IMPLICIT COUPLING BETWEEN ATMOSPHERIC AND SURFACE PHYSICS

Patrick Le Moigne

IMPLICIT COUPLING BETWEEN ATMOSPHERIC AND SURFACE PHYSICS

- Introduction
- Externalization of Isba surface scheme from Arpege-Climat GCM
- ACSURFEX: interface to SURFEX module
- Eurocs case study using SURFEX in off-line mode within 1D Arpege-Climat model
- Conclusion / Perspectives

Best et al., 2004 (after work of Polcher et al., 1998) propose a generalized coupling between atmospheric models and surface schemes where:

1. The atmospheric <u>variables</u> from lowest model level and their <u>relation</u> to corresponding fluxes are passed to the surface scheme.

2. Surface scheme returns the **<u>fluxes</u>** (used as boundary condition by the atmosphere)

In these conditions the atmosphere doesn't have to know details about surface. This coupling has been applied in Arpege-Climat model.

Externalization of Isba surface scheme from Arpege-Climat GCM

[Gibelin, 2003 and Zuurendonk, 2004]

More and more sophisticated surface parameterizations lead to externalize the LSS from Arpege-Climat GCM

Objectives:

- Easy to maintain surface parameterization surface code.
- Both coupled and forced model can be used (Intercomparison projects).
- Easy to use different surface models in the atmospheric model.

• Essential step for participating in PRISM (Project for integrated earth system modelling) project.

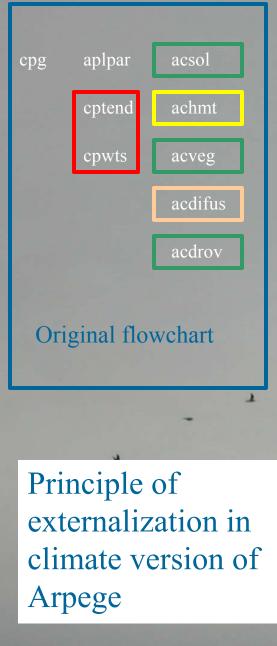
Coupling with the atmosphere

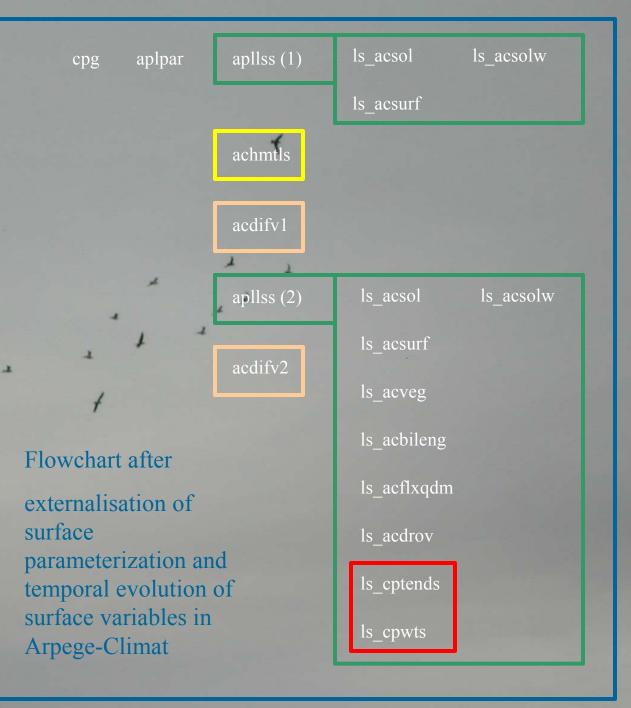
Vertical diffusion

$$\begin{cases} X \equiv u, v, \theta, q \\ X_{i}^{+} - X_{i}^{-} = -\omega_{i,i} (X_{i+1}^{+} - X_{i}^{+}) + \omega_{i-1,i} (X_{i}^{+} - X_{i-1}^{+}) \\ F_{X,0} = 0 \end{cases}$$

Downward sweep

$$X_{i}^{-} = A_{X,i}^{-} X_{i+1}^{-} + B_{X,i}^{-}$$
$$A_{X,i} = f(\omega_{i-1,i}, \omega_{i,i}, A_{X,i-1})$$
$$B_{X,i} = f(\omega_{i-1,i}, \omega_{i,i}, B_{X,i-1}, X_{X,i-1})$$

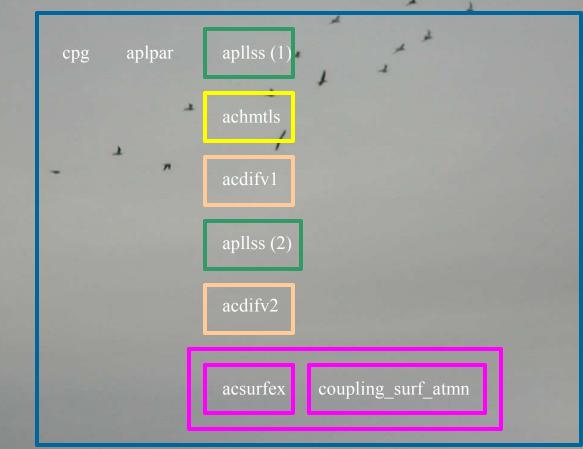

Lower atmospheric level $X_N^+ = A_{X,N}^- F_{X,S}^+ + B_{X,N}^-$


Surface Ts + Fluxes on each tiles, Average fluxes

N

$$\begin{cases} H^{+} = \rho C_{p} V_{N}^{-} C_{H}^{-} \left(\beta_{S} T_{S}^{+} - \beta_{N} T_{N}^{+}\right) \\ \frac{C_{s}}{\Delta t} \left(T_{S}^{+} - T_{S}^{-}\right) = R_{n}^{+} - H^{+} - LE^{+} - G^{+} \end{cases}$$

Upward sweep



ACSURFEX interface to SURFEX

[P. Marquet, April 05]

acsurfex is the interface between **aplpar** (Arpege) and **coupling_surf_atmn** (Surfex) where Arpege fields are transformed to feed the surface module:

4

1. Variables defined during surface setup

INPUT

Name of the variable SURFEX ARPEGE ZTSTEP ISBA PDTPHY Time step of the physics (s) NINDAT/10000 Year IYEAR sh. IDAY MOD(NINDAT,100) Day IMONTH MOD((NINDAT-IDAY)/100,100) 2 ZTIME Seconds from start RSTATI 1 71 KLON=1 Horizontal space dimension 1 XZREF (PAPHIF(1,KLEV)-PAPHI(1,KLEV)) / RG Forcing height of T and q (m) Forcing height of wind (m) XUREF (PAPHIF(1,KLEV)-PAPHI(1,KLEV)) / RG XZS PAPHI(1,KLEV) / RG Orography (m) XPS Surface pressure (Pa) PAPRS(1,KLEV)

2. Atmospheric forcing at lowest model level

INPUT

Name of the variable	SURFEX	ARPEGE		
Zonal wind (m/s)	XU	PU(1,KLEV)		
Meridian wind (m/s)	XV	PV(1,KLEV)		
Temperature (K)	XTA	PT(1,KLEV)		
Pressure (Pa)	XPA	PAPRSF(1,KLEV)		
Density (Kg/m3)	XRHOA	XPA / XTA / PR(1,KLEV)		
Specific humidity (kg/m3)	XQA	PQ(1,KLEV) * XRHOA		
Liquid precipitation rate (Kg2/m/s)	XRAIN	0.		
Solid precipitation rate (Kg/m2/s)	XSNOW	0.		
Downward longwave radiation (W/m2)	XLW	PFRTHDS(1) / PEMIS(1)		
Downward diffuse solar radiation (W/m2)	XSCA_SW	PFRSO(1,KLEV) / (1PALB(1)) * PFRSOPS(1) / (PFRSODS(1) + PFRSOPS(1))		
Downward direct solar radiation (W/m2)	XDIR_SW	PFRSO(1,KLEV) / (1PALB(1)) * PFRSODS(1) / (PFRSODS(1) + PFRSOPS(1))		

3. Tri-diagonal matrix substitution coefficients

INPUT

Name of the variable	SURFEX	ARPEGE
A_u	XPEW_A_COEF	PCFAU(1,KLEV)
A_theta	XPET_A_COEF	PCFATH(1,KLEV)
A_q	XPEQ_A_COEF	PCFAQ(1,KLEV)
B_u	XPEW_B_COEF	SQRT(PCFBU(1,KLEV)**2+PCFBV(1,KLEV)**2)
B_theta	XPET_B_COEF /	PCFBTH(1,KLEV)
B_q	XPEQ_B_COEF	PCFBQ(1,KLEV) * XRHOA

Only one coefficient for wind since surface treats wind speed and not u and v components.

Not a problem if atmospheric and surface grids are the same

OUTPUT

Name of the variable	SURFEX	ARPEGE
Latent heat flux (W/m2)	XSFTQ	PFEV = - XSFTQ
Sensible heat flux (Kg/m2/s)	XSFTH	PFCS = - XSFTH
Zonal momentum flux (m/s)	XSFU	PFMDU = XSFU
Meridian momentum flux (m/s)	XSFV	PFMDV = XSFV
Radiative temperature (K)	XTSRAD	PTSN = XTSRAD
Direct albedo for each band	XDIR_ALB	
Diffuse albedo for each band	XSCA_ALB	$PALB = (XDIR_ALB + XSCA_ALB) / 2.$
Emissivity	XEMIS	PEMIS = XEMIS

+

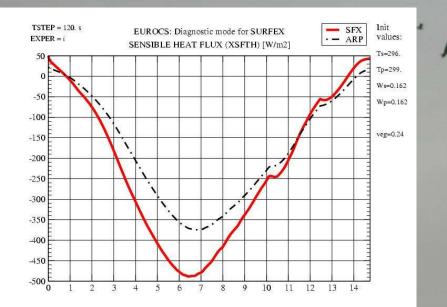
Eurocs case study using SURFEX in off-line mode within 1D Arpege-Climat model

[P. Le Moigne and E. Martin, May 2005]

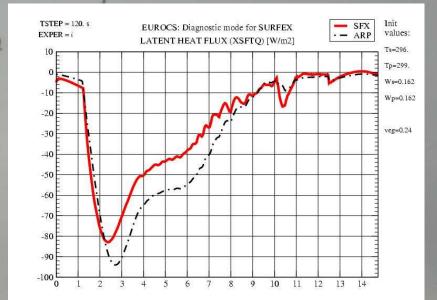
First run in **off-line** mode using **implicit** formulations with the following options:

•ISBA FR 2L for both LSS

•Surface parameters are derived from ECOCLIMAP (integrated in SURFEX) and imposed in Arpege initial file:


- percentage of sand and clay, soil depth
 - fraction of vegetation, LAI, minimal stomatal resistance, roughness length
 - •albedo, emissivity

thermal conductivities for soil and vegetation (C_G and C_V) and orography are imposed

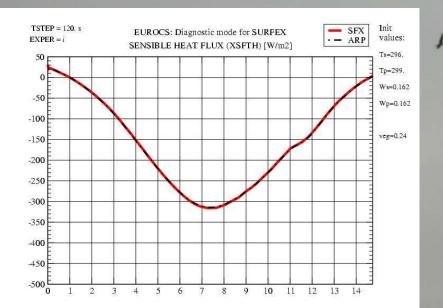

Eurocs case study using SURFEX in off-line mode within 1D Arpege-Climat model

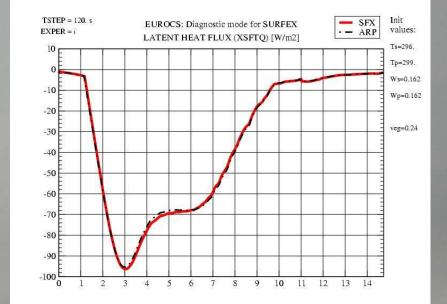
[P. Le Moigne and E. Martin, May 2005]

 $\Delta H_{MAX} \sim 120 \text{ W/m2}$ $\Delta LE_{MAX} \sim 15 \text{ W/m2}$

H

LE

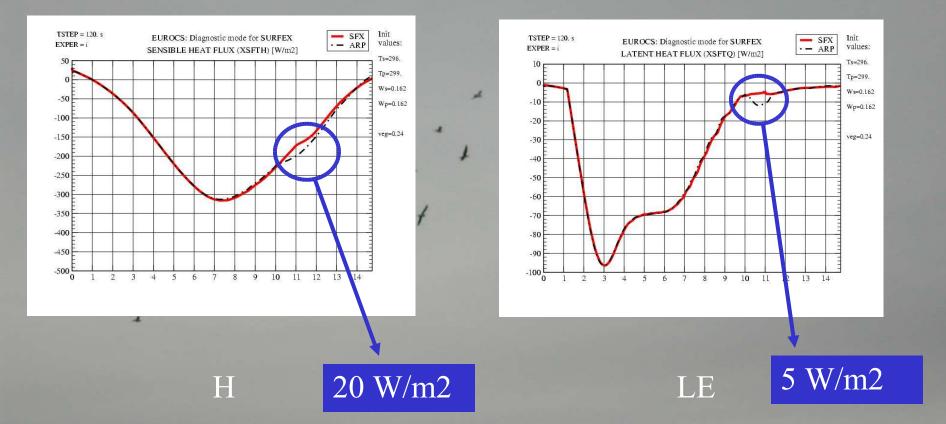

Several possibilities to explain these differences:


- Ch, Cd, Cdn: exchange coefficients are not the same between atmosphere and surface
- L: latent heat is kept constant in SURFEX while it should depend on T as in Arpege
- Cp: specific heat doesn't depend on q in SURFEX
- ×
- 1. Ch, Cd and Cdn are imposed in achmtls and in drag
 - 2. L becomes constant
- 3. Dependancy on q is eliminated for Cp (accoefk, acdifv2, achmtls and ls_acbileng)

Eurocs case study using SURFEX in off-line mode within 1D Arpege-Climat model

[P. Le Moigne and E. Martin, May 2005]

Second try: $\Delta H < 1 \text{ W/m2}, \Delta LE < 2 \text{ W/m2}, \Delta Ts < 0.4 \text{ K}$



LE

Η

Influence of difference of Cp between Arpege and SURFEX: Exchange coefficients and L are kept constant

One way to cure this problem could be to have an explicit dependance on q for $C_{\rm P}$

CONCLUSION / PERSPECTIVES

- 1D Arpege model is good tool to start studying the coupling between atmosphere and surface
- Surfex is able to reproduce correctly the turbulent fluxes, temperature and soil water content under certain conditions in forced mode
- There are potential problems linked to Cp, L, Ch (if they are not imposed, fluxes are different (not for L in this test))

CONCLUSION / PERSPECTIVES

- Consistency between SURFEX and existing Arpege LSS
 - Possibility to introduce the dependancy on q for Cp in surfex
 - Possibility to take into account the dependancy on T for latent heat in surfex
 - Study more carefully the Ch formulation
- Flow of information between SURFEX and Arpege
 - albedo (direct and diffuse) and emissivity are computed in surfex and Arpege radiation scheme should take them into account
 - Initialization of surface fields, I/O, ...

. . .

• Start the work of **on-line implicit** coupling between Arpege and surfex (interaction atmosphere /surface)