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1 Introduction

Currently, Météo-France is developing a numerical weagitediction (NWP) model for the con-
vective scale. This system, called AROME (Application d&&cherche a I'Opérationel a Méso-
Echelle), covers France with 2.5 km horizontal resolutibmises a three-dimensional variational
(3DVar) data assimilation scheme and has an advanced espagisn of the water cycle with five
hydrometeor classes (cloud water, rainwater, primarysoew and graupel) governed by a bulk
microphysics parameterization.

The assimilation of radar reflectivities, thoroughly désed in Wattrelot et al. (2008) and Mont-
merle et al. (2008), basically consists of three steps:

e simulate reflectivities from the model hydrometeors usimglaservation operator (Caumont
et al., 2006),

e retrieve columns of pseudo-observations of humidity ameiomodel prognostic variables
from a reflectivity column, and

¢ assimilate the pseudo-observations through the 3DVam#asion scheme.

*SMHI, S-60176 Norrkdping (gunther.haase@smhi.se).
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Les radars du réseau ARAMIS
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Figure 2.1: French radar network. The radius of the circdeB00 km and the color code corre-
sponds to the different radar types.

2 Radar data

The French radar network (also called ARAMIS) consists of&#hars (Figure 2.1), most of them
are equipped with Doppler technology and some can measalepdlarization. A detailed de-
scription of the operational single radar and composite QfEucts at Météo-France is given by
Parent du Chatelet et al. (2006).

Data assimilation applies reflectivities from each indinatiradar within the operational measure-
ment radius of 250 km. In a first step, polar volume data isayeu to a conical cartesian grid

of 1x1 km?. Pixels from different elevation scans are assigned to @éneesgeo-location as the

corresponding pixel in the lowest elevation scan. Advecisoapplied in order to synchronize the
different elevation scans carried out within 15 minutes.

The distance to the radar is used as quality measure thréwegblbiservation error covariances:
the larger the distance the lower is the weight of the obsernvan comparison to the model
background. Radar data is stored in BUFR format and contiditianally a quality flag allowing
to distinguish precipitation from spurious echoes (e.gugd clutter).

In this study we focus mainly on the radars in Momuy, Toulo@poul and Bollene as they are
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Table 1: Radar sites in Southern France.
Momuy Toulouse Opoul Bollene

Latitude PN] 43.62 43.57 42.92 44.32
Longitude [E] -0.61 1.38 2.86 4.76
Antenna height a.s.l. [m] 146 187 717 325
Lowest elevation angle [deg] 0.4 0.8 0.6 0.4
Half-power beam width [deg] 1.1 1.1 1.3 1.3

heavily affected by beam blockage. The characteristichedd radars are sumarized in Table 1.

3 Concept

It is well-known that beam blockage affects radar obseowatin complex terrain (see e.g. Ger-
mann and Joss, 2003). The screening effect of topograpiigig to occur at low elevation angles,

the most useful for radar precipitation estimation and &dsoeflectivity assimilation. Depending

on the atmospheric conditions beam blockage can vary cewaity.

3.1 Beam propagation model

At the Norwegian Meteorological Institute (met.no) Gjertisand Dahl (2002) developed a beam
propagation model (BPM) to correct errors in CAPPI produelated to topographical beam
blockage. They simulate the radar’s field of view using infation on the scan geometry, the
vertical profile of refractivity, and a digital elevation uhel (DEM). The beam paths are computed
by a geometrical-optics approach taking into account tim@apheric conditions. Itis assumed that
the local refractivity profile at the radar site is represgéine for the entire radar volume. Standard
output fields of the BPM are e.g. the degree of beam blockaddhencorresponding correction
factor which can be applied to operational radar productskBet al., 2007).

If no refractivity profiles is specified beam propagationimdated according to a vertical refrac-
tivity gradient corresponding to the US standard atmosphBr simulate anomalous propagation
it is possible to use atmospheric profiles from radiosonadeN\WP model forecasts which are
representative for the radar site. Note that operationaPNWédels can provide information with
high temporal and spatial resolution but they still sufiemii an inadequate description of the
atmospheric boundary layer.
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3.2 Visibility

There are a couple of options how to handle radar beam bleckadata assimilation. A prag-
matic approach is to blacklist data which are potentialfg@ed by clutter or beam blockage. In
practice the lowest elevation scan(s) would be excludeu filata assimilation to avoid the detri-
mental impact of contaminated data. In doing so even cleaigmight be rejected unnecessarily.
Additionally, removing large amounts of data might caus#pgms when spreading positive incre-
ments of specific humidity in the model, i.e. it is not benaditd not have any pixel assimilated in
some areas. Another possibility is to employ maps of pamegks (e.g. produced from long-term
averaged reflectivity maps and the Surfilum Software (Delgeal., 1995) which uses a high-
resolution DEM) making it possible to balance the impactatbdn the assimilation. Finally, the
observed reflectivities could be corrected for topogragtheam blockage. However, this might
be difficult for strong rates of shielding. Instead we praptzsconsider beam blockage directly in
the observation operator for radar reflectivities.

Thereunto we adopted the concept of visibility. Hereaftisibiity is defined as the minimum
height above sea level detectable by the radar main lobepkrmtls obviously on the topography
and the type of beam propagation, but also on the lowesttedevangle of the radar.

In this study we employed AROME's topography interpolatetbahe radar grid (Figures A.1(a),
A.2(a), A.3(a) and A.4(a)). As each grid point represengsitiean value over an area of 1 knv,
model and real topography can differ considerably in comderain. Sometimes, the radar an-
tenna height is several hundreds of meters above the mqutsgjitaphy.

Figures A.1(b), A.2(b), A.3(b) and A.4(b) show the degredbedm blockage for the lowest ele-
vation angle simulated with the BPM for the Momuy, ToulouSepul and Bolléne radar, respec-
tively. To derive visibility maps from the BPM the radar vale is sampled with 0%lresolution
starting a half beam width below the lowest elevation anigiether words, the beam center of the
visibility simulation is defined by

CI>vis = q>low - 0'5Aq>low + 05Aq)vzs 5 (31)

where®,,, and Ad,,,, are the elevation angle and the beam width of the lowest &b&vacan,
respectiviely. The beam width of the visibility sca®,,,) should be large enough to overshoot
the topography. In this stud®,,;, is set to 50 to cover also higher elevation angles. The beam
center of the visibility scan is constant during the simolaeand independent of topography. Fig-
ures A.1(c), A.2(c), A.3(c) and A.4(c) show the visibilityaps applying the BPM configuration
mentioned above. The corresponding elevation anglesi@sgh.1(d), A.2(d), A.3(d) and A.4(d))
are computed according to

) o 2 2 2
(hms + Re hrad) r RE) 7 (32)

¢Ui8 = arcsm ( 2’/‘Re
whereh,; is the minimum detectable height (i.e. visibility),., is the height of the radar antenna,

r is the range from the radar to the point of interdgt—= 4/3R, andR is the earth’s radius. Note
that all BPM simulations are performed assuming standasgggation conditions.



Considering beam blockage in the observation operator 5

251

height [km]

0 éO 4‘0 6‘0 86 160

range [km]
Figure 3.1: Vertical interpolation from model to radar spatong the dashed lines (circles indicate
the integration limits). The black solid line corresponadlstte beam center,,,) while the dotted
lines mark the beam width{®,,,,) of the unblocked beam. The red solid line defines the vigjbil
(hvis) assuming atmospheric standard conditions. Simulatedctgfities below the minimum
detectable height are ignored.

3.3 Observation operator

The interpolation of variables from model space (modellBv® radar space (beam center) is
part of the observation operator for reflectivities. Fig8r# illustrates the vertical interpolation
with and without beam blockage assuming a Gaussian-shageed.b Currently, topographical
beam blockage is not considered in the radar observatiomatmpe This might cause problems in
mountainous regions where the interpolation considerseiiesiels which are not visible by the
radar (Figure 3.1 at 80 km). By using BPM'’s visibility maps &tandard propagation the vertical
interpolation becomes more realistic where the radar bearompletely or partly blocked. In this
case the simulated reflectivities below the minimum det#etheight (i.e. visibility) are ignored
while the Gaussian weighting remains untouched.

4 Case study

The AROME model (cycle 35t2) was run over 48 hours for a caseyshitialised on 21 October
2009 1800 UTC. Three experiments with an rapid update ciRiKY) of 3 hours have been carried
out:

e control run with blacklisted radar reflectivity scans (799X

e control run without blacklisted radar reflectivity scan59¥)
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e model run including visibility maps for all French radarst buithout blacklisted radar re-
flectivity scans (7592)

Figures B.1 and B.2 show the reflectivity composites for tagqal 21 October 2009 1200 UTC
till 23 October 2009 1200 UTC. Note that for 0000 UTC no radamposites exist.

Figure 4.1 gives an overview about the status of the data ieseassimilation. The number of
active data is considerably higher in the visibility run 925 compared to the reference experiment
(759X), i.e. more data are used for assimilation. On therdthad, the number of rejected data is
quite similar for both runs. The blacklisted data in 759Y &B@Z are Doppler winds.

Figure 4.2 shows the RMS and the bias for experiment 759Zigaeference experiments 759X
and 759Y regarding radiosonde observations in the northemmsphere. There are no significant
differences in the meridional wind and the temperature. ft@sussing on the lower troposphere,
the zonal wind bias for 759Z is slightly larger than in botference experiments, however, the hu-
midity bias is much less which gives hope that the new methmmtaves the humidity distribution.

Figure 4.3 shows the accumulated precipitation accordirexperiment 759X, experiment 75927,
and rain gauges. At day one (21 October 2009) the two modslhardly differ. However, at day
two (22 October 2009) there is a slight improvement visiblethe 759Z experiment at least for
the highest precipitation threshold.

5 Future plans

Some ideas for further improvement of the proposed method:

e a more realistic topography would improve the quality of vigbility maps

¢ alternatively, the topography gradient around the radsrast could be used to estimate the
antenna height error

e consider anomalous beam propagation (AP) in the visilsiityulation using e.g. the atmo-
spheric fields from AROME.
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Figure 4.1: Status of the data used for assimilation. The amis starts at 21 October 2009 1500
and ends at 23 October 2009 1200.
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Figure 4.2:
(right).

RMS and bias for experiment 7597 versus refererperiments 759X (left) and 759Y
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Figure 4.3: Accumulated precipitation according to expent 759X (upper left), experiment
759Z (upper right), and rain gauges (lower left). The cqroesling skill scores for different
precipitation thresholds are also shown (lower right).
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A BPM simulations
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Figure A.1: BPM simulations for Momuy radar assuming staidgaopagation.
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Figure A.2: BPM simulations for Toulouse radar assumingdad propagation.



Considering beam blockage in the observation operator 12

100
90

80

o '-

12500 170

-160
12000

150

41500
140

30

20

10

0 100 200 300 400
x [km]

100 200 300 400 500
x [km]

(a) Arome topographjm| (b) Beam blockagé]

1.2

-10.8

10.6

-10.4

0.2

0

300 100 200 300 400 500
x [km] X [km]

200

(c) Visibility [m] (d) Elevation angle corresponding to visibiliiged

Figure A.3: BPM simulations for Opoul radar assuming stadgaopagation.
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Figure A.4: BPM simulations for Bollene radar assumingndtad propagation.
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B Radar imagery
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Figure B.1: Reflectivity composite [dBZ].



Considering beam blockage in the observation operator

COMPOSITE RADAR 22 10 2009 15h00Z COMPOSITE RADAR 22 10 2009 18h00Z COMPOSITE RADAR 22 10 2009 21h00Z

(a) 22 October 2009 1500 UTC(b) 22 October 2009 1800 UTC (c) 22 October 2009 2100 UTC

COMPOSITE RADAR 23 10 2009 00h15Z COMPOSITE RADAR 23 10 2009 03h00Z COMPOSITE RADAR 23 10 2009 06h00Z

(d) 23 October 2009 0015 UTC (e) 23 October 2009 0300 UTC (f) 23 October 2009 0600 UTC

COMPOSITE RADAR 23 10 2009 09h00Z COMPOSITE RADAR 23 10 2009 12h00Z

(g) 23 October 2009 0900 UTC (h) 23 October 2009 1200 UTC

Figure B.2: Reflectivity composite [dBZ].
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C Modifications in the source code

All modifications are marked with “ghb” and “ghe”.

1
2
3
4.
5
6

In -s

. arp/ op_obs/refl si m2dop. F90
odb/ ddl / sat body_r adar . sql
. bla/nf_Dblacklist.b

. odb/ ddl . ECVA
../ ddl /sat body_radar. sql

. odb/ pandor/ nodul e/ bat or _decodbufr _nod. F90

. odb/ pandor / nodul e/ bat or _ecritures_nod. F90

sat body_r adar . sql

16
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