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Background

» Lakes occupy about 1,8% of the land surface,
and are distributed very unevenly.

» Lakes influence local weather conditions and
local climate. Especially in Canada,
Scandinavian peninsula, Finland, northern
Russia including Siberia, etc.

» Lakes can influence global climate through
carbon cycle in lakes (Tranvik et al. 2009),
thermokarst lakes (Walter et al. 2007,
Stepanenko et al. 2011).




Background: examples of the
lake influence ...

Lake influence the local weather conditions
and local climate in various ways.

® Great lakes (USA): intensive winter snowstorms;

® [ake Ladoga (Russia): low clouds, increase of
surface temperature;

® Boreal zone: decrease of summer precipitation;

® [ake Victoria (Africa): night convection,
intensive thunderstorms — death of thousands
fisherman every year.
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Objective analysis

Lake Surface Water Temperature (LSWT) — lake heat fluxes —  critical to
measure, assimilate and predict in NWP!

Error of each

Objective analysis (minimizes errors of the analysis) — observation-based | \GACECHEN Ty

description of the lake surface state (uses weighting factors based on statistical properties\rf ground error are
the analyzed field) |

Optimal interpolation (OI) — the best possible initial value of a prognostic
variable at each grid-point by using all available information (observations +
model state)

OI univariate setup — weight of a certain observation depends on the distance
between the observation and the grid-point and the distance between this and the
other observations (Gandin, 1965)

Autocorrelation functions incorporate information about the statistical structure
of the field of the considered variable

Often an exponential representation is used, where the influence radius L becomes
a tuning value (density-ef-observations — real statistical properties of the fields!)

Currently in the operational analysis of LSWT the autocorrelation function is o reason why
borrowed from the SST analysis, L = 80 km atistical properties of
LSWT and SST should

/J( p be similar!



Main objective of the study:

» to study the LSWT autocorrelation function (ACF)
as an internal property of the LSWT field

» to obtain improved ACF formulation for use in the
objective analysis in NWP models.

> calculate observation statistics depending on the distance between
the observation points as well as on the lake depth differences for:

© local in-situ — provided by SYKE* for different lakes in
Finland;

o satellite-based — consist of MODIS** data over Fennoscandia
and North-Western Russia;

> estimate the observation error for these two types of
measurements;

> calculate new autocorrelation functions.
* SYKE — Finnish Environment Institute

** MODIS — Moderate Resolution Imaging Spectroradiometer




LSWT observations

5 summers (JJA) of 2010-2014

Period
Type

Measurements

Place

Represent
temperature

Restrictions

Amount of lakes

Amount of daily
measurements
(% of maximum
possible)

Pre-processing
applied

regular in-situ

once a day
(8.00 local time)

20 cm below the
water surface,
close to lake shore

daily minimum

only during the
1ce-free season

27
12 227

(98.6 %)

no

satellite derived

daily averages (day- and
night-time obs.)

close to SYKE location,
but far enough from the
shore

thin uppermost layer of
water (skin)

cloud cover,
ice cover

44 (71 pixel)
20 694

(63.4 %, due to clouds)

moving averages +24h,
threshold +3 degrees




Statistics MODIS
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Obtaining the autocorrelation

function

Prsenmiirediaon of the autiocorrelation function for LSWT with

dhpemdineyy on e horizonal distamee and the depth difference

testween [hikes nequines a reliaible and homogeneous

atisrwattionall meiwork (Gandim, 19635).

B tiine Bveragfr)

B drxiation fiom this time average f'(r) = f(r) — f(r)

B digencs patagariesed-1.0@01 AQR0V0. ... titl11 660kinndepth
aleptbgdrieseQedie3-045 nH or(0al Oy 10120 h0-26cm, etc.

B siruetti fmeion b(ry, ) = [f' () — f'()]?

B aieciel iR RReEon m(ry, ) = F(r)f (ry)

B Qrealion SR VATRRLS 62

B el wanipnce of LSWT observations within each eategs

> normalized autocorrellat'on nc%ion
» normalizedautocorrélation function u(p) =

e of observation errors
Vas taken into account



Estimation of the U
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Sensitivity experiments with
the HIRLAM v7.4 NWP system
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Sensitivity experiments with
the HIRLAM v7.4 NWP system

» Results from the 800 km and 80 km length scale experiments were of
comparable quality.

» Largest differences between the resulting analyses — in spring and early summ

NB! When there were no or only few observations available close to the lake:

o

when lakes are warming up or cooling differently depending on their location,
size and depth.

large influence radius brings in distant measurements — more data improves
the analysis;

distant observations represent different conditions + may dominate in the
analysis — deterioration of the result;

accounting for the depth difference in addition to the distance was useful:
v" when lakes of different depth are close to each other;

v" with deep and shallow parts of the same large lake.



Sensitivity experiments with
the HIRLAM v7.4 NWP system

» In-situ LSWT measurements from SYKE (over Finland) played a
stabilizing role in the objective analysis of LSW'T, while MODIS
observations brought more variability.

»  When the background LSWT field comes from the previous analysis,
relaxation towards the LSWT climate is needed to avoid drift of the analysis
from the reality.

» Observation quality control within the HIRLAM system worked well,
removing obviously erroneous observations by testing observations against
the background.

NB! OI check (comparison to the neighboring observations) played a minor
role, presumably because observation and background errors were not
optimal.

NB! It 1s very important to prevent the influence of ocean observations-on
LSWT analysis.



Conclusions & Future plans

» studying the LSWT autocorrelation function for other
seasons (spring, autumn)

» application of OI for spatialization of lake ice in NWP

H. KheyrollahPour, M. Choulga, K. Eerola, E. Kourzeneva, L. Rontu, F. Pan,
C.R. Duguay. Towards improved objective analysis of lake
surface water temperature in a NWP model: preliminary

assessment of statistical properties. 7ellus A, ZELA 1313025. DOL:
10.1080/16000870.2017.1313025.

Link: http://dx.doi.org/10.1080/16000870.2017.1313025.
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