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' Adaptative 3dvar minimization

= The 3dVar algorithm summarizes as the minimization of the following cost function :
J(OK) = X'BX + (1, -~ H OX)' R, —H,X)

= Suppose we want to add a stecor11d loop the new minimization stumr?arizes ;
new —_ - -
J™(X) = (X, +IX) B (X, +X)+(I,-HX) R (I,-H,X) (1)
= This can be solved by setting a second outer loop with NUPTRA=1 option and
providing an increment to the second minimization.

= Another way to solve this equation is to assume this is equivalent to the following one

J"MAX) = () B*H(AX) + (I, — H,0X) R (1, —H, oK)

= Of course one has to have an expression for this B* matrix, somehow it is to say that
we do a first minimization, than we redo a minimization with another background
error statistics, but this seems to be a much more complicated work than simply
solving eq (1), however this can bring some advantages...

= B*is obtained through the expression B*=A B, where A depends on diagnostics
obtained from the first minimization.
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A new 3dvar algorithm organization

=  This allows flow-dependent
background statistics through the A

Screening 1 factor.
+ = The second outer-loop allows

relinearization of the observation

Minim 1 operators.

=  The second screening enables to use
certain observations that had been
rejected by the first screening (might
be useful in extreme weather
situations)

=  Objective results : Show some

improvement on some parameters,
. but needs to be still tested as
Minim 2 improvements are not satisfactory as
regards the supplementary cost
(second screening).
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Increasing the assimilation frequency

(Brousseau, P)

=  Aim:

— Take a better advantage of the observations available at a high frequency rate, those
observations are under-used currently inside AROME 3dvar, for example, radar data are
available every 15 minutes, but currently we use those observations only every 3 hours !

— Itis a step towards a more frequent short term forecast for nowcasting applications.

= Solutions :
— Use of an assimilation cycle more frequent, i.e 1 hour instead of 3hours

— Use of a 3D-FGAT : this technique with a screening at appropriate time, but innovations
used at central time.

— Use of a full 4D-Var algorithm.
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One hour cycle : background error covariances
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So far the results are neutral to slightly negative ! ' FRANCE
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1 hour cycle : the var case 15/06/2010
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Spin-up issue

Spurious oscillations during the beginning of the simulation, “non-physical”, mostly due to
imbalance of fields generating gravity waves that do not exist in reality.

These oscillations are particularly visible with a diagnostic on surface pressure.

Has been reduced for example with the change of TO coupling file from coupling file to
analysis file.
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Spin-up reduction

= DFI:

— Debugging of DFI for AROME (issue with LSPRT and grid point Q)
— First test in cy35
— Next we should test incremental DFI or a only-forward DFI (we are not satisfy with the backward DFI
part)
= Incremental Update Analysis (Bloom et al. 1996)
— Used in UKMO
— Principle : the increment is added progressively during the model integration.
— Coded in 36t1

Assimilation windows
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RMS dps/dt (hPa/h)

AU

Temporal evolution of pressure derivate RMS

— 3D-Var
— Restart
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Scores, comparaison to surface pressure observations:
In dynamical adaptation mode no difference on the scores
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’Use of a heterogeneous B matrix in AROME

(Montmerle, T., Menetrier, B.)

A climatological background error covariances matrix B is used in AROME oper. It
Is deduced from off-line statistics made on an ensemble of forecast differences
build from an ensemble assimilation (Brousseau et al. 2011).

We know that :

* static homogeneous isotropic B often misbehaves in regions that are under-
represented in the ensemble used for its computation, such as clouds and
precipitations.

» forecast errors strongly depend on weather types and is flow-dependent

Work on progress at MF:

* set-up of an “ARPEGE-like” ensemble assimilation to produce filtered variances
and filtered horizontal correlations “of the day” to modulate the static B

 use of a heterogeneous formulation of background er ror covariances,
especially to get increments that are more adequately balanced and structured in
precipitating regions where radar data (and soon cloudy radiances) are assimilated
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'Use of a heterogeneous B matrix in AROME

1st step: compute isotropic homogeneous B matrices representative of a
particular phenomena (e.g convection, fog) by applying masks based on vertically
integrated simulated quantities

o 2nd step: use the heterogeneous B matrix formulation allowing to decompose the
increment (Montmerle and Berre, 2010):

X=B"’x=F""BY’x, +F,"°B}’x,

F'? =sDY?s™
F, and F, are operators defining the spatial locations ) 1/21 0
where B, and B, are applied respectively, following: F, = S(I - D) st

Sand S!are direct and inverse Fourier transform, 7

o 0.8

and D is a grid point mask deduced from £ o0
observations, convolved with a normalized gaussian = -

kernel to allow the spread of covariance functions 00 5

24 1.0

across the sharp transition between 0 and 1. < 04

0.0 3

So far, preliminary tests show neutral to slightly positive
conventional forecast scores and positive QPF scores for fog p FRANCE
(Ménetrier and Montmerle 2011) and for convective rain. 1 temps d'avance
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z = 800 hPa z = 400 hPa div
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Model error estimation and representation
in M.F. ensemble 4D-Var (Raynaud,L., Berre, L., Desroziers, G.)

Methodology (with positive impacts on deterministic and ensemble forecasts) :

1. Estimation of « total » forecast error variances V[ M e2 + e™]
using observation-based diagnostics (Jb_min).

2. Comparison with ensemble-based variances V[ M e? ]
and estimation of the inflation factor a.

3. Inflation of forecast perturbations (by a factor a > 1).
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Wow-dependent background error correlations

using EnDA and wavelets
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Wavelet-implied horizontal length-scales (in km),
for wind near 500 hPa, averaged over a 4-day period.

(Varella et al 2011b, following « static applications » in Fisher 2003,
Deckmyn and Berre 2005, Pannekoucke et al 2007)
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' Conclusion

2 main research axes :

- Increase the number of observations, for example by increasing the
assimilation frequency in AROME.

- Having more sophisticated background covariances statistics, more and more
depending on the flow.

It seems we have difficulties to have a net positive impact on classical
scores, the 3dvar algorithm is a quite robust system !
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