

VICEPRESIDENCIA CUARTA DEL GOBIERNO

INISTERIO RA LA TRANSICIÓN ECOLÓGICA EL RETO DEMOGRÁFICO

Experiments with roughness length & ECOCLIMAP-SG (in Harmonie-Arome)

Samuel Viana Jiménez AEMET, Spain Member of HIRLAM's surface group svianaj@aemet.es

Joint 30th ALADIN Workshop & HIRLAM "aseptic" All Staff Meeting 2020, 30/03-02/04, Cyberspace

1

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ ++ +

++

-----Outline

- **Context: ECOCLIMAP-SG in cy43h2.1 validation tests**
- + + **Roughness length in SURFEX**

+ +

+ + •

+----

+ +

+ +

+ +

+ +

- + +• Impact of ECOCLIMAP-SG in roughness length
 - Strategies to improve sfc wind speed in cy43h:

- Tuning z_o for crops & grasslands
- Raupach's formulation $(z_0 + displacement height)$ Ο
- **Conclusions & final remarks**

Context: ECOCLIMAP-SG in cy43h2.1 validation tests

- ECOCLIMAP-SG (ECO-SG) is the new land cover map and database of surface parameters for SURFEX: 33 land cover types, 330m resolution, three times finer than ECOCLIMAP2 (ECO-II) (*)
 - It has been largely tested in cy43's "target1" experiments for cy43h2.1
 - With the exception of surface wind speed, in general verification of target1 is better than target2 (which still uses ECO-II).
 - For U10m, all domains show an increase in wind bias (wrt ECO-II).

(*) More details in Aladin-Hirlam Newsletter Nº14: "HIRLAM experience with ECOCLIMAP Second Generation"

Starting in cy40h1.1.1, SURFEX in Harmonie runs with <u>two patches</u> on the nature tile (grouping different veg. types, P1=open land, P2=forest).
 SFC fluxes are evaluated separately for each patch (different z₀, drag coeffs., etc); then averaged & used to force the atmospheric model.
 The fractions of open land / forest patches has changed a lot in ECO-SG:

Starting in cy40h1.1.1, SURFEX in Harmonie runs with <u>two patches</u> on the nature tile (grouping different veg. types, P1=open land, P2=forest).
 SFC fluxes are evaluated separately for each patch (different z₀, drag coeffs., etc); then averaged & used to force the atmospheric model.
 The fractions of open land / forest patches has changed a lot in ECO-SG:

U10m bias in target 1 is larger where PATCH1 (low veg.) is dominant

IBERIA

Increase roughness length in PATCH1 (to compensate for the increase in fraction of PATCH1 and the reduced Leaf Area Index (LAI) in ECO-SG)

• Improve roughness length for PATCH2 :

Raupach (1994) formulation for z₀ and zeroplane displacement height:

$$Z_0 = \left(1 - \frac{d}{h_{veg}}\right) exp\left(\frac{-k}{u_*/U_h} - \Psi_h\right)$$
$$\frac{d}{h_{veg}} = 1 - \frac{1 - exp(\sqrt{C_{d1}LAI})}{\sqrt{C_{d1}LAI}}$$
$$C_D = \frac{k^2}{\left[ln((z-d)/z_0)\right]^2}$$

Raupach's z₀ < 0.13*h. It evolves more realistically as vegetation becomes less sparse, increasing (decreasing) with LAI for small (large) LAI.

 Free parameter Cd1 can be used for tuning.
 Values tested: Cd1=7.5 (recommended) Cd1=3.5

• Improve roughness length for PATCH2 :

Raupach (1994) formulation for z₀ and zeroplane displacement height:

$$Z_0 = \left(1 - \frac{d}{h_{veg}}\right) exp\left(\frac{-k}{u_*/U_h} - \Psi_h\right)$$
$$\frac{d}{h_{veg}} = 1 - \frac{1 - exp(\sqrt{C_{d1}LAI})}{\sqrt{C_{d1}LAI}}$$
$$C_D = \frac{k^2}{\left[ln((z-d)/z_0)\right]^2}$$

- Raupach's z₀ < 0.13*h. It evolves more realistically as vegetation becomes less sparse, increasing (decreasing) with LAI for small (large) LAI.
 - Free parameter Cd1 can be used for tuning.
 Values tested: Cd1=7.5 (recommended) Cd1=3.5

• Improve roughness length for PATCH2 :

Raupach (1994) formulation for z₀ and zeroplane displacement height:

$$Z_0 = \left(1 - \frac{d}{h_{veg}}\right) exp\left(\frac{-k}{u_*/U_h} - \Psi_h\right)$$
$$\frac{d}{h_{veg}} = 1 - \frac{1 - exp(\sqrt{C_{d1}LAI})}{\sqrt{C_{d1}LAI}}$$
$$C_D = \frac{k^2}{\left[ln((z-d)/z_0)\right]^2}$$

Raupach's z₀ < 0.13*h. It evolves more realistically as vegetation becomes less sparse, increasing (decreasing) with LAI for small (large) LAI.

 Free parameter Cd1 can be used for tuning.
 Values tested: Cd1=7.5 (recommended) Cd1=3.5

z₀ & drag decreases, wind bias increases (more in Patch2: less wind bias difference between patches). Other sfc variables strongly affected (T2m etc).

 $C_D = \frac{k^2}{\left[ln((z-d)/z_0)\right]^2}$

Combine Raupach's z₀ and d for PATCH2 and z₀(LAI) tunning for PATCH1

AEMet

Combine Raupach's z₀ and d for PATCH2 and z₀(LAI) tunning for PATCH1

AEMet

Conclusions & final remarks

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

- Wind is generally overestimated in Harmonie-cy43 but not uniformly:
 - More overestimation in areas where the open land is predominant
 - Differences in wind biases between domains are explained by different P1/P2 distribution.
- Changes in ECOCLIMAP-SG (distribution of low vegetation and forest, decreased LAI) have a strong impact in sfc wind.
- In order to improve the surface wind bias in Harmonie, the contribution by the different patches must be addressed separately, looking to decrease the difference in wind bias between patches.
- The combination of Raupach's formulation for PATCH2 + tuning of Z_0 formulas for crops & grasslands give the best results over IBERIA. The impact in other sfc variables (T2m, Q2m... is small).

Conclusions & final remarks

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

Some extra settings for cy43h2.1 can impact U10m (XRIMAX, OROTUR, etc). Tests with combined settings are needed to define optimum values for + + + +**C**d1,**a**,**b**. + +

Possible extensions for this work:

+ •

+ +

+ +

+ +

+ +

10 4

+ +

+ +

+ +

+ +

The state

+ +

- Corrections to the traditional MO similarity functions for a surface Ο layer over a tall canopy (Roughness sublayer theory, Harman & Finnigan, 2007,2008).
- Introduction of a "blending height" well above the canopy. Currently, \bigcirc $d+z_0$ can be too close to the "forcing level" (~13m).

-

-

+

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

24 — —

+ +

+ +

+ + +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

Thank you! (and stay safe)