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Grey zone
Prognostic approach
Cascading principle
MT adjustment

A

(a) Microphysical profiles
(b) Precipitaion fields

Model resolution study :

Topics
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Model grid resolution issues

J--L--

AROME

Grid-length smaller than 2km
Deep convection widely resolved

Resolved condensation / microphy-
sics on mean grid box values

Additional  parametrization  not
essential
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Model grid resolution issues
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ALADIN / ARPEGE
Grid-length bigger than 7km
Deep convection is subgrid
Parametrization required

— Combination with resolved
condensation ?
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Model grid resolution issues
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ALARO 5km / Grey Zone
Grid-length between 7km and 2km
Deep convection contributes to
subgrid AND resolved condensation
Parametrization required

— Combination of the two
schemes ?
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Subgrid Parametrization

L. Gerard, Aladin General Assembly, February 2006



Subgrid Parametrization

What drives the deep convection ?

— Buoyancy / CAPE in
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Subgrid Parametrization

What drives the deep convection ?

— Buoyancy / CAPE in

— Local surface evaporation / vertical
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Subgrid Parametrization

What drives the deep convection ?

— Buoyancy / CAPE in mean grid-box profile

— Local surface evaporation / vertical turbulent diffusion
— Water vapour brought by the larger scale motions (MOCON)
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Subgrid Parametrization

What drives the deep convection ?

— Buoyancy / CAPE in mean grid-box profile

— starting point
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Subgrid Parametrization

What drives the deep convection ?

— Buoyancy / CAPE in mean grid-box profile
— starting point
— Local surface evaporation / vertical turbulent diffusion
— Water vapour brought by the larger scale motions (MOCON)
—> closure
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Subgrid Parametrization

What drives the deep convection ?

Prognostic closure
Balance : — Its
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Subgrid Parametrization

What drives the deep convection ?

Prognostic closure
Balance : — Its
— if "large scale” forcing much slower than convec-

tive process
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Subgrid Parametrization

What drives the deep convection ?

Prognostic closure

Balance : . — Its
— if "large scale” forcing much slower than convec-
tive process —> invalid at high resolution

RMI L. Gerard, Aladin General Assembly, February 2006



Subgrid Parametrization

What drives the deep convection ?

Prognostic closure
Balance : — Its

— Prognostic mesh fraction equation
+ Prognostic vertical motion equation for updraught (NH).
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Schemes combination
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Schemes combination

Cascading :
The resolved scheme removes saturation from the mean grid box
initial state. It produces condensates, modifies the moisture and the
temperature.
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Schemes combination

Cascading :

The resulting profile is the starting point of the subgrid scheme,
which is fed by moisture convergence during the time step (prognostic
closure).
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Schemes combination

Cascading :

The resolved scheme removes saturation from the mean grid box
initial state. |t produces condensates, modifies the moisture and the

temperature.
The resulting profile is the starting point of the subgrid scheme,
which is fed by moisture convergence during the time step (prognostic

closure).
It detrains condensates which are combined with those of the resolved

scheme to feed the microphysics.
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Schemes combination

Cascading :
The resolved scheme removes saturation from the mean grid box
initial state. |t produces condensates, modifies the moisture and the
temperature.
The resulting profile is the starting point of the subgrid scheme,
which is fed by moisture convergence during the time step (prognostic
closure).
It detrains condensates which are combined with those of the resolved
scheme to feed the microphysics.

Mass Transport Scheme :
the convective updraught acts on the mean grid box values through
a convective transport flux + convective condensation fluxes
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Schemes combination

Cascading :
The resolved scheme removes saturation from the mean grid box
initial state. |t produces condensates, modifies the moisture and the
temperature.
The resulting profile is the starting point of the subgrid scheme,
which is fed by moisture convergence during the time step (prognostic
closure).
It detrains condensates which are combined with those of the resolved
scheme to feed the microphysics.

Mass Transport Scheme :
the convective updraught acts on the mean grid box values through
a convective transport flux + convective condensation fluxes

instead the old approach of detrainment + pseudo-subsidence.
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Microphysical profiles

MaC9r +7h (49,39,9/49,45,41) MaC7r +7h (31,44,9/31,54,41) . MaC4r +7h (54,81,9/54,99,41)
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Microphysical profiles

MaC4r +7h (54,81,9/54,99,41) MaC2r +7h (104,156,9/104,188,41) MaC2r +7h (216,145,9/216,177,41)
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Precipitation fields
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Precipitation fields
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instantaneous radar picture

RMI

Precipitation fields
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Precipitation fields
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Precipitation fields
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Precipitation fields
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