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—
Introduction /\“—MCT

® Predictability as a function of scale key
in Data Assimilation.

® Computer resources and data availability
seem to be the main factors for the
quality of DA

® Fitting data beyond their time of
predictability has a negative impact.

® Mesoscale structures have shorter
predictability than synoptic scale ones.



—
Questions? /\“—MCT

® Propagation of initial condition errors from one
variable to the next.

How well we can detect errors in fields by observing
the time evolution of another?

® How does predictability affects the assimilation
period to be used for different fields?

® \Which initial condition errors cause the worst
forecast and should they be detected Iin
priority?

® Should the assimilation time window be

modified according with the propagation of
errors in the initical conditions?



—
Three periods /\“—MJ
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(D Linear regime: M(x+Ax) = M(x) + AX (OM/0x)
— M(X+kAX) — M(X) = k [M(x+AXx) — M(x)]

@ Nonlin. regime: M(x+kAx) — M(x) # k [M(x+Ax) — M(x)]

(3) Contradictory region: Adjusting x towards x+kAx at the
initial time worsens the fit with the data from M(x+Ax)



/\ -
Model /ALMel

®* WRF:
1600 x 1600 Km? domain.
28 vertical levels.
4 Km horizontal resolution.

Running every 9 hours for 12 hours
forecast.

6-days of convective activity (10-16 June)



—
Experiments /\“-MCT

® Control: Full data assimilation.

® Experiments with errors in the initial
conditions.

Perturbing one field at a time (10 perturbations):
* Winds: low, mid and high levels.
* Temperature: low, mid and high levels.
* Moisture: low and mid levels.
* Condensate at all levels.
* Soil moisture at all depths.

® Vertical scaling of errors.
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® Part |: signal in model variables.

® Part Il: skill of measurements to pull out
a useful signal.



—
Computing errors in forecast /\“-MCT

® Energy different of two similar model states, one control and one

perturbed.
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Influence of
perturbations in the
forecast




Results: 15’ forecast

100% | AtIT=15 mins

Share of SED

0%

\

L M H L M H L M C S
W wW W T T T H H M

—— CED

LED

Amet

Agencia Estatal de Meteorologia

Most of the
influence of
perturbations in
the same field:

Wind - KED

Temperature -
TED

Moisture - LED

FI1G. 6. Share of the SED among its different components |KED
(white), TED (black), LED (gray), and CED (stripes)| (top) 3 h



—
Results: 3 h. forecast /\“-MCT
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FI1G. 6. Share of the SED among its different components |KED
(white), TED (black), LED (gray), and CED (stripes)| (top) 3 h
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Memory of initial conditions is lost before 3
hours of forecast

Non-linearity index

[v(x, + kAx) — v(x )] — k[v(x, + Ax) —v(x )]/ dD

NLI(v, T, Ax) = Jﬂ
J w(x, + kAx) — v(x )| dD
D

The NLI 1s hence a useful bulk quantity to measure
the nonlinearity in the response of the model to a per-
turbation after a certain time. It 1s tied with predict-
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11 100-km resolution fields
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® Synoptic
scale fields
keeps linear
regime as
double as
mesoscale
for T, wind

and moisture

Time from initial condition error (hrs)

perturbations
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Present time and model time
constrained using an assimilation

3 hrs ago system to be determined Scenario 4: Real-time processing, new assimilation method
Ideal solution, but implementing it requires designing a data
! 3 hrs of smoothed u, T, e data ; assimilation approach that constrains the model at the end
! ] > time of the assimilation window, not at the beginning time as
' ﬁ . - .
. 1hrofrawu, T, e data ! traditional formulations of 4D-Var do. Possible?

30 min of rain data —}
15 min of cloud data —>
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—
Part II: Observations /\“-MJ

® Same methodology but for instruments,
sensors and other source of
observations.

® Not very clear methodology.
® Strength of the observational signal.

z[y(ﬁJrﬁﬁ ) —y,(x, T)]

S, (& T)= {T(y)
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—
Part II: Observations /\“-MCT

® NLI:

N
Z [y;(x, + kAX) — yi(x )] = k[ y,(x, + Ax) — y,(x,)]|
NLI(y, T, Ax) = =

N
Z [y.(x, + kAx) — y (x,)]|

N number of observations per hour
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—
Conclusions /\“—MCT

® Predictability as a function of scale key in Data
Assimilation.

® Fitting data beyond their time of predictability
has a negative impact.

® Mesoscale structures have shorter
predictability than synoptic scale ones.

® Perturbations of initial conditions spread out in
ess than 3 hours.

® Linearity at mesoscale lies between 15" and 3
NOurs.

20



In the end, the most valuable aspect of this study 1s the
approach we used and what information 1t can provide,
but the exercise needs to be repeated 1n the appropriate
context to be most usetul. The results presented here are

ments by radiosondes and surface stations. In the end,
one can see that at the mesoscale. there 1s no magic
bullet: to be successful, one must assimilate data from
a variety of sources to properly initialize models.

sors. In Part I, we found that the greatest current source of
forecast errors are due to 1) uncertainties in midlevel
moisture and 2) uncertainties in low- and midlevel tem-
perature, low-level humidity, and midlevel winds. Given
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—
Future for Harmonie DA /\“—MCT

® Repeat the exercise with Harmonie DA
at 2.5 Km resolution.

® Running the model every 3 hours (8
times a day) up to 12 hours.

® Using two sets of experiments AROME
and ALARO physics.

® Using ensemble techniques to
strengthening results?
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