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| finished my PhD about horizontal spatial discretization
In April 2016

Let us come back to the question that formed the basis of this thesis: Can we use
within the current spectral SISL ALADIN model a local horizontal spatial discretization
scheme and how to do this?.

This thesis provides arguments that a local solver can be added to the ALADIN
framework while retaining most of the current code organization. FD spatial dis-
cretization methods based on the Z-grid approach suffer from an eigenmode de-
composition problem, which mainly manifests itself during the first timesteps. Sim-
ilar FD tests were undertaken within an A-grid approach and no fingerprint of the
spurious waves that are diagnosed in analytical A-grid tests was found. The A-grid
approach combined with fourth- or higher-order FD spatial discretization yields re-
sults close to the spectral experiments for ALARO tests. Therefore, higher-order
A-grid methods are a promising candidate for a modular implementation of local
schemes within ALADIN.

In the next slides | will clarify this conclusion.



Context of this research

Development of NWP model consists of different steps. The choices
made depend on external constraints.
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One example of a constraint is the available HPC infrastructure.
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Constraints can evolve in time and a NWP model should be ready to
adapt... :



Why should we care about local horizontal spatial
discretization methods?

Strength spectral method:

Combining a spectral spatial approach
with a SISL time discretization

permits stable, long timestep
integrations while solving efficiently the
implicit Helmholtz problem.



Why should we care about local horizontal spatial
discretization methods?

But:

— not very flexible (e.g.
Impossible to get horizontally
iInhomogeneous terms in Si
solver)

— needs global communication
but what on massively parallel
computer architectures?

We should investigate local
spatial discretization alternatives
(e.g. finite differences) but
modularity is crucial. We need to
keep as many building blocks as
possible!

Not only for practical reasons but
also to permit ‘scientifically clean’
tests.
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Retain maximally the timestep organization

ALADIN time step organization

1 transform fields: spectral — grid point
2 calculate physics in arrival points P(UY)
3 update tendencies
4 compute SL departure points D
and do interpolations
compute explicit part dynamics (Z + 5L L*)UY, + At(M — £%) (0)
add all tendencies Ry
lateral boundary coupling Rior = aRypst + (1 — )Ry,

transform fields: grid point — spectral

oo N o Ui

solve for updated fields Ul = (Z—-5L) R

This is only one illustration of the benefits of modularity.
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Stay on a collocation grid
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Dispersion analysis on the SWE shows
that the FD A-grid approach results in
negative group velocity for the shortest
waves.
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Conclusion: go for FD Z-grid
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But analysis reveals two drawbacks of FD Z-grid

200

150

100

50

0

-50

geopotential ¢ [m?/s?]

-100 £

-150

-200

7800 8150 8200

7950
x-position domain [km)]

7850 7900 8000 8050 8100

Introduction of asymmetries distorts
the appropriate Z-grid geostrophic
adjustment behaviour. A solution
consists of constructing symmetric Z-
grid schemes but they come at an
extra cost...

zonal wind velocity u [m/s]
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Z-grid eigenvectors are different

from the analytical eigenvectors at the
short scale end of the spectrum. This

is a fundamental property of Z-grid

schemes and spoils even symmetric
S| Z-grid schemes.
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Conclusion after analysis

Both FD A-grid and Z-grid schemes suffer from problems. No local method can beat the
spectral approach in terms of dispersion analysis.

Only real model ALADIN tests with the different local alternatives can determine wich of
the local approaches (A-grid or Z-grid) is most suitable.

But how to do such real model tests without having to implement new solvers?



We can mimic a FD spatial discretization in the spectral
ALADIN model by changing the responses.

The scientific impact of local schemes can be tested by replacing the spectral responses by
finite differences responses.

detail of ALADIN timestep organization

9 solve for updated fields Ul = (Z — %E*)_IRM
operator second-order FD spectral linear FE .
Pf fx fx % [fx+Ax + 4fx + fx—Ax] gg:i ----------
1 df 1 37 FD6 '
Pxf 2Ax [frtax — frx—ax] (ﬁ)}w 2Ax [fr+ax = fr—nxl g, | TDB e
d2 g -2 [T spec 1
Pxxf ﬁ Ifx—f—Ax _2fx +fx—£sx] (ﬁ;)}‘ ﬁ [fx—i—Ax - 2fx + fx—Ax] % 9 L |
;% 1.5 + B
response second-order FD spectral linear FE 1l |
p 1 1 3 [2 4 cos(kAx)] = L |
Px +-iksin(kAx) ik +-ik sin(kAx)
0 I | | 3
Pxx ﬁ [COS(kAX) — 1] _kz ﬁ [COS(kAX) — 1] 0 w/4 w/2 3m/4 s

norm. wavenumber kAz -]

Different response functions for 1st order derivative

Implementation is trivial but the approach is very powerful and ‘scientifically
clean’. ALADIN provides a unique testbed!




Real model ALADIN tests of FD and spectral method

SURFPRESSION
2016/01/04 z00:00 Initialized

Specifications experiments

Domain

- 2 different horizontal grid resolutions; 12km and 4km
- 46 vertical levels

- consider both linear as well as quadratic truncation
Finite difference parameters:

Simulated finite difference methods: A grid and Z grid
Orders of accuracy: 2,4,6 and 8

Other parameters considered:
with DFI/without DFI
Forecast periods:

Investigate 2 periods of 7 consecutive days in different
seasons (January 2016, June 2016)

domain used for the study
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A-grid outperforms Z-grid...
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Plot of the rms difference with
respect to the spectral run of the
geopotential height, temperature
and wind components at 500 hPa,
averaged over the entire
considered summer period
(20/6/1016 to 26/6/2016) and all
grid points. The grid is the 12 km
grid with linear truncation and no
DFI ('F' notation meaning 'False’).
The blue (resp. red) lines represent
the Z (resp. A) grid and per color
the lines with smaller rms errors
represent higher order finite
difference runs.



.. 1IN a

S =3

(3]) “dwoy suix

0.001

ts.

111

=3 =]
1S3 =

(gs/gur) 10doas suix

Imen

Il exper

0.001

|

W

\

- AUl

i= =
3 =

(gs/gur) 10doad suix

200 300 400

timestep

100

=) - -
il S

0.01

(S/wr) purm A suix

200 300 400
BE12] summer F

timestep

100

=) - -
= S

0.01

(S/ur) purm n surx

500 700
timestep

300

100

=) — - —
il S <
S

(S/wr) puim A surx

700

BE401 summer F

500
timestep

300

100

=) — - —
i S =3
S

(S/wr) puim n suLx

200 300 400

timestep

100

500 700
timestep

300

100

S =3

(31) “dway s

0.001

200 300 400

timestep

100

700
BE401 winter F

500

timestep

300

100

=]

(zs/gu) "10doad surx

500 700
timestep

300

100

500 700
timestep

300

100

S =3
S

1) “dwrady surx

0.001

500 700
timestep

300

100

700

BE40q summer F

500

timestep

300

100

=3 =
3 =

(gs/gur) 10doad suir

| =)

I &

=

=]

I &

A

=]

=

(e}

o

F S

=)
= - - -
= S =
=]

(S/wr) purm A suLx

i

=

I &

A

)

I &

[}

I

=1

I o
= — — —
i =] =
=]

(S/ur) purm n surLx

=) - -
- S

0.01

(S/wr) puim n suLx

timestep

timestep

timestep

timestep



Back to the conclusion of my PhD

Let us come back to the question that formed the basis of this thesis: Can we use
within the current spectral SISL ALADIN model a local horizontal spatial discretization
scheme and how to do this?.

This thesis provides arguments that a local solver can be added to the ALADIN
framework while retaining most of the current code organization. FD spatial dis-
cretization methods based on the Z-grid approach suffer from an eigenmode de-
composition problem, which mainly manifests itself during the first timesteps. Sim-
ilar FD tests were undertaken within an A-grid approach and no fingerprint of the
spurious waves that are diagnosed in analytical A-grid tests was found. The A-grid
approach combined with fourth- or higher-order FD spatial discretization yields re-
sults close to the spectral experiments for ALARO tests. Therefore, higher-order
A-grid methods are a promising candidate for a modular implementation of local
schemes within ALADIN.

What’s next?: - publish these results
- go to real FD solvers within ALADIN context



A first step Iin direction of implementation of local solver...

O

METEO
FRANCE

Strategy for implementing a gridpoint
solver

Ludovic Auger

ALADIN/HIRLAM Dynamics Day



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

