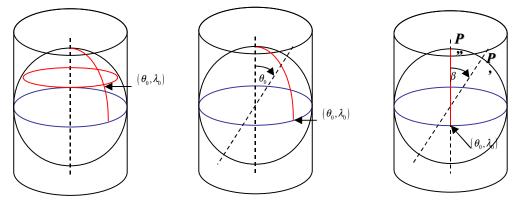


Some discussion points on dynamics

Mariano Hortal With contributions from Isabel Martinez & Ines Santos

Hirlam


Summary

- Availability of rotated/tilted Mercator projection
 - With constant or non-constant linearized map factor for hydrostatic
 - Some problems still remaining in the non-hydrostatic
 - Projection available in "gl"
- Elimination of the extension zone in the grid-point computations and change in the boundary relaxation
- Optimum nesting strategy

GL tool

- Powerful utility related to format conversion and data manipulation on meteorological files, in particular for GRIB, FA and LFI formats.
- Mercator projection was not included among the accepted GL projections.

 Rotated Tilted Mercator inclusion implies direct and inverse calculations and vector transformation.

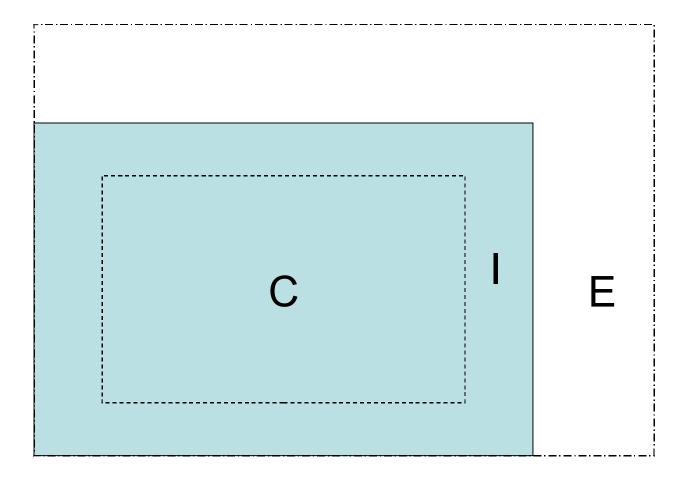
GL tool

Advantages of the Rotated Tilted Mercator projection:

- Rotation
 - representing big areas with small deformation.
 - focusing on any part of the sphere (polar area, extratropical area, tropical area) in a single formalism.
- Tilting
 - adapting projection deformations to the most convenient orientation for the area under study.
- Other
 - easy expression for its map factor.

Finished Work (I)

GL tool modifications introduced at the HARMONIE model in order to allow the use of the Rotated Tilted Mercator projection.


- ECMWF computer. Trunk version Revision 36h1
- Rotated Tilted Mercator projection at HARMONIE domain definition:
 - LON0 → tilting (degrees)
 - LAT0 → meaningless variable
 - export LLRTM = .TRUE.
- Rotated Tilted Mercator projection at HARMONIE scripts and namelists:
 - Climate → NEMGEO → LMRT = \$LLMRT

HARMONIE can run with both Rotated Tilted Mercator constant and variable map factor.

No GRIB coding is available at the moment as the Rotated Tilted Mercator projection is not a WMO standard.

Zones in the model

Present situation

- Computation on NGPTOT_CAP points which includes part of the extension zone
 - Some useless computations, mainly with large extension zone (large extension zone is beneficial for data assimilation)
 - Biperiodization done in many places (some of them useless)
 - Archiving larger sizes of grid-point fields

Proposed changes

- Meaning of NGPTOT changed to include only points in the C+I zone
- Writing out grid-point fields including only C+I zones (saving of space in archive)
- Change in the Davies relaxation LBC application

Davies relaxation

Helmholtz equation coming from the semi-implicit time-stepping scheme

$$(I + \Delta t B) X^+ = R$$

Inclusion of the LBC relaxation

$$(I + \Delta tB)X^{+} = \alpha R + (I + \Delta tB)(1 - \alpha)X_{H}^{+}$$

Zero at the border of the C+I zone ->biperiodization is merely padding with 0's

Optimal nesting strategy

- Starting point ECMWF forecast (~16 km resol)
 - Preliminary experiments (no data assimilation)
 - Hydrostatic HARMONIE with ALADIN physics, 8 km resol
 - Hydrostatic HARMONIE with ALARO physics, 8 km resol
 - Hydrostatic HARMONIE with ECMWF physics, 8 km resol
 - Estimate which is best at this resolution
 - Double nested experiments
 - HARMONIE 2.5 km nested on the chosen preliminary exp.
 - HARMONIE 2.5 km nested on HIRLAM 8 km resol.
 - Single nested experiment
 - HARMONIE 2.5 km nested on 16 km ECMWF forecast

Chosen area for 8 km resolution

IBERIA_8KM) TSTEP=300 NLON=648 NLAT=648 LONC=-5.0 LON0=-5.0 LAT0=40.0 GSIZE=8000. BDNLON=680 BDNLAT=680

Period: December 2009

Experiments including data assimilation

- Using the best physics for the intermediate model
 - Performing data assimilation both upper air and surface at both the intermediate and the fine resolutions