
ODB and its usage at ECMWF

Slide 1

Slide 1

Observational DataBase
(ODB) and its usage at

ECMWF

���������		��
�������
�����

�����������������	��
���
����

ODB and its usage at ECMWF

Slide 2

Slide 2

Outline

� Part-I: ODB Overview
- Introduction
- Data partitioning
- ODB I/O method
- ODB/SQL
- Fortran 90 interface to ODB
- ODB-tools
- Visualisation of ODB with Metview

� Part-II: ODB and its usage in IFS at ECMWF
- ODB interface for IFS
- ECMA/CCMA data layout
- Observational arrays in IFS
- Parallelisation with MPI/OpenMP
- Observational data flow
- ODB-tools for IFS: bufr2odb, odbshuffle, matchup, revmatchup

� Conclusion and future developments

ODB and its usage at ECMWF

Slide 3

Slide 3

PART-I :
ODB Overview

ODB and its usage at ECMWF

Slide 4

Slide 4

Introduction to ODB

� ODB stands for Observational DataBase and is a tailor made
software developed at ECMWF by Sami Saarinen to manage very
large observational data volumes through the 4DVAR-system on
highly parallel supercomputer systems. ODB has been developed
with the following requirements:

- Fortran interface (IFS/ARPEGE is written in Fortran)

- Suitable for MPI/OpenMP parallelisation

- Perform efficient data extraction in our 4D-var (achieved via
ODB/SQL)

� ODB has been operational at ECMWF since 27th of June 2000

� ODB is also used at MeteoFrance through IFS/ARPEGE
collaboration and has spread through their Aladin-collaboration…

� ODB is used in Australian Bureau of Meteorology, Melbourne

ODB and its usage at ECMWF

Slide 5

Slide 5

ODB hierarchical data model

� In ODB, data is organized into a tree-like structure. The
structure allows “repeating” information using parent/child
relationships: each parent can have many children but each
child only has one parent.

� A table can be seen as a matrice (2D-array or so called flat file)
with a number of rows and columns containing numerical data.

hdr

sat

ssmi

atovs atovs_pred

ssmi_body

satob

reo3

scatt scatt_body

ODB and its usage at ECMWF

Slide 6

Slide 6

Data Definition Layout (DDL)

CREATE TABLE table_name AS (

column_name1 data_type1,

column_name2 data_type2,

column_name3 data_type3,

....

);

CREATE TYPE type_name AS (

bitfield_name1 data_type1,

bitfield_name2 data_type2,

bitfield_name3 data_type3,

....

);

� This hierarchy is described in the Data Definition Layout (or schema) file.
- Text file consisting of a number of named TABLEs

- Each TABLE has got a number of named columns (or attributes)

- Each column in turn has got a specific type
- integer/ real/ string
- packed,
- bitfield type (can vary between 1 an 32 bits, access

column_name.bitfield_name)
- @LINK to define connections between TABLEs

ODB and its usage at ECMWF

Slide 7

Slide 7

Example of ODB DDL file

standard data type
column name or attribute

packed data type
composite data type (bit-field)

built-in date & time types

CREATE TABLE hdr AS (
lat real,
lon real,
statid string,
obstype int,
date YYYYMMDD,
time HHMMSS,
status flags_ t,
body @LINK,
);
CREATE TABLE body AS (
varno pk5int,
press pk9real,
obsvalue pk9real,
);

LINK data type

lat lon statid obstype date time status
-14.78 143.5 ' 94187' 1 20081021 230000 1

varno press obsvalue
1 100350 804.14

30 100100 120
39 99900 277.6
40 100350 292.4
58 100350 0.57
111 100840 260
112 100100 2
41 97670 12.9
42 95310 -4.84e-15
80 100880 0

@LINK

A LINK tells how many times a
row needs to be repeated (10
times in our example) and
which table is involved (body)

ODB and its usage at ECMWF

Slide 8

Slide 8

Data partitioning

� The main purpose is to allow parallelism (requirement for
usage in IFS model):
� divide TABLEs “horizontally” into pools between processors; pools are

assigned to the MPI-tasks in a round-robin fashion (max. PEs <= max.
no. of pools). By default, an MPI-task cannot modify data on a pool that it
does not own.

� each table can be assigned to an openMP threads

� no. of pools "decided" in the Fortran90 layer

� SELECT data from all or a particular pool only

� How to distribute data?
� latitude- bands, or time slots, or obs. types or due to load balancing etc.

� Distribution is done in bufr2odb in IFS for ECMA (pools done per obs.
group). It is done again when creating CCMA from ECMA i.e. when
creating a new database with active data only.

ODB and its usage at ECMWF

Slide 9

Slide 9

Table partitioning – example with 3 pools

lat lon statid obstype date time status
-14.78 143.5 ' 94187' 1 20081021 230000 1

@LINK

lat lon statid obstype date time status
-14.78 143.5 ' 94187' 1 20081021 230000 1

@LINK

varno press obsvalue
1 100350 804.14
30 100100 120
39 99900 277.6

varno press obsvalue
40 100350 292.4
58 100350 0.57

111 100840 260

lat lon statid obstype date time status
-14.78 143.5 ' 94187' 1 20081021 230000 1

@LINK
varno press obsvalue
112 100100 2
41 97670 12.9
42 95310 -4.84e-15
80 100880 0

Table hdr Table body

Pool#1

Pool#2

Pool#3

� The first row in hdr is repeated in each pool. A single pool
forms a ‘sub-database’.

ODB and its usage at ECMWF

Slide 10

Slide 10

ODB I/O method – ODB_IO_METHOD
� ODB currently support 5 I/O methods which controls how the data

is read/write from/to disk:
- 1 - Creates one file per every TABLE on a pool basis. Uses the CMA I/O-routines

with the standard C I/O-library (i.e. fopen, fread, fwrite and fclose). Default value at
Météo-France.

- 2 - The same as method#1, but using system I/O-routines (read and fwrite) directly.
Not very well tested.

- 3 - qtar method, where an external ODB-specific utility (similar to tar) is invoked to
store and extract data. One QTAR-file per pool is created i.e. all TABLEs will be
saved into a single file on a pool basis. Not very well tested.

- 4 - In this method each similar TABLE-file for a number of consecutive pools
(ODB_IO_GRPSIZE) are concatenated together to achieve the maximum
configured filesize given via ODB_IO_FILESIZE. Default value in ECMWF scripts
from IFS cycle CY26R1 onwards. Information from the adjacent data pools are
message passed to the nearest I/O-task for performing the I/O

- 5 – Read/only method. It uses dca (Direct Column Access) files (dcagen –F –n –q
–z). This will give a boost for data accesses and reduces memory consumption.

ODB and its usage at ECMWF

Slide 11

Slide 11

ODB/SQL Statements

� ODB/SQL(*) is a small subset of international standard SQL used to
manipulate relational databases.

� It allows to define data queries in order retrieve (normally) a subset
of data items. This is the “main” motivation of using ODB ?!

� Except for the creation of a database or within IFS/ARPEGE where
a Fortran program is necessary, ODB/SQL can be used in an
interactive way via ODB-tools (odbviewer, odbsql, etc.).

(*)SQL stands for Structured Query Language

[CREATE VIEW view_name AS]

SELECT [DISTINCT] column_ name(s)

FROM table(s)

[WHERE some_ condition(s)_ to_ be_ met]

[ORDERBY sort_ column_ name(s) [ASC/ DESC]]

ODB and its usage at ECMWF

Slide 12

Slide 12

ODB/SQL examples

� Find distinct values of obstype and sort them in DESCending
order:

SELECT DISTINCT obstype

FROM hdr

ORDERBY obstype DESC ;

� Provide the following radio-sonde temperatures :
SELECT lat,lon,press,obsvalue

FROM hdr, body

WHERE obstype=$temp AND varno=$t

AND lldegrees(lon) BETWEEN 100W AND 80W

AND press < 500hPa ;

ODB and its usage at ECMWF

Slide 13

Slide 13

ODB/SQL – SET variables

� Parameters are variables that start with $ and store
numbers (integers or floating point values)

� For example:
SET $temp = 5;

SET $t = 2;

� This can be used to generalize certain kinds of queries
(so-called parameterized SQL-queries)

� There are also useful when creating multiple columns or
tables with (nearly) the same meaning
SET $nmxupd = 3;

CREATE TABLE update[1:$nmxupd] AS (…);

� These variables can also be some state variables, whose
value can be changed on a permanent or temporary
basis from Fortran.

ODB and its usage at ECMWF

Slide 14

Slide 14

Fortran 90 interface to ODB/SQL

� ODB Fortran90 interface layer offers a comprehensive set of
functions to

- Open & close database

- Attach to & execute precompiled ODB/SQL queries

- Load, update & store queried data

- Inquire information about database metadata

� Fortran90 interface of ODB can use Message Passing Interface
(MPI) for parallel data queries.

� SELECT‘ ed data can be asked to be shuffled (“ part- exchanged”)
or replicated across processors (ODB_select); by default data
selection applies to the local pools only.

� Each query needs to be pre-compiled/linked with the main user
program.

� Parameterized queries can be used.

ODB and its usage at ECMWF

Slide 15

Slide 15

An example of Fortran program with ODB
program main

use odb_module

implicit none

integer(4) :: h, rc, nra, nrows, ncols, npools, j, jp

real(8), allocatable:: x(:,:)

npools= 0

h = ODB_open("MYDB", "OLD", npools=npools)

DO jp=1,npools

rc= ODB_select(h, "sqlview",nrows,ncols,poolno=jp)

allocate(x(nrows,0:ncols))

rc= ODB_get(h, "sqlview",x,nrows,ncols,poolno=jp)

call update(x,nrows,ncols) ! Not an ODB-routine
rc= ODB_put(h, "sqlview",x,nrows,ncols,poolno=jp)

deallocate(x)

rc= ODB_cancel(h, "sqlview",poolno=jp)

ENDDO

rc= ODB_close(h, save=.TRUE.)

end program main

ODB and its usage at ECMWF

Slide 16

Slide 16

ODB/SQL compilation system

ODB and its usage at ECMWF

Slide 17

Slide 17

Compile, link and run a Fortran program

[1] use odb # once per session

[2] odbcomp MYDB.ddl # once only;often from file MYDB.sch

[3] odbcomp –lMYDB sqlview.sql # recompile when changed

[4] odbf90 main.F90 update_data.F90 –lMYDB –o main.x

[5] ./main.x

[6] Go back to [3]

Note: [1] – [2] is not required for precompiled ODB databases (such as ECMA,CCMA)

ODB and its usage at ECMWF

Slide 18

Slide 18

ODB Tools
� Various ODB-tools are meant to simplify browsing and

management of ODB databases.

� Some are generic and can be used with any ODB databases (no
compiled queries or databases):

- odbsql: a tool to access ODB data in read/only mode

- odbdiff: a tool to compare two ODB databases

- odbdup/odbmerge: to combine several databases

- odbcompress: to create a sub-ODBs from an existing database

- simulobs2odb: to create a new ODB from an ascii file

- odbviewer: ODB visualization and text result browsing. Only available
when ODB is built with Magics/Magics++.

- odb1to4 and odb4to1: convert from one I/O method to another

� Some are specific to IFS/ARPEGE usage (bufr2odb, odb2bufr,
odbshuffle, matchup, revmatchup, etc.); See part-II.

ODB and its usage at ECMWF

Slide 19

Slide 19

odbsql

� A tool to access ODB data in read/only –mode
(ODB_IO_METHOD=5)

� Does not generate C-code, but dives directly into data

� It uses dca files (direct column access) which can be created
with dcagen

� Usage:
odbsql –v query.sql| -q “SELECT…” –s starting_row \

–n number_of_rows_to_display \

-f output_format -I dir_db \

[–X] [other_options]

� For example:

odbsql –q ‘SELECT lat,lon,fg_depar from hdr,body’ \

-i /dir1/CCMA

ODB and its usage at ECMWF

Slide 20

Slide 20

odbdiff

� Enables comparison of two ODB databases for differences

� A very useful tool when trying to identify errors/differences
between operational and experimental 4DVAR runs

odbdiff –v query.sql|-q ‘query_string’ \

-p poolmask [other_options] ref_base comp_base

� For example:

odbdiff –q ‘SELECT lat,lon,fg_depar from hdr,body’ \

/dir1/CCMA /dir2/CCMA

� By default the command brings up an xdiff-window with respect to
differences

� If latitude and longitude were also given in the data query, then it
also produces a difference plot using odbviewer-tool

ODB and its usage at ECMWF

Slide 21

Slide 21

odbcompress

� Enables to create very compact databases from the
existing ones
odbcompress –i indput_db –o output_db \

–l ddl_file [-1|-4]

� Makes post-processing considerably faster

� The user can choose to

� Truncate the data precision, and/or

� Leave out columns that are less of an importance

ODB and its usage at ECMWF

Slide 22

Slide 22

odbdup/odbmerge

� Allows f.ex. database sharing between multiple users

� Over shared (e.g. NFS, Lustre, GPFS, GFS) disks

� Duplicates [merges] database(s) by copying metadata (low in
volume), but shares the actual (high volume) binary data

� Also enables creation of time-series database

odbmerge –i indput_db –o output_db –l dbname

� for example: odbmerge –i “200701*/ECMA.conv” –o USERDB

� The previous example creates a new database labelled as
USERDB, which presumably spans over the all conventional
observations during the January 2007

� The main point : user has now access to whole month of data
as if it was a single database !!

ODB and its usage at ECMWF

Slide 23

Slide 23

simulobs2odb
� simulobs2odb allows to load an ODB database directly from a

text file. This can be a useful option when developing software or
loading own databases and BUFR-definitions (for example) are
not yet fixed.

simulobs2odb [-l dbname] [-i file] [-n npools] \

[-c] [-r rptfile] [-1|-4]

� For instance:
simulobs2odb –i hdr.txt –i body.txt –l USERDB

where USERDB.ddl is a user defined schema file.

� It can also be used to create a new “mini” ODB

simulobs2odb –r file.rpt –l USERDB

Here, there is no need to describe the schema file (done
automatically from the report file)

ODB and its usage at ECMWF

Slide 24

Slide 24

odbviewer
� A very basic ODB data examination tool linked with ECMWF

graphics package MAGICS/MAGICS++

� Executes given ODB/SQL-queries and tries to produce both
coverage plot if (lat,lon) is available and textual report (ASCII-
format)

� Example:

// 2m Temperature – t2m.sql
SET $t2m = 39;
SET $synop = 1;
CREATE VIEW t2m AS
SELECT an_depar, fg_depar, lat, lon, obsvalue
FROM hdr, body
WHERE obstype = $synop // Give me synops

AND varno = $t2m // Give me 2 meter temperatures

AND obsvalue is not NULL ; // Don’t want missing data

ODB and its usage at ECMWF

Slide 25

Slide 25

2m temperature

odbviewer -v t2m.sql -i ECMA –C color.cmap

color.cmap

2 m Temperature
obsvalue@body
273,300

ODB and its usage at ECMWF

Slide 26

Slide 26

Visualization of ODB with Metview

� Uses ODB API (part of ODB package)
- C interface to access ODB databases in read-only mode
- Direct or Client/server Access

� ODB Database icon
- to specify the ODB database path and name
- to browse the metadata contents

� ODB Access icon
- Defines the ODB/SQL query
- Output in Geopoints format (geopoints visualisation)

� GeoTools icon
- Preview and Histogram
- Temporary tool until Metview 4 is available

� This version of Metview is not available to member states yet

ODB and its usage at ECMWF

Slide 27

Slide 27

ODB Browser and ODB Access Examples

ODB and its usage at ECMWF

Slide 28

Slide 28

GeoTool example

ODB and its usage at ECMWF

Slide 29

Slide 29

PART-II :
ODB and its

usage at ECMWF
in IFS

ODB and its usage at ECMWF

Slide 30

Slide 30

ODB interface for IFS
� The ODB/IFS interface is a high-level interface to ODB which mainly

applies to ECMA and CCMA databases
- ECMA contains all observations before the screening
- CCMA contains only active observations

� OPENDB
- Opens ECMA/CCMA databases

� GETDB
- Executes one or more SQL queries (as defined in CTXINITDBCTXINITDB of

odb/cma2odb/ctxinitdb.F90) via routine CTXGETDBCTXGETDB
- Calls ODB_select, allocates matrices ROBHDR, ROBODY etc. and then calls

ODB_get to fill out the observational matrices
� PUTDB

- Returns the contents of the updated matrices back to (in-memory) database
data structures via routine CTXPUTDBCTXPUTDB ::

- Calls ODB_put, deallocates matrices, calls ODB_cancel
� CLOSEDB

- Closes ECMA/CCMA databases

ODB and its usage at ECMWF

Slide 31

Slide 31

ODB/IFS interface routines’ interaction

CLOSEDB

OPENDB

GETDB

PUTDB

ODB and its usage at ECMWF

Slide 32

Slide 32

ECMA – IFS usage of ODB

hdr

sat

ssmiatovs

atovs_pred ssmi_body

scatt reo3satob

scatt_body

desc

ddrs poolmasktimeslot_index

index

body errstat update1..3

ODB and its usage at ECMWF

Slide 33

Slide 33

Working with observational arrays
� Once GETDB has been called, you usually get one or more of the

following arrays filled with observational data:
- ROBHDR: index & hdr – tables related data
- ROBODY: body, errstat, update_* – tables’ data
- MLNKH2B: Coupling between ROBHDR & ROBODY

� ROBHDR, ROBODY, etc. contain a snapshot of report data and are only
available between GETDB-PUTDB calls!

HDR_LOOP: do jobs=1, NROWS_ROBHDR

ROBHDR(jobs,MDBLAT) = <some_thing>

BODY_LOOP: do jbody= MLNKH2B(jobs), MLNKH2B(jobs+1) - 1

if (ROBODY(jbody,MDBVNM) == <varno>) then

ROBODY(jbody, MDBOMF) = <some_thing>

endif

enddo BODY_LOOP

enddo HDR_LOOP

ODB and its usage at ECMWF

Slide 34

Slide 34

Resolving MLNKH2B
� The linking vector between ROBHDR & ROBODY is called MLNKH2B and is created

while in GETDB (more specifically while in CTXGETDB)
� Its length is always NROWS_ROBHDR + 1

� Each entry of MLNKH2B(JOBS) defines the offset to the ROBODY-row from
ROBHDR(JOBS), thus the difference MLNKH2B(JOBS+1) -
MLNKH2B(JOBS) is the number of body rows “belonging” to the
ROBHDR(JOBS)

� There are currently two ways of defining MLNKH2B dynamically (see
both CTXINITDB and CTXGETDB) :

- Method#1 : ctx(idctx,it)%view(1)%mlnkh2b = +2

view(1) must contain body.len@hdr (= MLNK_HDR2BODY(2)) as one of the entries
and view(2) that retrieves the ROBODY should not contain any restrictions in WHERE-
condition on how many body-entries to fetch

- Method#2 : ctx(idctx,it)%view(1)%mlnkh2b = -2

where MLNKH2B is computed automatically
view(1) and view(2) should both contain seqno@hdr (= MDBONM) as the 1st entry

ODB and its usage at ECMWF

Slide 35

Slide 35

Other observational arrays

� Satellite specific data can be placed into SATHDR and
SATBODY arrays. Also SATPRED for satellite data predictors
is available separately from SATHDR

� These can correspond view#3 and view#4, respectively
� It also possible to have SATHDR only
� We usually require that NROWS_SATHDR equals to
NROWS_ROBHDR. This consistency check is done in routine
GETDB

� In some rare cases (like when creating CCMA) we may need
ROBHDR “twice”: once to ECMA and once for CCMA

- For that purpose these is the array ROBSU

� There is also ROBDDR for Data Description Records

ODB and its usage at ECMWF

Slide 36

Slide 36

Parallelization with MPI and OpenMP

� The data is normally extracted from the local pool(s) belonging to
the particular MPI-task and arranged so that the different OpenMP
threads itititit (1..1..1..1..maxthreadsmaxthreadsmaxthreadsmaxthreads) get mutually exclusive datasets

� Each variable ROBHDR, ROBODY, MDBVNM, MDBLAT, etc. are in fact
macros (must be given in CAPITAL letters) which are pre-processed
with the Fortran90 data structure (see “openmp_obs.h”)

- For example, the ROBHDR becomes o_(it)%robhdr

- And the MDBVNM becomes o_(itit)%mdbvnm

� It is also possible to inquire global data with GETDB, but the
following rules apply :

- The same GETDB call must be issued by every MPI-task

- Only local data can be modified and passed back to dbase
- In CTXINITDB, you must remember to set :

ctx(idctx,it)%replicate_PE = -1

ODB and its usage at ECMWF

Slide 37

Slide 37

Observational data flow at ECMWF

Creation of individual ECMAs

Merged
ECMA

CCMA

Merged
ECMA

individual
ECMAs

CCMA

ODB and its usage at ECMWF

Slide 38

Slide 38

ECMWF bufr to ODB conversion

� ODBs at ECMWF are normally created by using bufr2odb
- Enables MPI-parallel database creation � efficient

- Allows retrospective inspection of Feedback BUFR data by converting it into
ODB (slow & not all data in BUFR)

� bufr2odb can also be used interactively, for example to
create an ECMA database with 4 pools from the given BUFR
input file, but includes only BUFR subtypes from 1 to 20
(inclusive): bufr2odb –i bufr_input_file –I 1-20 –n 4

� odb2bufr: used to archive feedback bufr in MARS

bufr2odb -i input_bufr_file -t task_id
-n split_into_this_many_data_pools
-I include_these_bufr_subtypes_in_database
-E exclude_these_bufr_subtypes
-b optional_bufr_table_directory
-M Mergeodb ���� make DB ready for IFS/4DVAR

ODB and its usage at ECMWF

Slide 39

Slide 39

odbshuffle – Creation of CCMA from ECMA

� odbshuffle allows to create a new ODB database containing
active observations only (assessed during screening task). To
ensure a good load balancing data are re-distributed among
the MPI-tasks

- procid@index (pool number in the merged ECMA)

- target@index (pool number in CCMA)

� It runs on an ECMA database containing all observations: all
individual ECMAs are merged into one big ECMA (symbolic
links); seqno@hdr is updated in order to be unique in the
merged ECMA ;

� MPI over pools and OpenMP loop over observation types.
� The default observation weighting method is now 407 (instead

of 107) to allow a better load balancing

ODB and its usage at ECMWF

Slide 40

Slide 40

revmatchup at ECMWF - ECMA � CCMA

� Used to feed information stored in ECMAs in the last trajectory
back to CCMA

� Done for each individual ECMAs
� ODB_IO_METHOD= 5 for ECMA
� ODB_IO_METHOD= 4 for CCMA
� MPI to send data from ECMA to the right CCMA pool via the

usage of the ODB paral function –
paral($pe,target@index) in the WHERE statements of the
corresponding SQL queries.

� paral is always true for the database opened in WRITE mode
(ECMA) and is only used to select CCMA data from the right pool.

ODB and its usage at ECMWF

Slide 41

Slide 41

matchup at ECMWF – CCMA � ECMA
� Used to feed information gathered during 4D-Var minimisation in
CCMA back to individual ECMAs.

� ODB_IO_METHOD = 5 for CCMA

� ODB_IO_METHOD = 4 for ECMA

� OpenMP – done over sensor list but in the latest cycle, the number of
openMP thread is forced to 1

� MPI to send data from CCMA to the right ECMA pool (usage of the ODB
paral function – paral($pe,procid@index -$hdr_min+1)

CCMA

ECMA

MPI#1 MPI#2 MPI#3 MPI#4 MPI#5 MPI#6 MPI#7 MPI#8

pool#1

pool#9 pool#10

pool#2 pool#3

pool#11

pool#4

pool#12

pool#5

pool#13

pool#6 pool#7

pool#14 pool#15 pool#16

pool#8

ODB and its usage at ECMWF

Slide 42

Slide 42

Conclusion
and future

developments

ODB and its usage at ECMWF

Slide 43

Slide 43

Conclusions
� Strengths of ODB

- It allows to process unprecedented amounts of satellite data through
the IFS/4DVAR system

- It is MPI and OpenMP parallel
- It is portable (written in ANSI-C and Fortran 90, support for big/little

endian)

� Weaknesses of ODB
- ODB has got many components and few users have a good

understanding of all capabilities of ODB
- Cycle dependence of ODB (even if the dependence only exists

because of precompiled ODB databases and queries)
- Usage of ODB within IFS is complex and focused on database

handling instead of observations
- At ECMWF, resulting ODB databases (ECMA/CCMA) are archived in

ECFS for a short period of time (feedback bufr are archived in MARS);
users need to retrieve full ECMA/CCMA for post-processing (requires
large local disk for each user)

ODB and its usage at ECMWF

Slide 44

Slide 44

Short-term outcomes

� Distribution of stand-alone ODB package under investigation (now
only available to member states).

- At the last ACDP, it was proposed to distribute ODB at a handling fee charge;
License to be investigated (Apache or ECMWF license)

� Documentation
- ODB FAQ

- ODB user guide (ODB core, generic Fortran 90 interface, ODB-tools)

- ODB usage in IFS

� Archiving of resulting ECMA (feedback bufr) in MARS.
- A new format ODA (Observational Data Archiving) has been defined (ODB has

been considered as unsuitable)

- A new C++ library is under development at ECMWF (Peter Kuchta) as well as
ODA-tools (odb2oda, oda2odb, oda SQL engine to query ODA files)

- This ODA format will become an internal format for Metview/Magics++.

ODB and its usage at ECMWF

Slide 45

Slide 45

Future developments – Split ODB

� This new ODA library is an opportunity to split ODB
- Can we use this new underlying format in ODB?

� We would only change how we read and write data on disk

� For now we can read ODA (Fortran 2003 to interface with C++ ODA
library) and create an ODB to be used in IFS

- Can we replace the current ODB/SQL engine by ODA/SQL engine?

� We would avoid to pre-compile ODB databases and SQL queries

� We would use the same set of tools
- Having this ODA library outside IFS would allow to develop tools to

post-process ODB data independently of IFS cycles.

- Maintenance of this library will be done by ECMWF data and Services

ODB and its usage at ECMWF

Slide 46

Slide 46

Future developments – IFS interface

� The current ODB interface to IFS was built on an existing
software layer (pre-ODB) and the main objective was

- to change from the static offsets (pre-calculated offsets, using so
called NCMxxx pointers) into dynamic ones without changing the
IFS data flow

- to have a subset of observations available in dynamically allocated
matrices (introduction of dynamic column pointers MDBxxx)

- To minimize code changes necessary to use ODB: changes to the
IFS code were nearly automatic (with Perl scripts)

� Can we ease the usage of ODB in IFS?
- OOPS (Object Oriented Prediction System) is a good opportunity to

replace the current ODB interface to IFS.
- The objective would be to hide these observational arrays

(ROBHDR, ROBODY, etc.) and to hide the usage of ODB databases
(ECMA/CCMA). Users would handle observations.

