

Status of lake and sea ice developments in HARMONIE

Ekaterina Kurzeneva (FMI), Margaret Choulga (RSHU), Yurii Batrak and Mariken Homleid (Met.no)

Lake modelling status & GLDB

- Tests with PGD. "Water body" covers were carefully examined. Result: some Covers are poorly defined! Example: Curonian lagoon, Covers 552, 554, 555, 556 contain up to 20% of land
- Solution: 1) to fix the binary cover map (done) 2) to change the partition between tiles (done).

Simple sea ice model

- SICE: Constant ice depth, tuning parameter (~0.75m)
- Solution of the heat diffusion equation for N layers in ice
- Snow on ice with ES from SURFEX is technically possible
- The ice fraction is from the analysis
- \mathbf{H} \mathbf{F} \mathbf{F}

- Problems with consistency of the lake depth and fraction fields: for fiords and coastal lagoons. Fixed in the code.
- GLDBv2 is included into SURFEX, but problems with large rivers were found (fixing ongoing)
- **GLDBv3** is ongoing + tests with fine resolution ...
- 1D experiments for Lake Kyyvesi. To study the dependency of the model error on the lake depth. No dependecy in summer (due to the positive bias up to 7°C in FLake), strong dependency in autumn.

		Cover type	Current partition	Remarks	Suggestions
	124	Warm tropical	nature – 80%	-	nature - 100 %
		wetlands	inland water - 20%		
ut	125	Subpolar	nature – 80%	-	nature – 100 %
		wetlands	inland water - 20%		
	176	Rice fields	nature – 80%	"False" cover, does not exist on the	-
J			inland water - 20%	binary map	
	238	Temperate	nature – 80%	"False" cover, does not exist on the	-
		wetlands	inland water - 20%	binary map	
	239	Subpolar	nature – 80%	Exist only in Iceland	nature - 100 %
		wetlands	inland water - 20%	-	
	240	Peat bogs	nature – 80%	"False" cover, does not exist on the	-
			inland water - 20%	binary map	
	241	Salines and salt	nature - 50%	"False" cover, does not exist on the	-
		marshes	inland water - 50%	binary map	
	242	Intertidal flats	nature - 50%	"False" cover, does not exist on the	-
			sea water - 50%	binary map	
	243	Coastal lagoons	sea water - 100%	"False" cover, does not exist on the	-
				binary map	
	249	INLAND	inland water - 100%	Polders and coastal lagoons	sea water - 100%
		WATERS1			
	550	UNDEFINED1	nature – 45%	In Europe: sea water near the coast,	Several cover fixes in binary
			inland water - 55%	coastal lagoons, river estuaries. In	map: from 550 to 2 or from 550
				Ukraine and Turkey: lakes, In Asia:	to the major cover type in the
	Κ			land.	vicinity.
INC	Y				For the rest:
					nature – 45%
					sea water - 55%
	551	INLAND	nature – 5%	"False" cover. does not exist on the	-
nn	r				
JII	J				/

Consistency with other developments is needed!

DA for lakes

- EKF: Experiments with LWST in-situ obs from SYKE + selected MODIS obs for early spring, open water period, summer 2011
 Ino DA
 Ino DA
- Cross-validation for 4 lakes: RMSE decreases strongly!
- Some a posteriori statistics: the impact

	no DA			EKF			
Lake	Bias	RMSE	ESTD	Bias	RMSE	ESTD	
Inarijärvi	-2.03	5.02	4.59	0.12	0.96	0.96	
Saimaa	-1.07	3.67	3.52	-0.04	1.11	1.11	
Lappajärvi	0.19	2.87	2.87	0.46	1.51	1.44	
Tuusulanjärvi	0.83	2.92	2.80	0.85	1.41	1.13	

• No analysis for temperature: starts from the previous forecast or from the interpolated/extrapolated ECMWF ice surface

temperature analysis and the linear temperature profile in ice

- Tests over AROME Arctic domain
- SST and SIC fields in fiords need to be improved

AA_REF – reference (default ICEFLUX scheme) AA_SICE_THICK – SICE with H=0.75m

Red contours – SIC, blue shadowing – SST extrapolated from ECMWF analysis and land

- REF T2M

of obs is high!

- Preliminary study of the filter components (Jacobian, Kalman gain, background error cov): no divergence, annual cycle
- The performance of the mean water and bottom temperatures is strongly dependent on the quality of early spring observations.Testing with deep water temperature obs is important!
- Decoupling problem in summer: difficult to correct the LWST
- Bug fixes
- New structure functions for LWST, different from that for SST - ongoing, Homa Kheyrollah Pour, UW

Name (lon, lat)	D ,m	I, %	Name (lon, lat)	D,m	I, %
Kuivajärvi (23.9,60.8)	2.2	94.8	Rehja-Nuasjärvi (28.0,64.2)	8.5	95.5
Tuusulanjärvi (25.1,60.4)	3.2	94.3	Vaskivesi (23.8,62.1)	7.0	97.1
Pääjärvi 1 (24.5,62.9)	3.8	96.6	Haukivesi (28.4,62.1)	9.1	94.9
Pesiöjärvi (28.7,64.9)	3.9	95.4	Kallavesi (27.7,62.8)	9.7	96.3
Kyyvesi (27.1,62.0)	4.4	96.5	Pielinen (29.6,63.3)	10.1	94.6
Jääsjärvi (26.1,61.6)	4.6	96.2	Konnevesi (26.6,62.6)	10.6	95.4
Nilakka (26.5,63.1)	4.9	96.6	Saimaa (28.1,61.3)	10.8	94.5
Pyhäjärvi (22.3,61.0)	5.5	96.4	Ala-Rieveli (26.2,61.3)	11.2	92.4
Längelmävesi (24.4,61.5)	6.8	94.4	Päijänne (25.5,61.6)	14.1	93.7
Ounasjärvi (23.6,68.4)	6.6	97.3	Inarijärvi (27.9,69.1)	14.3	97.1
Lappajärvi (23.7,63.1)	6.9	93.4	Näsijärvi (23.8,61.6)	14.7	94.0
Oulujärvi (27.0,64.5)	7.0	95.0	Pääjärvi 2 (25.1,61.1)	14.8	96.7
Unari (25.7,67.1)	7.0	94.0	Kilpisjärvi (20.8,69.0)	19.5	96.8
Kevojärvi (27.0,69.8)	7.0	98.0			

FR is the free run, EKF-S and EKF-M are runs with assimilated SYKE (in-situ) and merged (in-situ+MODIS) LWST obs.

By-product: ideas for the model documentation

- **Code structure:** How to study? How to explain?
- DOXYGEN produces lists (Ok!)... and graphs -???
- Producing graphs, DOXYGEN promises to provide the minimum number of intersections. But they are still almost useless.
- How to unravel the graph?

Plain routine : is called only once, contains CALLs

• Idea: to consider 3 main types of routines

- Utility
 - : is called from many places, contains no CALLs, contains simple methods
- **Block routine** : is called from many places, contains CALLSs, contains complicated methods
- Every **Block routine** starts the new graph!
- Automatic documentation is possible!
 ongoing, welcome to join!

Lake Inarijärvi (d= 14 m). Note: merged obs start from much lower temperatures in spring!

Lake Saimaa (d= 11 m). Note: in EKF-S the temperatures are too high!

Lake Saimaa (d= 11 m). Note the decoupling problem: the mixed layer depth tends to return fast to its initial values, increments are mainly negative.

PGD	ALLOC_SURFEX			ALLOC_SURFEX	*_ALLOC		
	GOTO_SURFEX				allocation of all the variab	oles	
	PGD_GRID_SURF_ATM	SURF_VERSION					
		INI_CSTS		COTO SURFRY	COTO MODEL SURFEY	COTO WRAPPER *	COTO MODEL
		PGD_GRID		GOIO_SOMILA	GOIO_MODEL_SORTEX	according to schemes	lifferent variables in the scheme
		PGD_GRID_IO_INIT				· · · · · ·	
	SPLIT_GRID	SPLIT_GRIG_CONF_PROJ	GET_GRIDTYPE_CONF_PROJ		INIT_IO_SURF_OL_n	DE (D. CURE	
			SPLIT_GRID_PARAMETERN0	INIT_IO_SURF_n		READ_SURF	
			(many)	_		GET_DIM_FULL_n	
			SPLIT_GRID_PARAMETERXI (many)			GET_SIZE_FULL_n	
			PUT_GRIDTYPE_CONF_PROJ	-		GET_TYPE_DIM_n	
		SPLIT_GRID_CARTESIAN	GET_GRIDTYPE_CARTESIAN			INIT_IO_SURF_MASK_1	ı
			SPLIT_GRID_PARAMETERN0			INIT_OUTFN_SURF_AT	M_n GET_DIM_FULL_n
			(many)	_			OL_DEFINE_DIM
			SPLIT_GRID_PARAMETERX1 (many)				GET_DATE_OL
			PUT_GRIDTYPE_CARTESLAN	-			CREATE_FILE(many)
		GET_SIZE_FULL_n		-			DEF_VAR_NETCDF(many
	PGD_SURF_ATM	READ_PGD_ARRANGE_COVER					OL_WRITE_COORD(man
		READ_PGD_COVER_GARDEN				ALLOCATE FIL VAR(m	(any)
		INIT_READ_DATA_COVER		_		INIT OUTFN ISBA n	GET DIM FULL n
		INIT_DATA_COVER		_			GET ISBA CONE n
		READ_PGD_SCHEMES					OL DEEINE DIM
		READ_NAM_WRITE_COVER_TEX					CET DATE OF
		WRITE_COVER_TEX_START					GET_DATE_OL