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Interest of doing clean thermodynamics in 

models: rules, conditions of their application

and a few (present and anticipated) examples 
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Introduction 
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• Lead idea of the talk: clean thermodynamics does not need to 
be too complicated … and it has nice practical applications.

• But reaching this advantageous situation requires a good 
deal of consistency.

• This does not mean that there should be no simplifications 
with respect to the full complexity of the system … but that 
they should be decided as a whole and ab-initio!

• But sometimes practical implementation decisions do have 
some level of arbitrariness (type of adjustment; reversible or 
irreversible adiabatic ascent conditions; case of simultaneous presence of 

the three phases of water; etc.) => the transversal issues, like 
global conservation properties, must be treated through 
global constraints.

• But the devil is sometimes still in the details!



Split of the presentation 
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• Rules: 
• Additivity
• Conservation of theoretical invariants
• Consistency

• Conditions of application:
• Simplifying (and structuring) hypotheses
• Global   local interplay (under an ‘inter-parameterisation 

consistency’ condition)
• Algorithmic hurdles

• Examples:
• Discretisation issues
• Consequences of the ‘specific view for entropy’ (role of qt, 

see PM’s talk) for moist turbulence’s parameterisation



Additivity rule 
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• When having a complete system of parameterisation 
algorithms, one must know how to combine the outputs of 
individual computations in terms of evolutions of the main-
model’s prognostic variables.

• In the case of water species (or any ‘passive tracer’ of course) 
things are simple thanks to the intrinsic linearity of the 
tendency equations.

• But for energy linked quantities (cpT+Φ, (u²+v²)/2, …), this is 
not anymore true.

• On must then realise that tendencies (which do have a lot of 
conditional aspects in their definition) ARE NOT ADDITIVE: 
d(cpT) ≠ cpdT + ∑(∂cp/∂qx) dqx  !

• Only fluxes (which have an intrinsic physical meaning) ARE 
ADDITIVE. 

This gives a central role to the Green-Ostrogradsky theorem
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Transversal conservation issue

Taking the ‘heat part’ of the ‘specific moist enthalpy + geopotential’ defines S’li as 
the exact counterpart of cpd.T+Φ for the fully dry case. It corresponds to the dry 
static energy in the unsaturated case got after evaporation (interpretation of Betts’ 
system).Moreover, in the general case, local conservation of S’li  is equivalent to 

conservation of the quantity (cp.T+Φ-Lv(0).ql-Ls(0).qi), with Lv/s(0) the 
temperature-independent extrapolations of Lv/s at 0 K. The linearity of the last two 

terms allows to develop in function of the various transport fluxes of the water 
species (diffusion  & precipitation) and to so obtain a Green-Ostrogradsky-type 

thermodynamic equation.

Catry et al., 
2007, Tellus A
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Basic assumptions for consistency
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• Two types of consistency ought to be sought when designing a 
parameterisation set:
• Between the ‘dynamical’ and ‘physical’ parts of the model. Here the 

Green-Ostrogradsky approach is the easiest one (using θs as 
synthetic variable would be equivalent, but the way-back-
computations are very complex; neither θ, nor θli nor (θs)1 can help 
if one wants an exact solution). In the non-hydrostatic case, the issue 
about projecting the energy tendencies on the temperature and 
pressure prognostic variables also appear, but it exists in all 
solutions, albeit under differing shapes.

• Between the individual parameterisation computations. There, if a 
policy for global conservation of the invariants exists (see just 
above), the issue is shifted to the one of having the same basic 
hypotheses on all sides. This requires a clear, compact and 
purposeful definition of so-called ‘simplifying hypotheses’ which 
become de-facto ‘structuring constraints’.  

• All this appears simple and logical. Yet it is very hard to be 
enforced in models’ design …



‘Simplifying’ assumptions  and/or ‘structuring’ constraints
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• Barycentric system (condensates are an integral part of the parcel)
• Hydrostatism (for the vertical gradient aspects in ‘physics’)
• Zero assumed volume for condensates
• Gases obey Boyle-Mariotte’s and Dalton’s laws (together with 

the previous one => p/(ρ.T)=Rd.qd+Rv.qv=R)
• Homogeneity of temperature across species (even for falling 

condensates)
• Constant values of specific heats across the atmospheric 

temperature range (a bit problematic for ci)
• Linear variations of latent heats with temperature
• In presence of condensates, water vapour partial pressure 

around them depends only on temperature (no treble phase 
situation, though in practice many results may be robust to that …)

• Clausius-Clapeyron relationship

... and then nice analytical results (including the one about 
G-O-type conservation of ‘cp.T’) become possible!



Global vs. local interplay (in the physics time-step)
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• The main difficulty appears here when one wants the results of 
one parameterisation computation to influence the prognostic 
type variables used in input to a subsequent one (sequential 
view). In the other case (parallel view) there is no new 
problem.

• For the sequential case, short of an expensive incremental 
solving of the physics   dynamics system after each new 
contribution, the trick is to say that the output => input 
computations may be approximated (via cp, R, Lv/s values kept 
unchanged during the physics time-step), provided:
1. The underlying communication is done via fluxes (or their linear 

divergences expressed in quantities having the physical dimension of 
tendencies => pseudo-fluxes).

2. The final summation is done on the fluxes and/or pseudo-fluxes.

3. The basic hypotheses are still transversal to all processes. 
• Then additivity, conservation and consistency are still 

ensured!



Algorithmic hurdles (i.e. devils in the details) (1/2)
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• There are several types of them: linked to the (vertical) space 
discretisation, linked to the time discretisation (degree of 
implicitness), combination of both (fight against linear and 
non-linear instability), basic decisions about the considered 
process’ behaviour.

• The latter are the most interesting ones from the purely 
thermodynamics point of view. The decisions are about:
• Reversible or irreversible character (for instance condensation is 

reversible and precipitation irreversible; and yet microphysical 
packages sometimes mix them without caution).

• Local adjustment or transport-type process (nature does not make 
such a distinction, but in models we need it most of the time, for the 
sake of simplicity).

• How to deal with the treble phase problem (even if the final 
computations may be solved by linear combination tricks, this 
contradicts the way in which we obtained, in the case of to phases only, 
the simple formulae allowing this strategy).



Algorithmic hurdles (i.e. practical conseqences) (2/2)
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• Reversible or irreversible character:
o for irreversible saturation conditions (precipitation) we have

o for reversible saturation conditions (no precipitation) we have

• Local adjustment or transport-type process. The issue is here:
o whether to use (q/r)sat as implicit target for a return to saturation (in 

the transport case where one cannot anticipate the change of  [T,p] 
characteristics along the vertical displacements;

o Or to use (q/r)w (wet-bulb value) as explicit target for a return to 
saturation (in order to implicitly couple the temperature and humidity 
evolutions in the local case) 

• The treble phase problem: there is no ideal solution; probably 
an additional prognostic quantity ought to be defined and 
added in order to keep both consistency and physical realism!  

 

 



Practical examples, first part: importance of discretisation
details. Slides extracted from a talk at the ECMWF 2010
Workshop on ‘Non-Hydrostatic modelling’ 
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The ‘LSPRT’ issue (1/3)

• The topic addressed here is specific to spectral 
modelling, but the ‘message’ is of wider interest.

• The computation of the horizontal Grad(Φ) 
contribution to the pressure gradient term requires 
to use only derivatives of the prognostic variables.

• So-called grid-point variables (hydrometeors 
typically) cannot enter this computation if T is the 
thermodynamic prognostic spectral variable.

• In such a case (and provided qv is treated spectrally) 
the computation is approximated by using 
R=Rd+qv(Rv-Rd)

• But, if we use the exact equations, in the vertical we 
get d(Φ)=-[Rd(1-qv-ql-qi-qr-qs)+Rv.qv].T.d(ln(p))



The ‘LSPRT’ issue (2/3)

• Even if the order of magnitude appears small ‘on the 
paper’, the impact of the inconsistency at the ‘NH 
scales’ can be impressive (see next viewgraph).

• We know this because there exist the LSPRT=.T. 
option in the IFS/ARPEGE/ALADIN code, which makes 
RT the thermodynamic spectral prognostic variable, 
allowing the use of the ‘correct’ R value.

• And LSPRT can work either with qv in grid-point or qv 
spectral. The latter case allows a clean comparison 
with the LSPRT=.F. case, for evaluating the impact of 
the discrepancy between the respective vertical and 
horizontal gradients of geopotential.



The ‘LSPRT’ issue (3/3)

Associated questions:
 - Any other similar ‘small inconsistency’ is likely to cause similar feed-backs;

 - Initialization: filtering ‘RT’ is detrimental (non linearity) => need for a small 
inconsistency between initialisation and forecast. 

Grad (RT) with qv only; dx = 2.3km Grad (RT) with all species

Contributors: S. Malardel & Y. Bouteloup (sensitivity), 
                      R. Brožková & P. Smolíková (DFI problem)

CorrectWrong



Green-Ostrogradsky form of the thermodynamic 
equation (1/3)

• This following will have to do with the intra-time-step 
variations of Cp, Cv and hence R, following the phase changes 
of a barycentric multi-phasic system (here qv/l/i/r/s)

• Using Cp=Cv+R and the first Law of thermodynamics, one gets 
a Green-Ostrogradsky form for the evolution of enthalpy (with 
δm a tag for conservation or not of the total mass and with P’ 
& P’’’ the mass-weighted integrals of phase changes with 
respect to vapour):

 



Green-Ostrogradsky form of the thermodynamic 
equation (2/3)

• The previous equation must be complemented by the 
radiative anb turbulent transport of enthalpy fluxes, but this 
does not change its shape or characteristics.

• It is sometimes customary to say that neglecting the time 
variation of Cp (or Cv, or R) during the ‘physical time-step’ 
(under the influence of phase changes) has little impact.

• Like in the ‘LSPRT’ case, we shall now see that this is not 
true at all at the ‘NH scales’.

• The trick, given the compact shape of the previous flux-
conservative form of the enthalpy equation, is just to 
replace on the left-hand side ‘d(Cp.T)’ by ‘Cp.dT’ !



What is behind the choice of a fully multiphasic ‘R’ value? 
(1/2)

• We have just seen the key role, at the ‘NH scales’, of the choice of ‘R’. In the 
example, the falling species qr/s were also accounted for. This corresponds to 
the choice of the so-called ‘barycentric’ definition of the ‘parcel’ (precipitation 
becomes another sub-grid [just better organised] transport).

• The alternative is to exclude qr/s from what the adiabatic part of the model 
‘sees’ and to treat these species separately.

• This is quite easy for their ‘steady’ regime, but what about their acceleration 
phase and/or the evaporation-sublimation?

• In nature, what prevents condensed species from reaching higher and higher 
fall-speeds is a local pressure gradient between the top and bottom of 
drops/crystals, a gradient also felt in the whole atmospheric column.  



What is behind the choice of a fully multiphasic ‘R’ value? 
(2/2)

• Hence, in the case of the hydrostatic assumption (and of a prognostic 
treatment of qr/s) it is correct to assume that   dp=-ρ.dΦ must be 
computed with ρ accounting for the presence of falling species.

• In the case of barycentric equations, this choice ‘filters out’ the issue 
about local volume changes when condensed water species do appear 
and/or disappear.

• In the NH case, one can show that the ‘filtering condition’ becomes 
p=ρgasRgasT= ρRT (with R and ρ from all species).

• When going to the non-barycentric system, the filtering disappears for 
qr/s and one should in principle account for their acceleration phase 
as well as for their return to vapour!



Impact of (no) enthalpy conservation

without enthalpy conservation with enthalpy conservation

Precipitation patterns are roughly the same, but the local intensity 
may be very different, nearly doubled at maximum

Courtesy of R. Brožková

ALARO test (with 3MT in order to make up for the difference 
between convection ‘permitting’ and convection ‘resolving’) on 2.3 
km mesh (90s time step); 6h precipitation on 18/05/2008 (+12h to 
+18h) 



Practical examples, second part: (moist) turbulence 
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Excursion towards turbulence: so-called 
‘moist conservative’ transforms 
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• When trying to compute turbulent fluxes in a situation where 
cloudiness is different from 0 or 1, or simply changes along the 
vertical, one is facing two delicate issues:
• (1) The calculation of the buoyancy flux <w’.ρ’> becomes extremely non-

linear and complex (we shall come back to this issue later);
• (2) The interaction between phase changes and transport of heat, water 

vapour and condensate(s) during the ‘physics time-step’ is not tractable.
• Concerning the issue N°2, Betts (1973) proposed to use two so-

called ‘moist conservative’ variables, namely the total water 
amount qt and the liquid water potential temperature θl (no 
consideration of the ice phase in those early years!).

• While the conservative character is only approximate and the 
advocated link with entropy wrong, what remains from Betts’ idea 
is the ‘transform’ method: (i) evaporate (with temperature 
change), (ii) transport both variables and (iii) condense back.

• The last step needs additional hypotheses, linked to the issue N°1!
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TC81

L68

GB01

( s )1

l 

And observations tell us about the ‘target’ of mixing

Rv/Rd
1.61

Λ
     5.87     

Lvap/(cpdT)
~9.1

(θs )1 ≈  2/3 - 
1/3 

between θ l & 
θE  

But θs is so 
homogeneou
s that is 
cannot give 
any good 
indication 
about cloud 
amount!
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Transport problems: which fluxes and variables?

Moist-conservative 

transforms: alternative

to the 1st Betts’ variable

Crucial role of qt , alike in (θs )1

Asymmetric (MSE inheritance), no qt=1-qd related 
part

Flux of    Sm 

Marquet (2011)
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Transport problems: additional remarks

Asymmetric (MSE inheritance), no qt=1-qd related 
part

Originally

Practical evolution

In p-type coordinates, the new quantity S’li is the exact counterpart of cpd.T+Φ for 
the fully dry case. It also has a strong similarity with Sl and this will be useful to 
understand the link of Shm with moist static energy (MSE)

Neither Ls counterpart, nor 
even any appearance of ql ??
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Why has MSE a ‘quasi-conservative’ reputation?

Originally

S’l adaptation

So, if  qi=0, MSE’ and Shm differ only by the last term 

But TΥ  = 2362 K  &  Lv(T0)/cpd=2489 K !!!   (while ΛT0=1603 K)

The close match between the two values is a coincidence. It explains why MSE’ (or 
its MSE approximation) is nearly conservative (5% difference), in the ‘warm’ case.

But, as soon as we have ice phase, it collapses (Ls(T0)/cpd=2821 K) => Use 
Shm !

 …and S’li for the 
Betts’ transforms

[ analogy with (θs )1 ]
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May we use M11’s findings in moist turbulence (apart from 
upgrading  Betts’ transforms & better measuring stability)? 
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• The relevant issues are:
• Finding a way to express how nature seems to tend to full 

mixing of θs (i.e. maximising turbulent energy conversion via 
the transport of qt).

• Going around the fact that θs is a very bad tracer of 
cloudiness (not addressed here).

• Doing both steps while remaining close to the present 
formalism for the computation of the buoyancy flux (the 
development of a formulation for the Brunt-Väisälä- 
Frequency (BVF) is an interesting intermediate step for that). 

• Finding a way to introduce the fact that there is a part of the 
heat and moisture transports which is realised through the 
asymmetry between the situations inside and outside the 
clouds (not addressed here).  



The prognostic TKE equation

Development of the terms of shear production and of  
production/destruction by buoyancy (‘conversion term’)

One thus establishes a direct link between the Richardson number, the 
Richardson-flux number, the conversion term (<w’.ρ’>) and the static 
stability (i.e. the squared BVF N²). Should all this be reproduced  
identically in the ‘moist’ case? One has to realise that the above fully 
relies on a dual role of θ: conserved quantity AND stability parameter.
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‘Classical turbulence’ interpretations (i.e. fully dry ones)
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• For homogenous (non-saturated and fully-saturated) situations, one can 
compute the squared BVF by noticing that density is function of moist 
entropy ‘s’, total water content ‘qt’ and pressure ‘p’ only.

• Let us suppose that we know a ‘transition parameter’ (‘C’, which can be 
identified to a cloudiness or to a cloud efficiency) and let us define:

• F(C) ensures the transition between the non-saturated case (C=0) where 
moisture acts only through expansion (Rv/R) and the fully-saturated one 
(C=1) where it acts only through latent heat release (Lv(T)/(Cp.T)).

• M(C) cares for the linked change of adiabatic gradient, without any need 
for a second transition variable.

• Remarkably DC does not depend on moisture amounts.
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The moist entropic potential temperature θs within its 
related Brunt-Väisälä Frequency expansion (1/2)
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• We compare here the new formulation with the ‘classical’ ones of 
Durran and Klemp (1982) and of Emanuel (1994) by expressing the 
vertical adiabatic lapse rates Γ=-dT/dz .

• In the non-saturated case the correct  solution is Γns=g/cp

• In the case of full-saturation with respect to liquid water we have:
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A digression concerning vertical adiabatic lapse rates (1/2) 

 
(MG13)

 
(DK82)

 
(E94)

Without any doubt,  the 
more exact the derivation, 
the simpler the final result!



• But we have a similar loss of simplicity when replacing the complex θs by 
its simple approximation (θs )1:

• Remark: all the relevant computations were performed for reversible 
adiabatic conditions (no precipitation) where we have: 

• In the irreversible case we would have instead as function of T and p:
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A digression concerning vertical adiabatic lapse rates (2/2) 

 
(MG13, θs )

 
(MG13, (θs )1 )

 

 



• Going back to F(C) and M(C), for any atmospheric condition, one 
gets for the squared ‘BVF’ (Marquet & Geleyn, 2013, QJRMS):

• Interpretation (following Pauluis and Held (2002)):

‘Classical’ TKE   TPE conversion

 Total water lifting effect (TKEPE)

Λ-scaled differential expansion and latent heat effects (TKE   ?)

A hint for a new way of looking at the d(TKE)/dt equation in order 
to account for the fact that, as soon as moisture appears, the dual 
role of θ is split between θs (conservation) and θv (conversion term)? 
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The moist entropic potential temperature θs within its 
related Brunt-Väisälä Frequency expansion (2/2)
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Conclusions
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- They are too various and too interdependent to be listed and ranked 

              
- One just hopes to have made more evident the need and interest of 

treating thermodynamics more carefully and more purposefully in 
future modelling endeavours

- The consequences of the M11 and MG13 papers for treatment of 
moist turbulence are still under investigation

- The next step would be to consider the potential of application to the 
deep convective situation (closure?), most probably with even more 
reference to PH02 

   


