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Reynolds-averaged basic equations:
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(u, v, w -wind components, S, - external source terms, =% =

average, ()’ - fluctuation ,z - height, t - time)
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Turbulent fluxes

Iy, — Ju

o wu = KMag,
Io— adv
w'v = kﬁﬂaz

OW/SSL/—

—KH% + TOMSs terms,
—KH% + TOMSs terms

@ w)' = CyvVu? + v2 (¢ — 1) - surface layer

K/ - turbulent exchange coefficients for momentum and heat and moisture, Cy, -

drag coefficient, v - diffused variable, ()s - variable at surface layer



TOUCANS
LToucans

Exchange coefficients

Ku=%Sx(M)yel, Ky=GLeos(N)y/el

free parameters ex(C), e length scale
stab. functions MN=e/e—1
given by prognostic quasi-independent,
turbulence scheme turbulence energies may depend on
TKE and BVF

x3(Rif),¢3(Rif) - stability functions, v - free parameter,C3 - inverse Prantl number at

neutrality, L - length scale
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L Framework of stability dependency functions

Framework of stability dependency functions:

@ based on second order moments equations

@ simple and flexible emulation of variety of turbulent
schemes:

@ comparison of schemes
@ physics ensemble modeling

Q@ properties of 3,05 (Bastak, Geleyn, and Vaiia, 2014):

@ valid for whole range of R/
@ no existence of critical Ri - Ri,
° anisotropy of turbulence:

o 1o10))
© 9ri 7 0 R 70

(Ri -gradient Richardson number, ¢ - non - energy conversion part of ¢3 -

coefficient)
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Framework of stability dependency functions:

@ simple shape in terms of Ris:

1- 7 -
aRl) = g—gr R) =170
Ri; . .
()Q(Ri) = Lo ?f & = 7P(R _ le)
1-Rif 'Rir G R(P—Ri)

0< lim P=Rir <1, Ri < lim R=R, <1, R/'fch!im Q=0 <1.
1—> 00

Ri— o0 Ri— 00

@ factorization of ¢3(Ri):

o . 20}\ (et* ek) [21o8e)
()3—()Q(Rl) (1C'4VV/2 ’BRII#O

anisotropy  energy conversion

(Rir = RiKy/Kpn -flux Richardson number, O, -free parameter, C; - coefficient)
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Framework of stability functions:

@ the turbulent scheme then depends on:

@ 4(3) free parameters
@ v - overall turbulence intensity,
@ C. - turbulent energy dissipation
- following Schmidt and Schumann (1989)
we assume: C. = 1% |
@ (35 -inverse Prandtl number at neutrality,

o O, - TKE«~TPE conversion,
@ 3 “functional dependencies” (P, R, Q)

Model | | Model Il | eeQNSE | eecEFB
P | Const. Const. Const. | Ri fun.
R | Const. Const. Ri fun. | Ri fun.
Q@ | Const. Ri fun. Ri fun. | Ri fun.
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L Emulation and extension of turbulent schemes

Emulation and extension of turbulent
schemes:

@ turbulent schemes without Ri., can be emulated in
BGV2014 framework

@ continuous extension to unstable regime (Ri < 0) is
required for schemes that are defined only in stable
regime(Ri > 0)

@ eeQNSE = emulation and extension of Quasi Normal
Scale Elimination (QNSE) scheme - Sukoriansky et al.
(2005)

@ eeEFB = emulation and extension of Energy- and
Flux-Budget (EFB) scheme - Zilitinkevich et al. (2013)
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Prandtl-type mixing lengths /,, and /,
(CGMIXLEN="AY", in ALARO0="CG') :

RZ

1+exp < Am/hy | H o +bm/h>
m/h ﬁm/h‘f'eXP( Am/hy [ H. o + m/h)

(r is Von Karman constant, z is height, am/hy Bm/hy Bm/n and
Am/n are tuning constants and H,, is PBL height)

/m/h
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Prandtl-type mixing lengths:
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TKE based length scales L

@ Bougeault a Lacarrere (1989) :

155 ¢
LBL(E) — up +2 down

Lup(E) (Loown(E)) - L upward (downward)
@ Ly = /%5 for stable stratification

@ with possibility to use moist BVF

@ possible prognostic treatment of L
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Conversion between L and [,

@ following RMCO1:

3
v X

@ assuming: L= (L} L ) we get:

LCe

w|
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Third Order Moments (TOMs)

@ parametrization for heat and moisture

@ following (Canuto, Cheng, and Howard, 2007):

— A7 0 el w072 w20

W/QIZ—KH% _,'_Afaglz +A08W9 +A08WZG

W = —0.068 72w W0 g — ool g — 0 372 0we
e 9z 0z T oz

A(f, Ag, Ag - coefficients, 7 - dissipation time scale

@ two step solver: local + non-local correction
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Prognostic TTE/TPE
@ based on Zilitinkevich et al.(2013)

@ addition of second prognostic turbulent energy:
Turbulent Potential Energy (TPE), or
TTE = TKE4+TPE

@ consideration of counter-gradient heat transport
maintained by velocity shear in very stable stratification

Q@ stability parameter based on energy ratio 1 =TPE/TKE
(linked to fluxes) rather than on local gradients (R/)
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Prognostic TKE-ex, TPE-e, egs.:

@ based on Zilitinkevich et al.(2013)

dek 0 aek 2€k
de&p _ _p 0 (K 0% 2%
dt op *® 0z i

C.
Tp = Tk—4

2G

(1, Il - shear and buoyancy source terms, Ke,, Ke, - turbulent exchange coefficients for TKE
and TTE, 74, 7p, 7+ - dissipation time scale for TKE, TPE and TTE, [ - stability parameter, C3
- inverse Prandtl number at neutrality, Cs - coefficient, p - pressure, g - acceleration of gravity,

p - density)
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Prognostic TTE - e; = e + e, equation:

det a aet‘ 2et
— = —g— K., — [ ———
dt 8p(p taz)Jr Ty
- G (1+1)
TG r2Gn
) I
le = NN
E—FH

(ep - TPE, Ke, - turbulent exchange coefficient for TTE, 7; - dissipation time scale for

TTE, Rir = Ri Kn/Ku - flux Richardson number, C; - coefficient)
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Dry versus moist case:

Q dry:
g g 07
lly = S0, epd:@zclf
@ moist:
hy = pg;vv’p’:Esvav’ssL’Jreqm/qt’
epm ESL@ Ethq{?
Jss dqr °
2% 2%

@ E,, E,, are derived after (Marquet and Geleyn, 2013)
and depend on cloud fraction C and skewness
parameter C,
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gM(C)
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Q CF& F(C) =05 { (6.25 C,)* +4 — 6.25 C,,]
wisy R —R, _ Cpv=Cpd \ T
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Fitting of Q(C, C,) on LES data (courtesy of D. Lewellen)




TOUCANS
LSummary

Summary

@ TOUCANS is a complex and flexible framework for
turbulence parametrization

@ TOUCANS contains several novel or specific approaches
to parametrization of turbulence

@ TOUCANS was developed as part of ALARO, and
therefore interactions with other parametr. are possible

@ TOUCANS is far from finished, there are many
experimental branches
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Thank you for your attention
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