Observational DataBase (ODB) and its usage at ECMWF

anne.fouilloux@ecmwf.int

Satellite Data Section, ECMWF

Outline

• Part-I: ODB Overview

- Introduction
- Data partitioning
- ODB I/O method
- ODB/SQL
- Fortran 90 interface to ODB
- ODB-tools
- Visualisation of ODB with Metview
- Part-II: ODB and its usage in IFS at ECMWF
 - ODB interface for IFS
 - ECMA/CCMA data layout
 - Observational arrays in IFS
 - Parallelisation with MPI/OpenMP
 - Observational data flow
 - ODB-tools for IFS: bufr2odb, odbshuffle, matchup, revmatchup

Conclusion and future developments

PART-I : ODB Overview

Introduction to ODB

- ODB stands for Observational DataBase and is a tailor made software developed at ECMWF by Sami Saarinen to manage very large observational data volumes through the 4DVAR-system on highly parallel supercomputer systems. ODB has been developed with the following requirements:
 - Fortran interface (IFS/ARPEGE is written in Fortran)
 - Suitable for MPI/OpenMP parallelisation
 - Perform efficient data extraction in our 4D-var (achieved via ODB/SQL)
- ODB has been operational at ECMWF since 27th of June 2000
- ODB is also used at MeteoFrance through IFS/ARPEGE collaboration and has spread through their Aladin-collaboration...
- ODB is used in Australian Bureau of Meteorology, Melbourne

ODB hierarchical data model

In ODB, data is organized into a *tree-like* structure. The structure allows "repeating" information using parent/child relationships: each parent can have many children but each child only has one parent.

 A table can be seen as a matrice (2D-array or so called flat file) with a number of rows and columns containing numerical data.

ODB and its usage at ECMWF

CMWF

Data Definition Layout (DDL)

- This hierarchy is described in the Data Definition Layout (or schema) file.
 - Text file consisting of a number of named TABLEs
 - Each TABLE has got a number of named columns (or attributes)
 - Each column in turn has got a specific type
 - integer/ real/ string
 - packed,

ODB and its usage at ECMWF

- bitfield type (can vary between 1 an 32 bits, access column_name.bitfield_name)
- @LINK to define connections between TABLEs

```
CREATE TABLE table_name AS (

column_name1 data_type1,

column_name2 data_type2,

column_name3 data_type3,

....);
CREATE TYPE type_name AS (

bitfield_name1 data_type1,

bitfield_name2 data_type2,

bitfield_name3 data_type3,

....);
```

Slide 6

Example of ODB DDL file

CREATE TABLE hdr **AS** (

Data partitioning

- The main purpose is to allow parallelism (requirement for usage in IFS model):
 - → divide TABLEs "horizontally" into pools between processors; pools are assigned to the MPI-tasks in a round-robin fashion (max. PEs <= max. no. of pools). By default, an MPI-task cannot modify data on a pool that it does not own.
 - $\rightarrow\,$ each table can be assigned to an openMP threads
- no. of pools "decided" in the Fortran90 layer
- SELECT data from all or a particular pool only
- How to distribute data?
 - \rightarrow latitude- bands, or time slots, or obs. types or due to load balancing etc.
 - → Distribution is done in bufr2odb in IFS for ECMA (pools done per obs. group). It is done again when creating CCMA from ECMA i.e. when creating a new database with active data only.

Table partitioning – example with 3 pools

			T	able h	dr					Table bo	dy
				-					varno	press	obsvalue
Poo1#1	lat	lon	statid	obstype	date	time	status	@LINK	1	100350	804.14
1 001#1	-14.78	143.5	' 94187'	1	20081021	230000	1		30	100100	120
									39	99900	277.6
									varno	press	obsvalue
Doo1#2	lat	lon	statid	obstype	date	time	status	WLINK	40	100350	292.4
1001#2	-14.78	143.5	' 94187'	1	20081021	230000	1		58	100350	0.57
									111	100840	260
									varno	pross	obsvaluo
									Vallio	press	Obsvalue
	lat	lon	statid	obstype	date	time	status	@LINK	112	100100	2
Pool#3	-14 78	143.5	' 94187'	1	20081021	230000	1		41	97670	12.9
	14.70	140.0	54107	1	20001021	200000	I		42	95310	-4.84e-15
									80	100880	0

The first row in hdr is repeated in each pool. A single pool forms a 'sub-database'.

Slide 9

ECMWF

ODB I/O method – ODB_IO_METHOD

- ODB currently support 5 I/O methods which controls how the data is read/write from/to disk:
 - 1 Creates one file per every TABLE on a pool basis. Uses the CMA I/O-routines with the standard C I/O-library (i.e. fopen, fread, fwrite and fclose). Default value at Météo-France.
 - 2 The same as method#1, but using system I/O-routines (read and fwrite) directly. *Not very well tested.*
 - **3** qtar method, where an external ODB-specific utility (similar to tar) is invoked to store and extract data. One QTAR-file per pool is created i.e. all TABLEs will be saved into a single file on a pool basis. *Not very well tested.*
 - 4 In this method each similar TABLE-file for a number of consecutive pools (ODB_IO_GRPSIZE) are concatenated together to achieve the maximum configured filesize given via ODB_IO_FILESIZE. Default value in ECMWF scripts from IFS cycle CY26R1 onwards. Information from the adjacent data pools are message passed to the nearest I/O-task for performing the I/O
 - 5 Read/only method. It uses dca (Direct Column Access) files (dcagen F n q z). This will give a boost for data accesses and reduces memory consumption.

ODB/SQL Statements

```
[CREATE VIEW view_name AS]
SELECT [DISTINCT] column_ name( s)
FROM table( s)
[WHERE some_ condition( s)_ to_ be_ met ]
[ORDERBY sort_ column_ name( s) [ASC/ DESC] ]
```

- ODB/SQL^(*) is a small subset of international standard SQL used to manipulate relational databases.
- It allows to define data queries in order retrieve (normally) a subset of data items. This is the "main" motivation of using ODB ?!
- Except for the creation of a database or within IFS/ARPEGE where a Fortran program is necessary, ODB/SQL can be used in an interactive way via ODB-tools (odbviewer, odbsql, etc.).

(*)SQL stands for Structured Query Language

ODB/SQL examples

Find distinct values of obstype and sort them in DESCending order:

SELECT DISTINCT obstype FROM hdr

ORDERBY obstype DESC ;

Provide the following radio-sonde temperatures :

SELECT lat, lon, press, obsvalue

FROM hdr, body

WHERE obstype=\$temp AND varno=\$t

AND lldegrees(lon) BETWEEN 100W AND 80W

AND press < 500hPa ;

ODB/SQL – SET variables

- Parameters are variables that start with \$ and store numbers (integers or floating point values)
- For example:

```
SET $temp = 5;
SET $t = 2;
```

- This can be used to generalize certain kinds of queries (so-called parameterized SQL-queries)
- There are also useful when creating multiple columns or tables with (nearly) the same meaning

```
SET $nmxupd = 3;
CREATE TABLE update[1:$nmxupd] AS (...);
```

 These variables can also be some state variables, whose value can be changed on a permanent or temporary basis from Fortran.

ODB and its usage at ECMWF

Slide 13

Fortran 90 interface to ODB/SQL

- ODB Fortran90 interface layer offers a comprehensive set of functions to
 - Open & close database
 - Attach to & execute precompiled ODB/SQL queries
 - Load, update & store queried data
 - Inquire information about database metadata
- Fortran90 interface of ODB can use Message Passing Interface (MPI) for parallel data queries.
- SELECT' ed data can be asked to be shuffled (" part- exchanged") or replicated across processors (ODB_select); by default data selection applies to the local pools only.
- Each query needs to be pre-compiled/linked with the main user program.
- Parameterized queries can be used.

ECMWF

An example of Fortran program with ODB

```
program main
use odb module
implicit none
integer(4) :: h, rc, nra, nrows, ncols, npools, j, jp
real(8), allocatable:: x(:,:)
npools= 0
h = ODB open("MYDB", "OLD", npools=npools)
DO jp=1,npools
   rc= ODB select(h, "sqlview", nrows, ncols, poolno=jp)
   allocate(x(nrows,0:ncols))
   rc= ODB get(h, "sqlview",x,nrows,ncols,poolno=jp)
   call update(x, nrows, ncols) ! Not an ODB-routine
   rc= ODB put(h, "sqlview",x,nrows,ncols,poolno=jp)
   deallocate(x)
   rc= ODB cancel(h, "sqlview",poolno=jp)
ENDDO
rc= ODB close(h, save=.TRUE.)
end program main
```


ECEMWF

ODB/SQL compilation system

Compile, link and run a Fortran program

[1] use odb # once per session

[2] odbcomp MYDB.ddl # once only; often from file MYDB.sch

[3] odbcomp -1MYDB sqlview.sql # recompile when changed

[4] odbf90 main.F90 update_data.F90 -1MYDB -o main.x

[5] ./main.x

[6] Go back to [3]

<u>Note</u>: [1] – [2] is not required for precompiled ODB databases (such as ECMA, CCMA)

Slide 17

ECMWF

ODB Tools

- Various ODB-tools are meant to simplify browsing and management of ODB databases.
- Some are generic and can be used with any ODB databases (no compiled queries or databases):
 - **odbsql**: a tool to access ODB data in read/only mode
 - **odbdiff**: a tool to compare two ODB databases
 - odbdup/odbmerge: to combine several databases
 - odbcompress: to create a sub-ODBs from an existing database
 - **simulobs2odb**: to create a new ODB from an ascii file
 - odbviewer: ODB visualization and text result browsing. Only available when ODB is built with Magics/Magics++.
 - odb1to4 and odb4to1: convert from one I/O method to another
- Some are specific to IFS/ARPEGE usage (bufr2odb, odb2bufr, odbshuffle, matchup, revmatchup, etc.); See part-II.

odbsql

- A tool to access ODB data in read/only –mode (ODB_IO_METHOD=5)
 - Does not generate C-code, but dives directly into data
 - It uses dca files (direct column access) which can be created with dcagen
- Usage:

```
odbsql -v query.sql| -q "SELECT..." -s starting_row \
    -n number_of_rows_to_display \
    -f output_format -I dir_db \
    [-X] [other_options]
```

• For example:

odbsql -q `SELECT lat,lon,fg_depar from hdr,body' \
 -i /dir1/CCMA

ECMWF

odbdiff

- Enables comparison of two ODB databases for differences
- A very useful tool when trying to identify errors/differences between operational and experimental 4DVAR runs

```
odbdiff -v query.sql|-q `query_string' \
```

```
-p poolmask [other options] ref base comp base
```

```
• For example:
```

```
odbdiff -q `SELECT lat, lon, fg_depar from hdr, body' \
           /dir1/CCMA /dir2/CCMA
```

- By default the command brings up an <u>xdiff</u>-window with respect to differences
- If *latitude* and *longitude* were also given in the data query, then it also produces a difference plot using odbviewer-tool CECMWF

```
ODB and its usage at ECMWF
```


odbcompress

 Enables to create very compact databases from the existing ones

```
odbcompress -i indput_db -o output_db \
-1 ddl_file [-1|-4]
```

- Makes post-processing considerably faster
- The user can choose to
 - Truncate the data precision, and/or
 - Leave out columns that are less of an importance

odbdup/odbmerge

Allows f.ex. database sharing between multiple users

• Over shared (e.g. NFS, Lustre, GPFS, GFS) disks

- Duplicates [merges] database(s) by copying metadata (low in volume), but shares the actual (high volume) binary data
- Also enables creation of time-series database

odbmerge -i indput_db -o output_db -1 dbname

- for example: odbmerge -i "200701*/ECMA.conv" -o USERDB
- The previous example creates a new database labelled as USERDB, which presumably spans over the all conventional observations during the January 2007
 - The main point : user has now access to whole month of data as if it was a single database !!

simulobs2odb

 simulobs2odb allows to load an ODB database directly from a text file. This can be a useful option when developing software or loading own databases and BUFR-definitions (for example) are not yet fixed.

```
simulobs2odb [-1 dbname] [-i file] [-n npools] \
    [-c] [-r rptfile] [-1|-4]
```

For instance:

simulobs2odb -i hdr.txt -i body.txt -l USERDB

where USERDB.ddl is a user defined schema file.

• It can also be used to create a new "mini" ODB

simulobs2odb -r file.rpt -l USERDB

Here, there is no need to describe the schema file (done automatically from the report file)

odbviewer

- A very basic ODB data examination tool linked with ECMWF graphics package MAGICS/MAGICS++
- Executes given ODB/SQL-queries and tries to produce both coverage plot if (lat,lon) is available and textual report (ASCIIformat)

• Example:

```
// 2m Temperature - t2m.sql
SET $t2m = 39;
SET $synop = 1;
CREATE VIEW t2m AS
SELECT an_depar, fg_depar, lat, lon, obsvalue
FROM hdr, body
WHERE obstype = $synop // Give me synops
AND varno = $t2m // Give me 2 meter temperatures
AND obsvalue is not NULL ; // Don't want missing data
```

Slide 24

ECMWF

Visualization of ODB with Metview

Uses ODB API (part of ODB package)

- C interface to access ODB databases in read-only mode
- Direct or Client/server Access
- ODB Database icon
 - to specify the ODB database path and name
 - to browse the metadata contents
- ODB Access icon
 - Defines the ODB/SQL query
 - Output in Geopoints format (geopoints visualisation)
- GeoTools icon
 - **Preview and Histogram**
 - Temporary tool until Metview 4 is available
- This version of Metview is not available to member states yet

ODB Browser and ODB Access Examples

and the second second	1	
eral info Table tree Colum	ns Variables	
able tree		
odrs		
- poolmask		
timedat_index index	hdr	body
		errstat
		errotat
		sat ato
		- lin
		- re
		update_1
		update_2
		undata 2
		upoate_5
Column name	Column type	Table name
anemoht	pk9real	hdr
anemoht areatype	pk9real pk1int	hdr hdr
anemoht areatype baroht	pk9real pk1int pk9real	hdr hdr hdr
anemoht areatype baroht body: len	pkSireal pkLint pkSireal linklen_t	hdr hdr hdr hdr
anemoht areatype baroht body.len body.offset	pkSveal pkLint pkSveal linklen_t linkoffset_t	hdr hdr hdr hdr hdr
anemoht areatype baraht body.eff body.effset buftype checksum	pkSreal pkSreal linklen_t linkoffset_t pkLint pkLint	hdr hdr hdr hdr hdr hdr
anemoht areatype baraht body.len body.offset buftype checkaum codetype	pkSreal pkLint pkSreal linken_t linkoffset_t pkSreal pkSreal pkLint	hdr hdr hdr hdr hdr hdr hdr
anemoht areatype baraht body.len body.effset bufrtype checksum codetype codetype codetype	pkSreal pkQint pkSreal linklen_t linkoffset_t pkQint pkQint pkQint	hdr hdr hdr hdr hdr hdr hdr hdr hdr
anemoht areatype baraht body.len body.effset bufrtype checksum codetype codetype country_code date	pkSreal pkSint pkSreal linklen_t linkoffset_t pkSint pkSint pkSint yyyymmdd	hdr hdr hdr hdr hdr hdr hdr hdr hdr
anemoht areatype baraht body.offset buftype checksum codetype country_code date enda_count	pkSreal pkLint pkSreal linklen_t linkoffset_t pkLint pkLint pkLint yyyymmdd pkLint	hdr hdr hdr hdr hdr hdr hdr hdr hdr hdr
anemoht areatype bareht body.offset buftype checksum codetype country_code date enda_count errstat.len	pkSreal pkSint pkSreal inklen_t inkoffset_t pkSint pkSint pkSint yyyymmdd pkSint inklen_t	hdr hdr hdr hdr hdr hdr hdr hdr hdr hdr
anemoht areatype bareht body.offset body.offset buftype checksum codetype country_code date ends_count errstat.len errstat.len errstat.dfset	pkSireal pkLint pkSireal linklen_t linkoffset_t pkSireal pkLint pkSireal pkLint pkSirt yyyymmdd pkLint linklen_t linklen_t linkoffset_t psg: 0, 1, b=	hdr hdr hdr hdr hdr hdr hdr hdr hdr hdr
anemoht areatype baraht body.offset buftype checksum codetype country_code date ends_count errstat.len errstat.offset event1_bd_practice	pkSireal pkQint pkQint pkQreal linklen_t linkoffset_t pkQint pkQint pkQint linklen_t linklen_t linkoffset_t pos: 01 1 bit pos: 02 1 b=	hdr hdr hdr hdr hdr hdr hdr hdr hdr hdr
anemoht areatype baroht body.offset buftype checksum codetype country_code date ends_count errstat.len errstat.len event1.al_rejected event1.barjsos.outrange	pkSireal pkQint pkQint pkQreal linkken_t linkoffset_t pkQint pkQint pkQint linkken_t linkoffset_t pos: 02 l bit pos: 06 l bit	hdr hdr hdr hdr hdr hdr hdr hdr hdr hdr
anemoht areatype baroht body.offset buftype checkaum codetype country_code date enda_count errstat.len errstat.offset event1.al_rejected event1.bad_practice event1.bad_practice event1.bad_practice event1.bad_practice	pkSireal pkQint pkQint pkQreal linkken_t linkkefset_t pkQint pkQint pkQint linkkef_t linkoffset_t pos: 01 l bit pos: 06 l bit pos: 01 l bit	hdr hdr hdr hdr hdr hdr hdr hdr hdr hdr

Mode	Geo Xyv 🔤	
Database	surb/hugetmp/data/MF/Base.matchup/ECMA.AF	
⊐ Database lcon	ODB Database	
Query	<pre>jet #t2a=39; set #synop = 1; create view t2a as select lidegrees(lat),lidegrees(lon), from hdr.body where obstype = #synop and varno = #t2a and obsvalue is not null;</pre>	
I Number Of Rows	[500000	
u Poolmask	[-1	
ul Pak⊁intj	Vec 🖬	
u Latitude	I	
u Longitude	1	
é Malua	r	
		12

PART-II : ODB and its usage at ECMWF in IFS

ODB and its usage at ECMWF

Slide 29

ODB interface for IFS

- The ODB/IFS interface is a high-level interface to ODB which mainly applies to ECMA and CCMA databases
 - ECMA contains all observations before the screening
 - CCMA contains only active observations
- OPENDB
 - Opens ECMA/CCMA databases
- GETDB
 - Executes one or more SQL queries (as defined in CTXINITDB of odb/cma2odb/ctxinitdb.F90) via routine CTXGETDB
 - Calls ODB_select, allocates matrices ROBHDR, ROBODY etc. and then calls ODB_get to fill out the observational matrices

• PUTDB

- Returns the contents of the updated matrices back to (in-memory) database data structures via routine CTXPUTDB :
- Calls ODB_put, deallocates matrices, calls ODB_cancel
- CLOSEDB
 - Closes ECMA/CCMA databases

ODB and its usage at ECMWF

ECMWF

ODB/IFS interface routines' interaction

ODB and its usage at ECMWF

Slide 31

ECMA – IFS usage of ODB

Working with observational arrays

Once GETDB has been called, you usually get one or more of the following arrays filled with observational data:

- **ROBHDR:** index & hdr tables related data
- **ROBODY:** body, errstat, update_* tables' data
- MLNKH2B: Coupling between ROBHDR & ROBODY
- ROBHDR, ROBODY, etc. contain a snapshot of report data and are only available between GETDB-PUTDB calls!

Slide 33

Resolving MLNKH2B

- The linking vector between **ROBHDR & ROBODY** is called **MLNKH2B** and is created while in **GETDB** (more specifically while in **CTXGETDB**)
- Its length is always NROWS_ROBHDR + 1
- Each entry of MLNKH2B(JOBS) defines the offset to the ROBODY-row from ROBHDR(JOBS), thus the difference MLNKH2B(JOBS+1) MLNKH2B(JOBS) is the number of body rows "belonging" to the ROBHDR(JOBS)
- There are currently two ways of defining <u>MLNKH2B</u> dynamically (see both <u>CTXINITDB</u> and <u>CTXGETDB</u>):
 - Method#1:ctx(idctx,it)%view(1)%mlnkh2b = +2

view(1) must contain **body.len@hdr** (= MLNK_HDR2BODY(2)) as one of the entries and view(2) that retrieves the **ROBODY** should not contain any *restrictions* in WHEREcondition on how many body-entries to fetch

- Method#2:ctx(idctx,it)%view(1)%mlnkh2b = -2

where MLNKH2B is computed automatically

view(1) and view(2) should both contain seqno@hdr (= MDBONM) as the 1st entry

Slide 34

ECMWF

Other observational arrays

- Satellite specific data can be placed into SATHDR and SATBODY arrays. Also SATPRED for satellite data predictors is available separately from SATHDR
- These can correspond view#3 and view#4, respectively
- It also possible to have **SATHDR** only
- We usually require that <u>NROWS_SATHDR</u> equals to <u>NROWS_ROBHDR</u>. This consistency check is done in routine <u>GETDB</u>
- In some rare cases (like when creating CCMA) we may need ROBHDR "twice": once to ECMA and once for CCMA
 - For that purpose these is the array **ROBSU**
- There is also **ROBDDR** for Data Description Records

Parallelization with MPI and OpenMP

- The data is normally extracted from the local pool(s) belonging to the particular MPI-task and arranged so that the different OpenMP threads i t (1...maxthreads) get mutually exclusive datasets
- Each variable ROBHDR, ROBODY, MDBVNM, MDBLAT, etc. are in fact macros (*must be given* in CAPITAL letters) which are pre-processed with the Fortran90 data structure (see "openmp_obs.h")
 - For example, the ROBHDR becomes o_(it)%robhdr
 - And the MDBVNM becomes o_(it)%mdbvnm
- It is also possible to inquire global data with GETDB, but the following rules apply :
 - The same GETDB call must be issued by every MPI-task
 - Only local data can be modified and passed back to dbase
 - In **CTXINITDB**, you must remember to set :

ctx(idctx,it)%replicate_PE = -1

ECMWF bufr to ODB conversion

• ODBs at ECMWF are normally created by using bufr2odb

- Enables MPI-parallel database creation \rightarrow efficient
- Allows retrospective inspection of Feedback BUFR data by converting it into ODB (slow & not all data in BUFR)
- bufr2odb -i input_bufr_file -t task_id
 - -n split_into_this_many_data_pools
 - -I include_these_bufr_subtypes_in_database
 - -E exclude_these_bufr_subtypes
 - -b optional_bufr_table_directory
 - -M Mergeodb \rightarrow make DB ready for IFS/4DVAR
- bufr2odb can also be used interactively, for example to create an ECMA database with 4 pools from the given BUFR input file, but includes only BUFR subtypes from 1 to 20 (inclusive): bufr2odb -i bufr_input_file -I 1-20 -n 4
- odb2bufr: used to archive feedback bufr in MARS

Slide 38

odbshuffle – Creation of CCMA from ECMA

- odbshuffle allows to create a new ODB database containing active observations only (assessed during screening task). To ensure a good load balancing data are re-distributed among the MPI-tasks
 - procid@index (pool number in the merged ECMA)
 - <u>target@index</u> (pool number in CCMA)
- It runs on an ECMA database containing all observations: all individual ECMAs are merged into one big ECMA (symbolic links); <u>seqno@hdr</u> is updated in order to be unique in the merged ECMA;
- MPI over pools and OpenMP loop over observation types.
- The default observation weighting method is now 407 (instead of 107) to allow a better load balancing

revmatchup at ECMWF - ECMA → CCMA

- Used to feed information stored in ECMAs in the last trajectory back to CCMA
- Done for each individual ECMAs
- ODB_IO_METHOD= 5 for ECMA
- ODB_IO_METHOD= 4 for CCMA
- MPI to send data from ECMA to the right CCMA pool via the usage of the ODB paral function – paral(\$pe,target@index) in the WHERE statements of the corresponding SQL queries.
- paral is always true for the database opened in WRITE mode (ECMA) and is only used to select CCMA data from the right pool.

matchup at ECMWF – CCMA \rightarrow ECMA

- Used to feed information gathered during 4D-Var minimisation in CCMA back to individual ECMAs.
- ODB_IO_METHOD = 5 for CCMA
- ODB_IO_METHOD = 4 for ECMA
- OpenMP done over sensor list but in the latest cycle, the number of openMP thread is forced to 1
- MPI to send data from CCMA to the right ECMA pool (usage of the ODB paral function paral(\$pe,procid@index -\$hdr_min+1)

Slide 41

ECHWF

Conclusion and future developments

ODB and its usage at ECMWF

Slide 42

Conclusions

Strengths of ODB

- It allows to process unprecedented amounts of satellite data through the IFS/4DVAR system
- It is MPI and OpenMP parallel
- It is portable (written in ANSI-C and Fortran 90, support for big/little endian)
- Weaknesses of ODB
 - ODB has got many components and few users have a good understanding of all capabilities of ODB
 - Cycle dependence of ODB (even if the dependence only exists because of precompiled ODB databases and queries)
 - Usage of ODB within IFS is complex and focused on database handling instead of observations
 - At ECMWF, resulting ODB databases (ECMA/CCMA) are archived in ECFS for a short period of time (feedback bufr are archived in MARS); users need to retrieve full ECMA/CCMA for post-processing (requires large local disk for each user)

Short-term outcomes

- Distribution of stand-alone ODB package under investigation (now only available to member states).
 - At the last ACDP, it was proposed to distribute ODB at a handling fee charge; License to be investigated (Apache or ECMWF license)

Documentation

- ODB FAQ
- ODB user guide (ODB core, generic Fortran 90 interface, ODB-tools)
- ODB usage in IFS

Archiving of resulting ECMA (feedback bufr) in MARS.

- A new format ODA (Observational Data Archiving) has been defined (ODB has been considered as unsuitable)
- A new C++ library is under development at ECMWF (Peter Kuchta) as well as ODA-tools (odb2oda, oda2odb, oda SQL engine to query ODA files)
- This ODA format will become an internal format for Metview/Magics++.

Future developments – Split ODB

This new ODA library is an opportunity to split ODB

- Can we use this new underlying format in ODB?
 - We would only change how we read and write data on disk
 - For now we can read ODA (Fortran 2003 to interface with C++ ODA library) and create an ODB to be used in IFS
- Can we replace the current ODB/SQL engine by ODA/SQL engine?
 - We would avoid to pre-compile ODB databases and SQL queries
 - We would use the same set of tools
- Having this ODA library outside IFS would allow to develop tools to post-process ODB data independently of IFS cycles.
- Maintenance of this library will be done by ECMWF data and Services

Future developments – IFS interface

- The current ODB interface to IFS was built on an existing software layer (pre-ODB) and the main objective was
 - to change from the static offsets (pre-calculated offsets, using so called NCMxxx pointers) into dynamic ones without changing the IFS data flow
 - to have a subset of observations available in dynamically allocated matrices (introduction of dynamic column pointers MDBxxx)
 - To minimize code changes necessary to use ODB: changes to the IFS code were nearly automatic (with Perl scripts)
- Can we ease the usage of ODB in IFS?
 - OOPS (Object Oriented Prediction System) is a good opportunity to replace the current ODB interface to IFS.
 - The objective would be to hide these observational arrays (ROBHDR, ROBODY, etc.) and to hide the usage of ODB databases (ECMA/CCMA). Users would handle observations.

