
Optimizations of CANARI

Robin Degrave (ENSEIRB), Ryad El Khatib,
Françoise Taillefer, Philippe Marguinaud (CNRM/GMAP)

22nd Aladin Workshop & Hirlam all staff meeting
Marrakech 07-10 May 2012

Why this talk ??

 Rumors :
– Further optimization of Canari on scalar platform is needless :-)
– Further optimization of Canari on vector platform is hopeless :-(

 Directors :
– Must Canari be included in the benchmark of Arome ?

 Survey of any operationnal – or widely used - application to be
monitored regularly

 Can we optimize the distribution of computing ressources between
Canari and 3DVar for a full assimilation suite ?

PlanPlan

Optimization work
• On scalar platforms
• On vector platforms
• Integration aspects

Conclusion

CANARI on scalar(CANARI on scalar(¹)¹) platforms platforms

(Canari-Arome-France : 750 x 720 gridpoints, 60 levels)

((¹)¹) Intel Westmere + Intel compiler Intel Westmere + Intel compiler

1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

350

400

450

500
Real time

Number of MPI tasks

R
ea

l t
im

e
(s

)

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

9
Scalability

Speedup
Ideal

Number of MPI tasks
S

pe
ed

up

 Scalability : not very good
 Memory cost : excessive : 9 Gb (1 proc) to 12 Gb (8 procs)

CANARI on scalar platformsCANARI on scalar platforms

DrHook profiling for 2 MPI tasks

=> shows up performance anomalies :
– ≈ 35% of time spent in a sorting algorithm (CASGQA)
– ≈ 7.5% of time spent in useless spectral transpositions

(TRGTOL)
– Much trigonometric computations (CASGRA)
– Many calls to subroutines

CANARI on scalar platformsCANARI on scalar platforms

CASGQA :
Selection

in each quadrant
of a limited

number
of observations

at a limited
distance

of the gridpoint

CANARI on scalar platformsCANARI on scalar platforms

CASGQA :
the quadrant

research
was incorrect,

leading to
slightly wrong

results
(≈ 0.02%)

And excessive
trigonometric
computations

=> The correct formulation helps save
15% cpu time in CASGQA

CANARI on scalar platformsCANARI on scalar platforms

 Initially : apparently a truncated algorithm
 in O(n2) (the first observations are not
 sorted)
 Fast algorithm are in O(nLog(n))
 Heapsort (used in ODB) has been
 disappointing (truncation lost)

Eventually
CASGQA was just a clumsily-coded

Quicksort-like algorithm :
the pivot value had to be saved rather than

recomputed

=> saves 60% cpu time in the
sorting algorithm

Research of a better performing
sorting algorithm for CASGQA

CANARI on scalar platformsCANARI on scalar platforms

Reduction of the memory cost :

=> A new option in the model, in order to handle only a
subset of vertical levels :

 &NAMCT0 : LIOLEVG=.FALSE.
– model reads only the NFLEVG lowest levels from file
– supposes to set NFLEVG in namelist, too
– I/Os are preserved (thanks to the indexed sequential

property of the FA files)
– Canari 3D algorithm is preserved
– Can be used for post-processing as well (with care)

CANARI on scalar platformsCANARI on scalar platforms

 Memory usage falls down to ≈ 1 Gb for 1 core
88 % memory saved

With LIOLEVG=.FALSE. in Canari,
we can set NFLEVG=2 despite the model has 60 levels

 We perform minimal I/Os, setup and spectral transforms
12 % cpu time saved

 Miscellaneous other optimisations :
≈ 3 % cpu time saved

CANARI on scalar platformsCANARI on scalar platforms

New DrHook profiling for 2 MPI tasks

 Less load imbalance & less calls
 CASGQA still expensive but now in position #2
 Still a lot of trigonometric computations (CASGRA)
 CASPIA is raising

CANARI on scalar platformsCANARI on scalar platforms

Optimized Canari (Canari-Arome-France : 750 x 720 gridpoints, 60 levels)

1 2 3 4 5 6 7 8
,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

9,0
Scalability

Old speedup
Ideal
New speedup

Number of MPI tasks

S
pe

ed
up

 Real time saved after optimizations : ≈ 42 %

 Scalability : better
 Memory cost : reasonable : 1 Gb (1 proc) to 3 Gb (8 procs)

1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

350

400

450

500
Real time

Old version
Optimized

Number of MPI tasks

R
ea

l t
im

e

CANARI on scalar platformsCANARI on scalar platforms

Back to CASGQA

100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

140

160

180

Relative impact of the radius of selection
on HU2m

Radius of selection (km)

%

If we dissociate the SYNOP and the SHIP in the algorithm, we could
reduce the radius of selection for SYNOP from 1000 km to ≈ 500 km
=> CASGQA, CASGRA & CASPIA would be cheaper

CANARI on scalar platformsCANARI on scalar platforms

How the profile looks like when the radius of
selection is set to 500 km (for 2 MPI tasks) :

 Real time : 18 s. instead of 154 s.
 CASGQA & CASPIA for free

CANARI on vector(CANARI on vector(¹)¹) platforms platforms

(Canari-Arome-France : 750 x 720 gridpoints, 60 levels)

((¹)¹) NEC SX9 NEC SX9

 Scalability : good
 Time cost : much bigger than on scalar platforms

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

9

Scalability

speedup
Ideal

Number of MPI tasks
S

pe
ed

up
1 2 3 4 5 6 7 8

0

500

1000

1500

2000

2500

3000

3500
Real time

Number of MPI tasks

R
ea

l t
im

e
(s

)

CANARI on vector platformCANARI on vector platform

Performance is penalized mostly by caspia.F90

 caspia.F90 has been substantially re-written to
increase its vectorization rate and its vector length,
thanks to various techniques :
– Loop fusion (++)
– Loop collapsing (+++)
– Loop pushing (+)

 Various other vectorizations, mainly in canada.F90

Unfortunately, the vector length
cannot be driven by the user (NPROMA) :

it is bound to the number of observations for a given point

CANARI on vector platformsCANARI on vector platforms

Optimized Canari (Canari-Arome-France : 750 x 720 gridpoints, 60 levels)

 Real time saved after vectorizations : ≈ 64 %
 Scalability : better than scalar platforms
 Still much slower than on scalar platforms

1 2 3 4 5 6 7 8
0

200

400

600

800

1000

1200

1400

1600

1800

2000
Real time

Old vector
Vector op-
timized
Scalar op-
timized

Number of MPI tasks

R
ea

l t
im

e
(s

)

1 2 3 4 5 6 7 8
1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0
Scalability

Old vector
Ideal
Vector
speedup
Scalar
speedup

Number of MPI tasks
S

pe
ed

up

Integration aspectsIntegration aspects

The surface analysis with Surfex is composed of 3
applications run successively :

– (Fullpos) : append missing climatological fields (e923)
and replacement of Surfex Ts by the previous surface
analysis of Ts

– Canari : PBL fields +SST analysis
– Oi_main : Update surface fields for Surfex

Problems :
(though Fullpos and Oi_main are short tasks)

=> I/Os + extra-setup + scripts in between
=> Lack of multiprocessing support out of Canari
=> No ODB support in Oi_main

Integration aspectsIntegration aspects

Now possible : If it fully uses FA file format,
Oi_main can be called inside Canari

(or remain standalone in LFI)

To do : simplify fields setup in Canari (and in 3DVar as well)

Remaining problem :
 Oi_main is not a 1D algorithm => MPI works but

reproducibility is broken
=> Workaround to do : provide a « global » SST field

(F. Taillefer)
=> Alternative (as long as canari/oi_main are not too

expensive) : finish the open-mp support in Canari

ConclusionConclusion

On scalar platforms,
 Canari runs now ≈ 1.7 times faster than before
 Its memory cost dropped considerably
On vector platfoms,
 Canari runs now 2-3 times faster than before
 However it is shaped for scalar machines, unless used for 3D

OI
On any platform,
 Separation of SYNOP and SHIP would make Canari even

much faster
 Integration of the side-applications will reduce the cost of the

non-scalable parts

All the source-code modifications available in cycle 38T1

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21

