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PART-I : 
ODB Overview
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Introduction to ODB

� ODB stands for Observational DataBase and is a tailor made 
software developed at ECMWF by Sami Saarinen to manage very 
large observational data volumes through the 4DVAR-system on 
highly parallel supercomputer systems. ODB has been developed 
with the following requirements:

- Fortran interface (IFS/ARPEGE is written in Fortran)

- Suitable for MPI/OpenMP parallelisation

- Perform efficient data extraction in our 4D-var (achieved via 
ODB/SQL)

� ODB has been operational at ECMWF since 27th of June 2000

� ODB is also used at MeteoFrance through IFS/ARPEGE 
collaboration and has spread through their Aladin-collaboration…

� ODB is used in Australian Bureau of Meteorology, Melbourne
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ODB hierarchical data model

� In ODB, data is organized into a tree-like structure. The 
structure allows “repeating” information using parent/child 
relationships: each parent can have many children but each 
child only has one parent.

� A table can be seen as a matrice (2D-array or so called flat file) 
with a number of rows and columns containing numerical data.

hdr

sat

ssmi

atovs atovs_pred

ssmi_body

satob

reo3

scatt scatt_body
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Data Definition Layout (DDL)

CREATE TABLE table_name AS (

column_name1 data_type1,

column_name2 data_type2,

column_name3 data_type3,

....

);

CREATE TYPE type_name AS (

bitfield_name1 data_type1,

bitfield_name2 data_type2,

bitfield_name3 data_type3,

....

);

� This hierarchy is described in the Data Definition Layout (or schema) file.
- Text file consisting of a number of named TABLEs

- Each TABLE has got a number of named columns (or attributes)

- Each column in turn has got a specific type
- integer/ real/ string
- packed,
- bitfield type (can vary between 1 an 32 bits, access 

column_name.bitfield_name)
- @LINK to define connections between TABLEs
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Example of ODB DDL file

standard data type
column name or attribute

packed data type
composite data type (bit-field) 

built-in date & time types

CREATE TABLE hdr AS (
lat real,
lon real,
statid string,
obstype int,
date YYYYMMDD,
time HHMMSS,
status flags_ t,
body @LINK,
);
CREATE TABLE body AS (
varno pk5int,
press pk9real,
obsvalue pk9real,
);

LINK data type

lat lon statid obstype date time status
-14.78 143.5  ' 94187' 1 20081021 230000 1

varno press obsvalue
1 100350 804.14

30 100100 120
39 99900 277.6
40 100350 292.4
58 100350 0.57
111 100840 260
112 100100 2
41 97670 12.9
42 95310 -4.84e-15
80 100880 0

@LINK

A LINK tells how many times a 
row needs to be repeated (10 
times in our example) and 
which table is involved (body)
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Data partitioning

� The main purpose is to allow parallelism (requirement for 
usage in IFS model):
� divide TABLEs “horizontally” into pools between processors; pools are 

assigned to the MPI-tasks in a round-robin fashion (max. PEs <= max. 
no. of pools). By default, an MPI-task cannot modify data on a pool that it 
does not own.

� each table can be assigned to an openMP threads

� no. of pools "decided" in the Fortran90 layer

� SELECT data from all or a particular pool only

� How to distribute data? 
� latitude- bands, or time slots, or obs. types or due to load balancing etc.

� Distribution is done in bufr2odb in IFS for ECMA (pools done per obs. 
group). It is done again when creating CCMA from ECMA i.e. when 
creating a new database with active data only. 
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Table partitioning – example with 3 pools

lat lon statid obstype date time status
-14.78 143.5  ' 94187' 1 20081021 230000 1

@LINK

lat lon statid obstype date time status
-14.78 143.5  ' 94187' 1 20081021 230000 1

@LINK

varno press obsvalue
1 100350 804.14
30 100100 120
39 99900 277.6

varno press obsvalue
40 100350 292.4
58 100350 0.57

111 100840 260

lat lon statid obstype date time status
-14.78 143.5  ' 94187' 1 20081021 230000 1

@LINK
varno press obsvalue
112 100100 2
41 97670 12.9
42 95310 -4.84e-15
80 100880 0

Table hdr Table body

Pool#1

Pool#2

Pool#3

� The first row in hdr is repeated in each pool. A single pool 
forms a ‘sub-database’.
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ODB I/O method – ODB_IO_METHOD
� ODB currently support 5 I/O methods which controls how the data 

is read/write from/to disk:
- 1 - Creates one file per every TABLE on a pool basis. Uses the CMA I/O-routines 

with the standard C I/O-library (i.e. fopen, fread, fwrite and fclose). Default value at 
Météo-France.

- 2 - The same as method#1, but using system I/O-routines (read and fwrite) directly. 
Not very well tested.

- 3 - qtar method, where an external ODB-specific utility (similar to tar) is invoked to 
store and extract data. One QTAR-file per pool is created i.e. all TABLEs will be 
saved into a single file on a pool basis. Not very well tested.

- 4 - In this method each similar TABLE-file for a number of consecutive pools 
(ODB_IO_GRPSIZE) are concatenated together to achieve the maximum 
configured filesize given via ODB_IO_FILESIZE. Default value in ECMWF scripts 
from IFS cycle CY26R1 onwards. Information from the adjacent data pools are 
message passed to the nearest I/O-task for performing the I/O

- 5 – Read/only method. It uses dca (Direct Column Access) files (dcagen –F –n –q 
–z). This will give a boost for data accesses and reduces memory consumption.
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ODB/SQL Statements

� ODB/SQL(*) is a small subset of international standard SQL used to 
manipulate relational databases. 

� It allows to define data queries in order retrieve (normally) a subset
of data items. This is the “main” motivation of using ODB ?!

� Except for the creation of a database or within IFS/ARPEGE where
a Fortran program is necessary, ODB/SQL can be used in an 
interactive way via ODB-tools (odbviewer, odbsql, etc.).

(*)SQL stands for Structured Query Language

[CREATE VIEW view_name AS]

SELECT [DISTINCT] column_ name( s)

FROM table( s)

[WHERE some_ condition( s)_ to_ be_ met ]

[ORDERBY sort_ column_ name( s) [ASC/ DESC] ]
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ODB/SQL examples

� Find distinct values of obstype and sort them in DESCending
order:

SELECT DISTINCT obstype

FROM hdr

ORDERBY obstype DESC ;

� Provide the following radio-sonde temperatures :
SELECT lat,lon,press,obsvalue

FROM hdr, body

WHERE obstype=$temp AND varno=$t

AND lldegrees(lon) BETWEEN 100W AND 80W

AND press < 500hPa ;
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ODB/SQL – SET variables

� Parameters are variables that start with $ and store 
numbers (integers or floating point values)

� For example:
SET $temp = 5;

SET $t = 2;

� This can be used to generalize certain kinds of queries 
(so-called parameterized SQL-queries)

� There are also useful when creating multiple columns or 
tables with (nearly) the same meaning
SET $nmxupd = 3;

CREATE TABLE update[1:$nmxupd] AS (…);

� These variables can also be some state variables, whose 
value can be changed on a permanent or temporary 
basis from Fortran.
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Fortran 90 interface to ODB/SQL

� ODB Fortran90 interface layer offers a comprehensive set of 
functions to

- Open & close database

- Attach to & execute precompiled ODB/SQL queries

- Load, update & store queried data

- Inquire information about database metadata

� Fortran90 interface of ODB can use Message Passing Interface 
(MPI) for parallel data queries.

� SELECT‘ ed data can be asked to be shuffled (“ part- exchanged”) 
or replicated across processors (ODB_select); by default data 
selection applies to the local pools only.

� Each query needs to be pre-compiled/linked with the main user 
program.

� Parameterized queries can be used.
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An example of Fortran program with ODB
program main

use odb_module

implicit none

integer(4) :: h, rc, nra, nrows, ncols, npools, j, jp

real(8), allocatable:: x(:,:)

npools= 0

h = ODB_open("MYDB", "OLD", npools=npools)

DO jp=1,npools

rc= ODB_select(h, "sqlview",nrows,ncols,poolno=jp)

allocate(x(nrows,0:ncols))

rc= ODB_get(h, "sqlview",x,nrows,ncols,poolno=jp)

call update(x,nrows,ncols) ! Not an ODB-routine
rc= ODB_put(h, "sqlview",x,nrows,ncols,poolno=jp)

deallocate(x)

rc= ODB_cancel(h, "sqlview",poolno=jp)

ENDDO

rc= ODB_close(h, save=.TRUE.)

end program main
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ODB/SQL compilation system
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Compile, link and run a Fortran program

[1] use odb # once per session

[2] odbcomp MYDB.ddl # once only;often from file MYDB.sch

[3] odbcomp –lMYDB sqlview.sql # recompile when changed

[4] odbf90 main.F90 update_data.F90 –lMYDB –o main.x

[5] ./main.x

[6] Go back to [3]

Note: [1] – [2] is not required for precompiled ODB databases (such as ECMA,CCMA) 
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ODB Tools
� Various ODB-tools are meant to simplify browsing and

management of ODB databases. 

� Some are generic and can be used with any ODB databases (no 
compiled queries or databases):

- odbsql: a tool to access ODB data in read/only mode

- odbdiff: a tool to compare two ODB databases

- odbdup/odbmerge: to combine several databases

- odbcompress: to create a sub-ODBs from an existing database

- simulobs2odb: to create a new ODB from an ascii file

- odbviewer: ODB visualization and text result browsing. Only available 
when ODB is built with Magics/Magics++. 

- odb1to4 and odb4to1: convert from one I/O method to another

� Some are specific to IFS/ARPEGE usage (bufr2odb, odb2bufr, 
odbshuffle, matchup, revmatchup, etc.); See part-II.
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odbsql

� A tool to access ODB data in read/only –mode 
(ODB_IO_METHOD=5)

� Does not generate C-code, but dives directly into data

� It uses dca files (direct column access) which can be created 
with dcagen

� Usage:                                                          
odbsql –v query.sql| -q “SELECT…” –s starting_row \

–n number_of_rows_to_display \

-f output_format -I dir_db \

[–X] [other_options]

� For example:

odbsql –q ‘SELECT lat,lon,fg_depar from hdr,body’ \

-i /dir1/CCMA
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odbdiff

� Enables comparison of two ODB databases for differences

� A very useful tool when trying to identify errors/differences 
between operational and experimental 4DVAR runs

odbdiff –v query.sql|-q ‘query_string’ \

-p poolmask [other_options] ref_base comp_base

� For example:

odbdiff –q ‘SELECT lat,lon,fg_depar from hdr,body’ \

/dir1/CCMA /dir2/CCMA

� By default the command brings up an xdiff-window with respect to 
differences

� If latitude and longitude were also given in the data query, then it 
also produces a difference plot using odbviewer-tool 
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odbcompress

� Enables to create very compact databases from the 
existing ones
odbcompress –i indput_db –o output_db \

–l ddl_file [-1|-4]

� Makes post-processing considerably faster

� The user can choose to

� Truncate the data precision, and/or

� Leave out columns that are less of an importance



ODB and its usage at ECMWF

Slide 22

Slide 22

odbdup/odbmerge

� Allows f.ex. database sharing between multiple users

� Over shared (e.g. NFS, Lustre, GPFS, GFS) disks  

� Duplicates [merges] database(s) by copying metadata (low in 
volume), but shares the actual (high volume) binary data

� Also enables creation of time-series database

odbmerge –i indput_db –o output_db –l dbname

� for example:  odbmerge –i “200701*/ECMA.conv” –o USERDB

� The previous example creates a new database labelled as 
USERDB, which presumably spans over the all conventional 
observations during the January 2007

� The main point : user has now access to whole month of data 
as if it was a single database !!
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simulobs2odb
� simulobs2odb allows to load an ODB database directly from a 

text file. This can be a useful option when developing software or 
loading own databases and BUFR-definitions (for example) are 
not yet fixed.

simulobs2odb [-l dbname] [-i file] [-n npools] \

[-c] [-r rptfile] [-1|-4]

� For instance: 
simulobs2odb –i hdr.txt –i body.txt –l USERDB

where USERDB.ddl is a user defined schema file.

� It can also be used to create a new “mini” ODB

simulobs2odb –r file.rpt –l USERDB

Here, there is no need to describe the schema file (done 
automatically from the report file)
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odbviewer
� A very basic ODB data examination tool linked with ECMWF 

graphics package MAGICS/MAGICS++ 

� Executes given ODB/SQL-queries and tries to produce both 
coverage plot if (lat,lon) is available and textual report (ASCII-
format)

� Example:

// 2m Temperature – t2m.sql
SET $t2m = 39;
SET $synop = 1;
CREATE VIEW t2m AS
SELECT an_depar, fg_depar, lat, lon, obsvalue
FROM hdr, body
WHERE obstype = $synop // Give me synops

AND varno = $t2m // Give me 2 meter temperatures

AND obsvalue is not NULL ; // Don’t want missing data
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2m temperature

odbviewer -v t2m.sql -i ECMA –C color.cmap

color.cmap

2 m Temperature
obsvalue@body
273,300
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Visualization of ODB with Metview

� Uses ODB API (part of ODB package)
- C interface to access ODB databases in read-only mode
- Direct or Client/server Access

� ODB Database icon
- to specify the ODB database path and name
- to browse the metadata contents

� ODB Access icon
- Defines the ODB/SQL query
- Output in Geopoints format (geopoints visualisation)

� GeoTools icon
- Preview and Histogram
- Temporary tool until Metview 4 is available

� This version of Metview is not available to member states yet 
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ODB Browser and ODB Access Examples
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GeoTool example
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PART-II : 
ODB and its 

usage at ECMWF 
in IFS
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ODB interface for IFS
� The ODB/IFS interface is a high-level interface to ODB which mainly 

applies to ECMA and CCMA databases
- ECMA contains all observations before the screening
- CCMA contains only active observations

� OPENDB
- Opens ECMA/CCMA databases

� GETDB
- Executes one or more SQL queries (as defined in CTXINITDBCTXINITDB of

odb/cma2odb/ctxinitdb.F90)  via routine CTXGETDBCTXGETDB
- Calls ODB_select, allocates matrices ROBHDR, ROBODY etc. and then calls 

ODB_get to fill out the observational matrices
� PUTDB

- Returns the contents of the updated matrices back to (in-memory) database 
data structures via routine CTXPUTDBCTXPUTDB ::

- Calls ODB_put, deallocates matrices, calls ODB_cancel
� CLOSEDB

- Closes ECMA/CCMA databases
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ODB/IFS interface routines’ interaction

CLOSEDB

OPENDB

GETDB

PUTDB
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ECMA – IFS usage of ODB

hdr

sat

ssmiatovs

atovs_pred ssmi_body

scatt reo3satob

scatt_body

desc

ddrs poolmasktimeslot_index

index

body errstat update1..3
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Working with observational arrays
� Once GETDB has been called, you usually get one or more of the 

following arrays filled with observational data:
- ROBHDR: index & hdr – tables related data
- ROBODY: body, errstat, update_* – tables’ data
- MLNKH2B: Coupling between ROBHDR & ROBODY

� ROBHDR, ROBODY, etc. contain a snapshot of report data and are only 
available between GETDB-PUTDB calls!

HDR_LOOP: do jobs=1, NROWS_ROBHDR

ROBHDR(jobs,MDBLAT) = <some_thing>

BODY_LOOP: do jbody= MLNKH2B(jobs), MLNKH2B(jobs+1) - 1

if ( ROBODY(jbody,MDBVNM) == <varno> ) then

ROBODY(jbody, MDBOMF) = <some_thing>

endif

enddo BODY_LOOP

enddo HDR_LOOP
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Resolving MLNKH2B
� The linking vector between ROBHDR & ROBODY is called MLNKH2B and is created 

while in GETDB (more specifically while in CTXGETDB)
� Its length is always NROWS_ROBHDR + 1

� Each entry of MLNKH2B(JOBS) defines the offset to the ROBODY-row from
ROBHDR(JOBS), thus the difference MLNKH2B(JOBS+1) -
MLNKH2B(JOBS) is the number of body rows “belonging” to the
ROBHDR(JOBS)

� There are currently two ways of defining MLNKH2B dynamically (see 
both CTXINITDB and CTXGETDB) :

- Method#1 : ctx(idctx,it)%view(1)%mlnkh2b = +2

view(1) must contain  body.len@hdr (= MLNK_HDR2BODY(2)) as one of the entries 
and view(2) that retrieves the ROBODY should not contain any restrictions in WHERE-
condition on how many body-entries to fetch

- Method#2 : ctx(idctx,it)%view(1)%mlnkh2b = -2

where MLNKH2B is computed automatically 
view(1)  and view(2) should both contain seqno@hdr (= MDBONM) as the 1st entry
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Other observational arrays

� Satellite specific data can be placed into SATHDR and 
SATBODY arrays. Also SATPRED for satellite data predictors 
is available separately from SATHDR

� These can correspond view#3 and view#4, respectively
� It also possible to have SATHDR only
� We usually require that NROWS_SATHDR equals to 
NROWS_ROBHDR. This consistency check is done in routine 
GETDB

� In some rare cases (like when creating CCMA) we may need 
ROBHDR “twice”: once to ECMA and once for CCMA

- For that purpose these is the array ROBSU

� There is also ROBDDR for Data Description Records
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Parallelization with MPI and OpenMP

� The data is normally extracted from the local pool(s) belonging to 
the particular MPI-task and arranged so that the different OpenMP
threads itititit (1..1..1..1..maxthreadsmaxthreadsmaxthreadsmaxthreads) get mutually exclusive datasets

� Each variable ROBHDR, ROBODY, MDBVNM, MDBLAT, etc. are in fact 
macros (must be given in CAPITAL letters) which are pre-processed  
with the Fortran90 data structure (see “openmp_obs.h”)

- For example, the ROBHDR becomes o_(it)%robhdr

- And the MDBVNM becomes o_(itit)%mdbvnm

� It is also possible to inquire global data with GETDB, but the 
following rules apply :

- The same GETDB call must be issued by every MPI-task

- Only local data can be modified and passed back to dbase
- In CTXINITDB, you must remember to set :

ctx(idctx,it)%replicate_PE = -1
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Observational data flow at ECMWF

Creation of individual ECMAs

Merged 
ECMA

CCMA

Merged 
ECMA

individual 
ECMAs

CCMA
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ECMWF bufr to ODB conversion

� ODBs at ECMWF are normally created by using bufr2odb
- Enables MPI-parallel database creation � efficient

- Allows retrospective inspection of Feedback BUFR data by converting it into 
ODB (slow & not all data in BUFR)

� bufr2odb can also be used interactively, for example to 
create an ECMA database with 4 pools from the given BUFR 
input file, but includes only BUFR subtypes from 1 to 20 
(inclusive): bufr2odb –i bufr_input_file –I 1-20 –n 4

� odb2bufr: used to archive feedback bufr in MARS 

bufr2odb -i input_bufr_file -t task_id
-n split_into_this_many_data_pools
-I include_these_bufr_subtypes_in_database
-E exclude_these_bufr_subtypes
-b optional_bufr_table_directory
-M Mergeodb ���� make DB ready for IFS/4DVAR
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odbshuffle – Creation of CCMA from ECMA

� odbshuffle allows to create a new ODB database containing
active observations only (assessed during screening task). To 
ensure a good load balancing data are re-distributed among 
the MPI-tasks

- procid@index (pool number in the merged ECMA) 

- target@index (pool number in CCMA)

� It runs on an ECMA database containing all observations: all 
individual ECMAs are merged into one big ECMA (symbolic 
links); seqno@hdr is updated in order to be unique in the
merged ECMA ; 

� MPI over pools and OpenMP loop over observation types.
� The default observation weighting method is now 407 (instead

of 107) to allow a better load balancing
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revmatchup at ECMWF - ECMA � CCMA

� Used to feed information stored in ECMAs in the last trajectory
back to CCMA

� Done for each individual ECMAs
� ODB_IO_METHOD= 5 for ECMA
� ODB_IO_METHOD= 4 for CCMA
� MPI to send data from ECMA to the right CCMA pool via the

usage of the ODB paral function –
paral($pe,target@index) in the WHERE statements of the 
corresponding SQL queries.

� paral is always true for the database opened in WRITE mode 
(ECMA) and is only used to select CCMA data from the right pool.
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matchup at ECMWF – CCMA � ECMA
� Used to feed information gathered during 4D-Var minimisation in 
CCMA back to individual ECMAs.

� ODB_IO_METHOD = 5 for CCMA

� ODB_IO_METHOD = 4 for ECMA

� OpenMP – done over sensor list but in the latest cycle, the number of 
openMP thread is forced to 1

� MPI to send data from CCMA to the right ECMA pool (usage of the ODB 
paral function – paral($pe,procid@index -$hdr_min+1)

CCMA

ECMA

MPI#1 MPI#2 MPI#3 MPI#4 MPI#5 MPI#6 MPI#7 MPI#8

pool#1

pool#9 pool#10

pool#2 pool#3

pool#11

pool#4

pool#12

pool#5

pool#13

pool#6 pool#7

pool#14 pool#15 pool#16

pool#8



ODB and its usage at ECMWF

Slide 42

Slide 42

Conclusion 
and future 

developments
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Conclusions
� Strengths of ODB

- It allows to process unprecedented amounts of satellite data through 
the IFS/4DVAR system

- It is MPI and OpenMP parallel
- It is portable (written in ANSI-C and Fortran 90, support for big/little 

endian)

� Weaknesses of ODB
- ODB has got many components and few users have a good 

understanding of all capabilities of ODB
- Cycle dependence of ODB (even if the dependence only exists

because of precompiled ODB databases and queries)
- Usage of ODB within IFS is complex and focused on database 

handling instead of observations
- At ECMWF, resulting ODB databases (ECMA/CCMA) are archived in 

ECFS for a short period of time (feedback bufr are archived in MARS); 
users need to retrieve full ECMA/CCMA for post-processing (requires 
large local disk for each user)
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Short-term outcomes 

� Distribution of stand-alone ODB package under investigation (now
only available to member states). 

- At the last ACDP, it was proposed to distribute ODB at a handling fee charge; 
License to be investigated (Apache or ECMWF license)

� Documentation 
- ODB FAQ

- ODB user guide (ODB core, generic Fortran 90 interface, ODB-tools)

- ODB usage in IFS

� Archiving of resulting ECMA (feedback bufr) in MARS. 
- A new format ODA (Observational Data Archiving) has been defined (ODB has 

been considered as unsuitable) 

- A new C++ library is under development at ECMWF  (Peter Kuchta) as well as 
ODA-tools (odb2oda, oda2odb, oda SQL engine to query ODA files) 

- This ODA format will become an internal format for Metview/Magics++. 
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Future developments – Split ODB

� This new ODA library is an opportunity to split ODB
- Can we use this new underlying format in ODB?

� We would only change how we read and write data on disk

� For now we can read ODA (Fortran 2003 to interface with C++ ODA 
library) and create an ODB to be used in IFS  

- Can we replace the current ODB/SQL engine by ODA/SQL engine?

� We would avoid to pre-compile ODB databases and SQL queries

� We would use the same set of tools
- Having this ODA library outside IFS would allow to develop tools to 

post-process ODB data independently of IFS cycles.

- Maintenance of this library will be done by ECMWF data and Services 
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Future developments – IFS interface

� The current ODB interface to IFS was built on an existing 
software layer (pre-ODB) and the main objective was

- to change from the static offsets (pre-calculated offsets, using so 
called NCMxxx pointers) into dynamic ones without changing the 
IFS data flow

- to have a subset of observations available in dynamically allocated 
matrices (introduction of dynamic column pointers MDBxxx)

- To minimize code changes necessary to use ODB: changes to the 
IFS code were nearly automatic (with Perl scripts)

� Can we ease the usage of ODB in IFS?
- OOPS (Object Oriented Prediction System) is a good opportunity to 

replace the current ODB interface to IFS. 
- The objective would be to hide these observational arrays 

(ROBHDR, ROBODY, etc.) and to hide the usage of ODB databases 
(ECMA/CCMA). Users would handle observations.


