namafn.nam.h

• setup/suafn1.F90

6



• setup/suafn2.F90

• setup/suafn3.F90

• fullpos/endpos.F90

• fullpos/endpos prepgfl.F90

• fullpos/fpcordyn.F90

• pp obs/pos.F90

• pp obs/pos prepgfl.F90

• fullpos/vpos prep.F90

• and in some cases: fullpos/phymfpos.F90.

∗ module/yomafn.F90 and module/parfpos.F90:
• Type FULLPOS TYPE: One finds variables TFP [VGFL] for some individual GFL variables (for example

TFP SN for snow, TFP O3MX for ozone). That means that a new TFP [VGFL] must be added. For the
new group of GFL [GRUP] a new variable TFP [GRUP](JPOS[GRUP]) must be added.
Parameter variable JPOS[GRUP] must be added in parfpos.F90.
Variable JPOS3DF should be updated in parfpos.F90.
When there are new post-processable fields in an already existing group, JPOS[GRUP] should be updated
in parfpos.F90.

∗ namelist/namafn.nam.h: One finds variables TFP [VGFL] for some individual GFL variables (for
example TFP SN for snow, TFP O3MX for ozone). That means that a new TFP [VGFL] must be added.

∗ setup/suafn1.F90, suafn2.F90, suafn3.F90:
• In SUAFN1, default value for the new TFP [VGFL] or TFP [GRUP] (topic GFL, part 0 bis) must be

added, calculation of the attribute ILMOD of the new TFP... (end of SUAFN1) must be added.

• In SUAFN2, routine CTRL TFP must be called for the new GFL variables (part 1).

• In SUAFN3, routine PRINT TFP must be called for the new GFL variables (part 1).

• The ordering of GFL (and if possible of all the post-processable variables) must be the same in these three
routines.

∗ fullpos/endpos.F90:
• Part 1.1.1: for new individual GFL [VGFL], add line:

CALL SUPTRPPGFL_ENDPOS(1,IPPGFL,YLPPIC%I[VGFL])

∗ fullpos/endpos prepgfl.F90:
• Part 1: define LD GFL(YDPPIC%I[VGFL]) for new individual GFL [VGFL].

• Part 2: define LDS1 GFL(YDPPIC%I[VGFL]) for new individual GFL [VGFL].

• Part 3: define LDS2 GFL(YDPPIC%I[VGFL]) for new individual GFL [VGFL].

• Part 4: define KGFLCOD(YDPPIC%I[VGFL]) for new individual GFL [VGFL].

• Part 5: define KDIN GFL(YDPPIC%I[VGFL]) for new individual GFL [VGFL].

• Part 6: define LDIN GFL(YDPPIC%I[VGFL]) for new individual GFL [VGFL].

∗ fullpos/fpcordyn.F90: In the JFLD loop, add an adequate piece of code, for a new individual GFL
[VGFL] if it should be corrected (for example if it should be bounded by a lower threshold or an upper threshold),
and provide the proper value of ZMIN, ZMAX, ICOR for input of FPHOR12. The same thing must probably be
done for groups of GFL but no example is currently provided in FPCORDYN to know how to code it.

∗ pp obs/pos.F90:
• Part 1.1.1: for new individual GFL [VGFL], add line:

CALL SUPTRPPGFL_POS(1,IPPGFL,YLPPIC%I[VGFL])

• Additional pieces of code may be required for GFL in part 1.2.2, for example if horizontal derivatives are
needed.

7



∗ pp obs/pos prepgfl.F90:

• Part 1: define LD GFL(YDPPIC%I[VGFL]) for new individual GFL [VGFL].

• Part 3: define KGFLCOD(YDPPIC%I[VGFL]) for new individual GFL [VGFL].

• Part 4: define KDIN GFL(YDPPIC%I[VGFL]) for new individual GFL [VGFL].

• Part 5: define LDIN GFL(YDPPIC%I[VGFL]) for new individual GFL [VGFL].

∗ fullpos/vpos prep.F90:

• Part 1: define YDIN%I[VGFL] for new individual GFL [VGFL], and also derivatives YDIN%I[VGFL]L
and YDIN%I[VGFL]M if relevant.

• Part 2: define YDGFL%LL[VGFL] for new individual GFL [VGFL], and also derivatives
YDGFL%LL[VGFL]L and YDGFL%LL[VGFL]M if relevant.

∗ Additional modifications: Additional modifications may be required, for example if new GFL variables
become new input dummy arguments to some GP... routines (example of routines to check: PHYMFPOS).

6 Add a new GFL variable: additional features when
assimilating GFL.

There are several aspects to be considered, at least the GOMS dataflow and the observation interpolator.

∗ List of routines to update in the GOMS dataflow: There is a minimal list of routines which
should be updated:

• module/gom mod.F90 (references to individual GFL variables appear in several type definitions).

• obs preproc/sugoms.F90

• a subset of the routines using the following variables of module/gom mod.F90: GID%[gfl] (pointer for array
GOM) must be checked, and in particular those where individual GFL variables are mentioned (mostly in
directories op obs and pp obs).

∗ List of routines to update in the observation horizontal interpolator: Only cobs.F90
and cobsad.F90 may have to be updated (references to individual GFL variables).

∗ Updating TL and AD codes: Work done on the direct code must be also done for TL and AD codes.

7 Add a new GFL variable: additional features when applying
horizontal diffusion to GFL.

There is currently no GFL attribute to know if a GFL variable is diffused or not (spectral diffusion). The choice
of diffusing or not a GFL variable is hard coded and can be done only on spectral GFL. For the time being specific
humidity and ozone are diffused if the attribute LSP is TRUE (there are specific keys in NAMDYN to remove
diffusion on these variables, see documentation (IDDH)), and the other GFL variables are NEVER diffused (even
if spectral).

If a new diffusible spectral GFL is introduced, the following routines must be updated:

• module/yomdyn.F90

• namelist/namdyn.nam.h

• setup/sudyn.F90

• setup/suhdir.F90

• setup/suhdf.F90, setup/suhdf ec.F90 and aladin/setup/suehdf.F90

8



8 Add a new GFL variable: additional features when applying
nudging to GFL.

Nudging is used for climatic simulations.

There is currently no GFL attribute to know if a GFL variable can be nudged or not. The choice of nudging or
not a GFL variable is hard coded and can be done only on humidity. For the time being only specific humidity is
nudged in spectral space if the attribute LSP is TRUE, and there is some code to nudge humidity in grid-point
space too. Other GFL variables are NEVER nudged.

If a new nudgeable spectral GFL is introduced (with nudging in spectral space), the following routines must be
updated:

• module/yomnud.F90

• namelist/namnud.nam.h

• setup/sunud.F90

• adiab/spchor.F90

If grid-point nudging must be applied to a new GFL, one should look at all routines using variables LNUDQG
and XNUDQG.

9 Add a new GFL variable: additional features for LAM models
(coupling and spectral nudging).

∗ Coupling:

Coupling is controlled by attribute NCOUPLING. Coupling is automatically updated for new prognostic GFL
variables (simply specify the right default for attribute NCOUPLING); no modification is expected in pieces of
code called in coupling.

∗ Spectral nudging:

There is currently no GFL attribute to know if a GFL variable can be nudged or not. The choice of nudging or
not a GFL variable is hard coded and can be done only on humidity. For the time being only specific humidity
is nudged in spectral space if the attribute LSP is TRUE. Other GFL variables are NEVER nudged.

If a new nudgeable spectral GFL is introduced (with nudging in spectral space), the following routines must be
updated:

• module/elbc0b mod.F90 (add attribute SPNUD[X]).

• ald inc/namelist/nemelbc0b.nam.h (add variable SPNUD[X]).

• coupling/external/spnud/espcpl.F90 (add nudging on new GFL variable).

• Side effects are expected on coupling/external/spnud/espsc2r.F90 and aladin/control/espcm.F90.

Later, adding a new attribute SPNUD (working like NCOUPLING) may be studied (no nudging if 0, nudging if
above 0); externalisable part of spectral nudging must be rewritten in order to do spectral nudging on a subset
of spectral GFL fields, without explicitly naming them.

10 Add a new GFL attribute.

∗ List of routines to update: There is a minimal list of routines which should be updated:

• module/gfl subs mod.F90

• module/yom ygfl.F90

• setup/sudefo gflattr.F90

• setup/suctrl gflattr.F90

• setup/sugfl2.F90

• setup/sugfl3.F90

• setup/sudyna.F90

• setup/sucslint.F90

9



∗ Add a new attribute in TYPE GFL NAML:

• This attribute must be added in the definition of TYPE GFL NAML in module/yom ygfl.F90.

• If the attribute is linked to a semi-Lagrangian interpolator (for example add a new interpolator), routine
SUCSLINT must be modified and must take account of this new attribute to compute the variable
CLSLINT of SUGFL3; update the calls of CLSLINT in SUGFL3.

• This attribute must be added preferably in routine DEFINE GFL COMP (input dummy argument and
internal code to update YDGFLC, YGFL and YPTRC), or/and in routine SET GFL ATTR (input
dummy argument and internal code to update YDGFLC and YGFL) if necessary. If the dummy
arguments of DEFINE GFL COMP are modified, SUGFL2 must be updated. If the dummy arguments of
SET GFL ATTR are modified, SUGFL3 must be updated.

• This attribute SHOULD get a default value in parts 1a and 1b of SUDEFO GFLATTR for all GFL
variables.

• Additional checkings can be added if required in SUCTRL GFLATTR after reading NAMGFL.

• In some cases modifications may be required in setup/sudyna.F90 (for example we must know at the level
of SUDYNA if, for a given logical attribute, there is at least one GFL variable having this attribute to
.TRUE.)

∗ Add a new attribute in TYPE GFL COMP:

• This attribute must be added in the definition of TYPE GFL COMP in module/yom ygfl.F90.

• This attribute must be added preferably in routine DEFINE GFL COMP (input dummy argument and
internal code to update YDGFLC, YGFL and YPTRC), or/and in routine SET GFL ATTR (input
dummy argument and internal code to update YDGFLC and YGFL) if necessary. If the dummy
arguments of DEFINE GFL COMP are modified, SUGFL2 must be updated. If the dummy arguments of
SET GFL ATTR are modified, SUGFL3 must be updated.

• The new attribute must be printed in PRINT GFL (module/gfl subs mod.F90).

• The new attribute must be added in FALSIFY GFLC (module/gfl subs mod.F90).

• If the new attribute should be reset to .F. when there is no advection, it must be added in
NOADVECT GFLC (module/gfl subs mod.F90).

• The new attribute must be added in COPY GFL COMP (module/gfl subs mod.F90).

∗ Add a new attribute in TYPE GFLD:

• This attribute must be added in the definition of TYPE GFLD in module/yom ygfl.F90.

• Calculation of this new attribute must be added in DEFINE GFL COMP (module/gfl subs mod.F90).

• In some specific cases, the value of this new attribute may be modified in some other routines of
module/gfl subs mod.F90 (SET GFL ATTR, PRINT GFL if the value of this attribute should be printed,
DEACT CLOUD GFL and REACT CLOUD GFL if the value of this attribute should be modified when
deallocating/reallocating cloud GFL variables).

11 References.

• (IDGOMU) Geer, A., 2013:
GOM user guide: interpolation to observation space. Internal note, 3pp.

• (IDGFL) Tudor, M., 2004: A short description of physics/dynamics interface in the new data flow. Internal
note, 21pp.

• (IDDH) Yessad, K., 2017: Horizontal diffusion in the cycle 44 of ARPEGE/IFS. Internal note, available
on “http://www.umr-cnrm.fr/gmapdoc/”.

10


