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Abstract Here we advance the physical background of the energy- and flux-budget turbu-
lence closures based on the budget equations for the turbulent kinetic and potential energies
and turbulent fluxes of momentum and buoyancy, and a new relaxation equation for the tur-
bulent dissipation time scale. The closure is designed for stratified geophysical flows from
neutral to very stable and accounts for the Earth’s rotation. In accordance with modern exper-
imental evidence, the closure implies the maintaining of turbulence by the velocity shear at
any gradient Richardson number Ri, and distinguishes between the two principally different
regimes: “strong turbulence” at Ri � 1 typical of boundary-layer flows and characterized
by the practically constant turbulent Prandtl number PrT; and “weak turbulence” at Ri > 1
typical of the free atmosphere or deep ocean, where PrT asymptotically linearly increases
with increasing Ri (which implies very strong suppression of the heat transfer compared to
the momentum transfer). For use in different applications, the closure is formulated at differ-
ent levels of complexity, from the local algebraic model relevant to the steady-state regime
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342 S. S. Zilitinkevich et al.

of turbulence to a hierarchy of non-local closures including simpler down-gradient models,
presented in terms of the eddy viscosity and eddy conductivity, and a general non-gradient
model based on prognostic equations for all the basic parameters of turbulence including
turbulent fluxes.

Keywords Boundary layers · Critical Richardson number · Eddy viscosity · Conductivity ·
Diffusivity · Free atmosphere · Inter-component kinetic energy exchange · Kinetic potential
and total turbulent energies Monin–Obukhov similarity theory · Stability parameters · Stable
stratification · Turbulence closure · Turbulent fluxes · Turbulent dissipation time and length
scales

Symbols
Ai = Ei/EK Share of the i th-component, Ei , of turbulent kinetic energy, EK

E = EK + EP Total turbulent energy (TTE)
EK = 1

2 〈ui ui 〉 Turbulent kinetic energy (TKE)
Ei Longitudinal (i = 1 or i = x), transverse (i = 2 or i = y) and

vertical (i = 3 or i = z) components of TKE
Eθ = 1

2

〈
θ2

〉
“Energy” of potential temperature fluctuations

EP Turbulent potential energy (TPE), Eq. 28
Fi = 〈ui θ〉 Turbulent flux of potential temperature
Fz Vertical component of Fi

f = 2� sin ϕ Coriolis parameter
g Acceleration due to gravity
KM Eddy viscosity, Eq. 43
KH Eddy conductivity, Eq. 44
KD Eddy diffusivity
L Obukhov length scale, Eq. 41
l Turbulent length scale
N Mean-flow Brunt–Väisälä frequency
P Mean pressure
P0 Reference value of P
p Fluctuation of pressure
Pr = ν/κ Prandtl number
PrT Turbulent Prandtl number, Eq. 45
Qi j Correlations between fluctuations of pressure and velocity shear, Eq.15
Ri Gradient Richardson number, Eq. 3
Rif Flux Richardson number, Eq. 40
R∞ Maximal Ri in homogeneous sheared flow
S = |∂U/∂z| Vertical shear of the horizontal mean wind
T Absolute temperature
T0 Reference value of absolute temperature
tT = l E−1/2

K Dissipation time scale
tτ Effective dissipation time scale
U = (U1, U2, U3) Mean wind velocity
u = (u1, u2, u3) Velocity fluctuation
β = g/T0 Buoyancy parameter
γ = cp/cv Ratio of specific heats at constant pressure and constant volume
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A Hierarchy of EFB Turbulence Closure Models 343

εK, εθ , ε
(F)
i and ε

(τ)
i j Dissipation rates for EK, Eθ , F (F)

i and τi j

ε
(τ)
α3(eff) (α = 1, 2) Effective dissipation rates for the vertical turbulent fluxes

of momentum
κ Temperature conductivity
ν Kinematic viscosity
 = EP/EK Energy stratification parameter, Eq. 74
�K,�θ and �F Third-order turbulent fluxes of TKE EK, and the fluxes of Eθ and Fi

ϕ Latitude
τi j Reynolds stresses (components of turbulent flux of momentum)
τα3 (α = 1, 2) Components of the Reynolds stresses representing the vertical

turbulent flux of momentum
τ Modulus of the horizontal vector (τ13, τ23)
ρ Mean density
ρ0 Reference value of ρ

� Mean potential temperature
θ Fluctuation of potential temperature
� Angular velocity of Earth’s rotation
�i Earth’s rotation vector (parallel to the polar axis)

Basic empirical dimensionless constants of the EFB closure
C0 = 0.125 Inter-component energy exchange constant determining the

vertical share of TKE, Eqs. 49, 50c
C1 = 0.5, C2 = 0.72 Inter-component energy exchange constants determining the

longitudinal and transverse shares of TKE, Eqs. 48–50
CF = 0.25 Dissipation time scale constant for the turbulent flux of potential

temperature, Eq. 19
CP = 0.86 Dissipation time-scale constant for the turbulent flux of TPE, Eq. 19
Cr = 1.5 Standard inter-component energy exchange constant, Eqs. 27,

50a, 50b, 50c
Cτ = 0.2 Dissipation time-scale constant for the turbulent flux of momentum,

Eq. 33
C� = 1 Rotational length-scale constant, Eq. 73
R∞ = 0.25 Upper limit for the flux Richardson number attainable in the steady-

state regime of turbulence, Eqs. 40, 46
k = 0.4 von Karman constant, Eq. 67

Additional constants expressed through the basic constants
a1 = 0.18, a2 = 0.16, a3 = 1.42 in Eqs. 81–86
Cu = k/R∞ = 1.6 In the velocity gradient formulation, Eq. 70
Cθ = 0.105 In Eqs. 36, 37, 47, 64
kT = (CF/Cτ )k = 0.5 von Karman constant for temperature, Eq. 86
Pr (0)

T = 0.8 Turbulent Prandtl number in neutral stratification,
Eq. 57

∞ = 0.14 Upper limit for the energy stratification parameter,
Eq. 76
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1 Introduction

Historical overviews of the turbulence closure problem and recent developments in this area of
knowledge have been discussed during the last decade by Canuto (2002, 2009), Canuto et al.
(2001, 2005, 2008), Cheng et al. (2002), , Kurbatsky and Kurbatskaya (2006, 2009, 2010) and
Zilitinkevich et al. (2007, 2008, 2009). Most of the operationally used closures employ the
concept of the downgradient turbulent transport, implying that the vertical turbulent fluxes
of momentum τi (i = 1, 2), potential temperature Fz and other scalars are proportional
to their mean gradients. The proportionality coefficients in such relations, called the eddy
viscosity KM, eddy conductivity KH and eddy diffusivity KD, are just the unknowns to be
determined from the turbulence closure theory. The modern content of this theory originates
from Kolmogorov (1941, 1942). He employed the budget equation for the turbulent kinetic
energy per unit mass (TKE) EK to quantify the intensity of turbulence, and postulated that
the turbulent exchange coefficients KM, KH and KD are fully characterized by the turbulent
velocity scale uT, where uT = E1/2

K , and the turbulent time scale tT, defined as the ratio
tT = EK/εK (where εK is the TKE dissipation rate). This concept yields the relations:

εK = EK

tT
, (1)

KM ∼ KH ∼ KD ∼ u2
TtT ∼ uTl, (2)

where l = E1/2
K tT is the turbulent length scale, whereas the omitted proportionality coeffi-

cients in Eq. 2 are assumed to be universal dimensionless constants.
This approach, although quite successful when applied to neutrally stratified flows, is

not quite applicable to stable stratification. Indeed, Eq. 2 implies that the turbulent Prandtl
number PrT ≡ KM/KH is nothing but a universal constant. In the context of the Kolmogo-
rov type closures based on the sole use of the TKE budget equation, this inevitably implies
the total decay of turbulence already at moderately stable stratification. However, numerous
experiments, large-eddy simulations (LES) and direct numerical simulations (DNS) demon-
strate that PrT drastically increases with increasing static stability (see Fig. 5 below) and,
moreover, that turbulence is continuously maintained by the velocity shear even in very stable
stratification. This contradiction was overtaken heuristically, prescribing essentially differ-
ent stability dependences of the turbulent length scales for momentum lM and heat lH (and,
therefore, for the time scales tM and tH). In so doing, the Kolmogorov turbulence closure,
originally formulated and justified for neutrally stratified boundary-layer flows (where l can
be taken proportional to the distance, z, over the surface) factually became unclosed.

In the energy- and flux-budget (EFB) closure (Zilitinkevich et al. 2007, 2008, 2009) we
refined budget equations for the basic second moments: the two energies, the TKE EK and
the turbulent potential energy (TPE) EP, and the vertical turbulent fluxes of momentum and
potential temperature, τi (i = 1, 2) and Fz ; removed the artificial turbulence cut-off in the
“supercritical” stratification (inherent to the “one energy equation approach”); and, instead
of the traditional postulation of the down-gradient turbulent transport, derived the flux-profile
relationships and determined the eddy viscosity and eddy conductivity from the steady-state
version of the budget equations for τi and Fz .

In the present paper we further advance the physical background of the EFB closure, intro-
duce a new prognostic equation for the turbulent dissipation time scale tT, and extend the
theory to non-steady turbulence regimes accounting for non-gradient and non-local turbulent
transports (when the traditional concepts of eddy viscosity and eddy conductivity become
generally inconsistent).
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A Hierarchy of EFB Turbulence Closure Models 345

In Sect. 2, we refine our approximation of the basic energy- and flux-budget equations,
in particular, accounting for the difference between the dissipation time scales for TKE and
TPE. In Sect. 3, focused on the steady-state (algebraic) version of the closure, we develop
a new model of the inter-component exchange of TKE (instead of the traditional hypoth-
esis of “return-to-isotropy” shown to be inconsistent with modern experimental evidence);
clarify the concept of the turbulent dissipation time scale and determine its stability depen-
dence; demonstrate how the steady-state version of the EFB closure relates to the Monin
and Obukhov (1954) similarity theory; verify the EFB closure against available empirical
data, and determine dimensionless universal constants of the theory. In Sect. 4, we extend the
theory to non-steady regimes of turbulence; introduce a relaxation equation for the turbulent
dissipation time scale; and propose a hierarchy of the EFB closure models including its most
general version based on prognostic equations for all essential parameters of turbulence: EK,
EP, τi , Fz and tT, and simpler versions employing the concepts of eddy viscosity and eddy
conductivity.

We recall that the background stratification of density is characterized by the gradient
Richardson number:

Ri ≡ N 2

S2 , (3)

where S and N are the velocity shear and the Brunt–Väisälä frequency:

S2 =
(

∂U

∂z

)2

+
(

∂V

∂z

)2

, (4)

N 2 = g

ρ0

∂ρ

∂z
= β

∂�

∂z
. (5)

Here, z is the height; U and V are the mean velocity components along the horizontal axes
x and y, ρ is the mean density, ρ0 is its reference value, g = 9.81 m s−1 is the acceleration
due to gravity, β = g/T0 is the buoyancy parameter, � is the mean potential temperature
linked to the absolute temperature T by the relation: � = T (P0/P)1−1/γ , where P is the
pressure, P0 and T0 are reference values of P and T , and γ = cp/cv = 1.41 is the ratio of
specific heats. In dry air ρ = β�, so that the density stratification is fully controlled by the
vertical gradient of potential temperature.

Since Richardson (1920), it was generally believed that in stationary homogeneous flows
the velocity shear becomes incapable of maintaining turbulence (which therefore collapses)
when Ri exceeds some critical value, Ric (with the conventional value of Ric = 0.25). On
the contrary, in atmospheric and oceanic modelling, the turbulence cut-off at “supercritical”
values of Ri was understood as an obvious artefact and prevented with the aid of “correction
coefficients” specifying the ratios KM/(uTl) and KH/(uTl) as essentially different functions
of Ri (Mellor and Yamada 1974). The EFB closure automatically accounts for the mainte-
nance of turbulence by the velocity shear at any Ri and does not require any artificial tricks to
prevent the turbulence cut-off. It does not imply any critical Ri in the traditional sense (as the
boundary between turbulent and laminar regimes) but discloses, just around Ri ≈0.2–0.3,
quite a sharp transition between the two turbulent regimes of principally different natures:
strong turbulence at small Ri and weak turbulence at large Ri. Following the EFB closure
(Elperin et al. 2005; Zilitinkevich et al. 2007), other recently published turbulent closure mod-
els (Mauritsen et al. 2007; Canuto et al. 2008; L’vov et al. 2008; Sukoriansky and Galperin
2008) also do not imply a critical Richardson number.
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2 Basic Equations

2.1 Geophysical Approximation

Below we formulate the EFB closure in terms of atmospheric flows characterized by the
following typical features:

• Vertical scales of motions (maximum ≈10 km) are much smaller than horizontal scales
(∼103–104 km), which is why the mean-flow vertical velocity, W , is orders of magnitude
smaller than the horizontal velocities, U and V . Hence the vertical turbulent transports
are comparable with or even dominate the mean flow vertical advection, whereas the
streamwise horizontal turbulent transport is usually negligible compared to the horizon-
tal advection.

• Typical vertical gradients (along the x3 or z axis) of the mean wind velocity U = (U1, U2,
U3) = (U , V , W ), potential temperature � and other variables are orders of magnitude
larger than the horizontal gradients (along the x1, x2 or x, y axes). Hence, direct effects
of the mean-flow horizontal gradients on turbulent statistics are negligible, and the TKE
generation is controlled almost entirely by the two components of the velocity gradient:
∂U/∂z and ∂V/∂z.

Therefore only the components τ13 = 〈uw〉 , τ23 = 〈vw〉 of the Reynolds stresses τi j =〈
ui u j

〉
and the vertical component F3 = Fz = 〈θw〉 of the potential temperature flux Fi =

〈θui 〉 are needed to close the Reynolds-averaged momentum equations:

DU

Dt
= f V − 1

ρ0

∂ P

∂x
− ∂τ13

∂z
, (6)

DV

Dt
= − f U − 1

ρ0

∂ P

∂y
− ∂τ23

∂z
, (7)

and the thermodynamic energy equation:

D�

Dt
= −∂ Fz

∂z
+ J. (8)

Here, D/Dt = ∂/∂t + Uk∂/∂xk , t is time, f = 2� sin ϕ is the Coriolis parameter, �i is
the Earth’s rotation vector parallel to the polar axis (|�i | ≡ � = 0.76 × 10−4 s−1), ϕ is the
latitude, ρ0 is the mean density, J is the heating/cooling rate (J = 0 in adiabatic processes),
P is the mean pressure, u = (u1, u2, u3) = (u, v, w) and θ are the velocity and the potential-
temperature fluctuations; and angle brackets denote the ensemble-averaged values [see e.g.
Holton 2004; Kraus and Businger 1994]. Generally, atmospheric dynamics problems include
the specific-humidity equation (analogous to Eq. 8), which involves the vertical turbulent flux
of humidity Fq contributing to the vertical turbulent flux of buoyancy: Fzβ + 0.61gFq . As
concerns the turbulence closure, this does not cause additional problems.

General forms of the budget equations for the Reynolds stress, potential-temperature flux
and the “energy” of the potential temperature fluctuations Eθ = 〈

θ2
〉
/2 are

Dτi j

Dt
+ ∂

∂xk
�

(τ)
i jk = −τik

∂U j

∂xk
− τ jk

∂Ui

∂xk
−

[
ε
(τ)
i j − β(Fjδi3 + Fiδ j3) − Qi j

]
, (9)

DFi

Dt
+ ∂

∂x j
�

(F)
i j = βδi3

〈
θ2〉 − 1

ρ0
〈θ∇i p〉 − τi j

∂�

∂z
δ j3 − Fj

∂Ui

∂x j
− ε

(F)
i , (10)

DEθ

Dt
+ ∇ · �θ = −Fz

∂�

∂z
− εθ , (11)
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A Hierarchy of EFB Turbulence Closure Models 347

where δi j is the unit tensor (δi j = 1 for i = j and δi j = 0 for i 
= j); see, e.g., Kaimal and
Finnigan (1994), Kurbatsky (2000) and Cheng et al. (2002). Other notations in Eqs. 9–11are
as follows:

�
(τ)
i jk, �F

i j and �θ are the third-order moments describing turbulent transports of the sec-
ond-order moments:

�
(τ)
i jk = 〈

ui u j uk
〉 + 1

ρ0

(〈pui 〉 δ jk + 〈
pu j

〉
δik

)
, (12)

�
(F)
i j = 〈

ui u j θ
〉 + 1

2ρ0
〈p θ〉 δi j , (13)

�θ = 1

2

〈
θ2 u

〉
, (14)

Qi j are correlations between fluctuations of the pressure, p, and the velocity shear,
∂ui/∂x j :

Qi j = 1

ρ0

〈
p

(
∂ui

∂x j
+ ∂u j

∂xi

)〉
, (15)

ε
(τ)
i j , ε

(F)
i and εθ are the terms associated with the kinematic viscosity ν and the temperature

conductivity κ:

ε
(τ)
i j = 2ν

〈
∂ui

∂xk

∂u j

∂xk

〉
, (16)

ε
(F)
i = −κ (〈ui � θ〉 + Pr 〈θ � ui 〉) , (17)

εθ = −κ 〈θ � θ〉 , (18)

where Pr = ν/κ is the Prandtl number.
The terms ε

(τ)
i i , ε

(F)
i and εθ are essentially positive and represent the dissipation rates of

the statistical moments under consideration. Following Kolmogorov (1941, 1942) they are
determined as the ratios of the moments to their dissipation time scale, tT:

ε
(τ)
i i = τi i

tT
, ε

(F)
i = Fi

CF tT
, εθ = Eθ

CP tT
, (19)

where τi i ≡ 〈
u2

i

〉
, CP and CF are dimensionless universal constants quantifying the difference

between the dissipation time scales for different moments. All these time scales are taken
proportional to the master time scale tT.

2.2 EFB Model Equations

From this point onwards we limit our analysis to the geophysical approximation and basi-
cally follow Zilitinkevich et al. (2007, 2008, 2009). The diagonal terms of the Reynolds stress
tensor τi i ≡ 〈

u2
i

〉
make doubled components of TKE: Ei ≡ 〈

u2
i

〉
/2, and their budgets are

expressed by Eq. 9 for i = j :

DEi

Dt
+ ∂

∂z
�i = −τi3

∂Ui

∂z
+ 1

2
Qii − Ei

tT
(i = 1, 2), (20)

DEz

Dt
+ ∂

∂z
�z = βFz + 1

2
Q33 − Ez

tT
, (21)
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where

�i = 1

2

〈
u2

i w
〉

(i = 1, 2), (22)

�3 = 1

2

〈
w3〉 + 1

ρ0
〈pw〉 . (23)

Summing up Eqs. 20 and 21, yields the familiar TKE budget equation:

DEK

Dt
+ ∂

∂z
�K = −τi3

∂Ui

∂z
+ βFz − EK

tT
, (24)

where the third term on the right-hand side (r.h.s.) represents the TKE dissipation rate:

εK = EK

tT
, (25)

and �K represents the vertical turbulent flux of TKE:

�K = 1

2
〈ui uiw〉 + 1

ρ0
〈p w〉 . (26)

The sum of the terms Qii (the trace of the tensor Qi j ) vanishes because of the continu-
ity equation: ∂ui/∂xi = 0. Hence, these terms are neither productive nor dissipative and
describe the kinetic energy exchange between the “richer” component (fed by shear) and the
“poorer” transverse and vertical components. Traditionally they were determined through
the “return-to-isotropy” hypothesis (Rotta 1951):

Qii = −2Cr

3tT
(3Ei − EK), (27)

where the coefficient Cr was treated as a universal dimensionless constant accounting for the
difference between the energy-transfer and the energy-dissipation time scales. As revealed
in our prior papers, this formulation serves as a reasonable approximation only in neutral
and near-neutral stratification but becomes unrealistic in pronounced stable stratification. In
particular, it implies that the share of the transverse velocity fluctuations Ey/EK does not
depend on Ri, whereas in reality it significantly increases with increasing Ri so that Ey/EK

and Ex/EK gradually approach each other (see Fig. 3 below). In the present paper we develop
a new energy exchange concept accounting for this effect and retain Eq. 27 only for neutral
stratification.

Although the budget equation for the squared fluctuation of potential temperature Eθ ,
Eq. 11, was known over decades (see Lumley and Panofsky 1964; Tennekes and Lumley
1972), its crucial importance for the turbulence energetics was long overlooked. Ostrovsky
and Troitskaya (1987) and more recently Zilitinkevich et al. (2007) emphasized the close
relation between Eθ and the TPE. For the background of stable stratification characterized
by the Brunt–Väisälä frequency N , the vertical displacement of a fluid parcel from its initial
level z to the level z + δz causes the density increment δρ = (∂ρ/∂z)δz = (ρ0/g)N 2δz,
where ρ is the mean density. Then the increment in potential energy per unit mass δEP =
(1/δz)

∫ z+δz
z (g/ρ0)δρzdz is expressed as δEP = 1

2 [(g/ρ0)δρ]2/N 2 = 1
2 (βδθ)2/N 2 =

(β/N )2δEθ , where δEθ = 1
2 (δθ)2 is the increment in the “energy” of the potential temper-

ature fluctuations. This yields the expression for the TPE:

EP =
(

β

N

)2

Eθ . (28)
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In contrast to the potential energy of the mean flow, which depends on the temperature varia-
tion linearly, the TPE is proportional to the squared temperature fluctuation. This reminds us
of the concept of available potential energy determined by Lorenz (1955) as that part of the
total potential energy of the general circulation available for conversion into kinetic energy.
The same is true for the TPE: it is just the potential energy that can be converted into TKE
and vice versa.

In a geophysical approximation, the budget equation for Eθ , Eq. 11, and the corresponding
equation for EP read:

DEθ

Dt
+ ∂

∂z
�θ = −Fz

∂�

∂z
− Eθ

CPtT
, (29)

DEP

Dt
+ ∂

∂z
�P = −βFz − EP

CPtT
, (30)

where �θ and �P are the third-order turbulent fluxes of the second-order fluxes Eθ and EP,
respectively:

�P =
(

β

N

)2

�θ = 1

2

(
β

N

)2 〈
θ2w

〉
. (31)

The last terms on the r.h.s. of Eqs. 29 and 30 are the dissipation rates: εθ = Eθ /(CPtT) and
εP = EP/(CPtT).

The buoyancy flux, βFz , appears in Eqs. 24 and 30 with opposite signs and describes
nothing but the energy exchange between TKE and TPE. In the budget equation for the total
turbulent energy (TTE = TKE + TPE), defined as

E = EK + EP = 1

2

(

〈ui ui 〉 +
(

β

N

)2 〈
θ2〉

)

, (32)

the terms ±βFz cancel each other. Thus there are no grounds to consider the buoyancy-flux
term in the TKE equation as an ultimate “killer” of turbulence.

In Eq. 9 for the vertical components of the turbulent flux of momentum, τi3 (i = 1, 2), the
molecular-viscosity term, ε

(τ)
i3 , is small (because the smallest eddies associated with viscous

dissipation are presumably isotropic; see L’vov et al. 2009), and the dissipative role is played
by the combination of terms ε

(τ)
i3(eff) = −βFi − Qi3. Zilitinkevich et al. (2007) called this

combination the “effective dissipation rate” and expressed it through the Kolmogorov closure
hypothesis:

ε
(τ)
i3(eff) ≡ −βFi − Qi3 = τi3

Cτ tT
= τi3εK

Cτ EK
, (33)

where Cτ is the effective-dissipation time-scale constant. Then the budget equation for τi3

(i = 1, 2) simplifies to

Dτi3

Dt
+ ∂

∂z
�

(τ)
i = −2Ez

∂Ui

∂z
− τi3

Cτ tT
, (34)

where �
(τ)
i is the vertical turbulent flux of τi3:

�
(τ)
i = 〈

uiw
2〉 + 1

ρ0
〈p ui 〉 . (35)
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Fig. 1 Comparison of the effective dissipation rate of the momentum flux calculated by its definition (abscissa)
and by the Kolmogorov closure hypothesis (ordinate), after LES [our DATABASE64; see Esau (2004, 2009),
Esau and Zilitinkevich (2006)] for conventionally neutral (CN) and nocturnal stable (NS) atmospheric bound-
ary layers. The linear dependence (grey corridor) corresponds to our approximation, Eq. 33

In Zilitinkevich et al. (2007), the concept of the effective dissipation, Eq. 33, was based on
our prior analysis of the Reynolds stress equation in k-space using the familiar “τ -approx-
imation” (Elperin et al. 2002, 2006). In Fig. 1 we compare Eq. 33 with data from large-
eddy simulation (LES) of the two types of atmospheric boundary layer: “nocturnal stable”
(NS, with essentially a negative buoyancy flux at the surface and neutral stratification in
the free flow) and “conventionally neutral” (CN, with a negligible buoyancy flux at the
surface and essentially stable static stability in the free flow). Admittedly, LES is unable
to directly reproduce εK, which is why we estimated the r.h.s. of Eq. 33 approximately,
taking εK = −τi3∂Ui/∂z + βFz—as it follows from the steady-state version of Eq. 24.
In spite of the quite large spread of data points, Fig. 1 confirms that the effective dissipa-
tion ε

(τ)
13(eff),definition ≡ −βF1 − Q13 (abscissa) is basically proportional to the combination

τ13εK/EK (ordinate). The grey corridor covering most of the data points corresponds to
Eq. 33 with 0.1 < Cτ < 1, which is consistent with our independent estimate of Cτ = 0.2.

As demonstrated through a scaling analysis in Appendix A of Zilitinkevich et al. (2007),
the term ρ−1

0 〈θ∂p/∂z〉 in Eq. 10 for the vertical turbulent flux of potential temperature Fz

can be taken proportional to the mean squared temperature, so that

ρ−1
0 〈θ∂p/∂z〉

β
〈
θ2

〉 = 1 − Cθ , (36)

where Cθ = constant < 1. In Fig. 2 we compare this hypothetical relation with data from
LES. Most of the data points (grey corridor) confirm Eq. 36. Then Eq. 10 simplifies to

DFz

Dt
+ ∂

∂z
�(F)

z = −2(Ez − Cθ EP)
∂�

∂z
− Fz

CFtT
. (37)

Equations 20, 21, 24 determine the turbulent kinetic energies Ei (i = 1, 2, 3) and EK;
Eqs. 29, 30 determine the “energy” of the temperature fluctuations Eθ and the TPE EP;
Eqs. 34, 37 determine the vertical turbulent fluxes of momentum τi3 (i = 1, 2) and potential
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Fig. 2 Comparison of the first (abscissa) and the second (ordinate) terms on the r.h.s. of Eq. 10, after LES
(our DATABASE64). The linear dependence (grey corridor) corresponds to our approximation, Eq. 36

temperature Fz . More specifically, the vertical TKE Ez is determined in Sect. 3.2. The tur-
bulent dissipation time scale tT is determined in Sect. 3.4, and the prognostic equation for tT
closing the above system is proposed in Sect. 4.1.

3 Steady-State Regime of Turbulence

3.1 Stability Parameters, Eddy Viscosity and Eddy Conductivity

We consider the EFB model in its simplest, algebraic form, neglecting non-steady terms in
all budget equations. In the TKE budget Eq. 24 the first term on the r.h.s. is the rate of the
TKE production:

− τi3
∂Ui

∂z
= τ S, (38)

where τ and S are absolute values of the vectors τ = (τxz, τyz) and S = (∂U/∂z, ∂V/∂z);
and the second term βFz is the rate of conversion of TKE into TPE. The ratio of these terms,
termed the “flux Richardson number”:

Rif ≡ −βFz

τ S
, (39)

characterizes the effect of stratification on turbulence similar to the gradient Richardson num-
ber Ri, Eq. 3. Clearly, Rif can also be treated as the ratio of the velocity-shear length scale
τ 1/2/S to the Obukhov (1946) stratification length scale L:

Rif = τ 1/2

SL
, (40)

where L is defined as

L = τ 3/2

−βFz
. (41)
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Furthermore, the dimensionless height

ς = z/L (42)

characterizes the effect of stratification similar to Ri or Rif (Monin and Obukhov 1954).
The steady-state versions of the budget equations, Eqs. 34 and 37, for the vertical turbulent

fluxes τi3 and Fz for the momentum and the potential temperature, yield the flux-gradient
relations that can be expressed in terms of the eddy viscosity KM and eddy conductivity KH:

τi3 = −KM
∂Ui

∂z
, KM = 2Cτ EztT, (43)

Fz = −KH
∂�

∂z
, KH = 2CFtT Ez

(
1 − Cθ

EP

Ez

)
. (44)

The latter relations yield the following expression for the turbulent Prandtl number:

PrT ≡ KM

KH
≡ Ri

Rif
= Cτ

CF

(
1 − Cθ

EP

Ez

)−1

. (45)

It is clearly seen from the steady-state version of the TKE budget, Eq. 24, that Rif in the
steady-state regime can only increase with increasing Ri, but obviously cannot exceed unity.
Hence it should tend to a finite asymptotic limit (estimated in Sect. 3.3 as R∞ = 0.25), which
corresponds to the asymptotically linear Ri dependence of PrT:

Rif → R∞, PrT → Ri

R∞
at Ri → ∞. (46)

Similar reasoning, including the approximation of PrT ≈ Pr (0)
t + Ri/R∞ for Ri � 1, and

the estimate of R∞ ≈ 0.25, have already been proposed by Schumann and Gerz (1995).
Because PrT → ∞ at Ri → ∞, it follows from Eq. 45 that the constant Cθ (Eqs. 36–37)
satisfies the relation

Cθ = (Ez/EP)Ri→∞ , (47)

and therefore is expressed through to other EFB-model constants.
As is evident from the above analysis, the concepts of eddy viscosity and eddy conduc-

tivity are justified only in the steady state, when the left-hand sides (l.h.s.) of the flux budget
equations, Eqs. 34 and 37, can be neglected.

3.2 Inter-Component Exchange of Turbulent Kinetic Energy

In the geophysical flows under consideration, the mean wind shear generates the energy of
the longitudinal velocity fluctuations Ex , which feeds the transverse Ey and the vertical Ez

energy components. The inter-component energy exchange term in the momentum-flux bud-
get equation, Eq. 9, namely Qi j specified by Eq. 15, is traditionally parametrized through
the Rotta (1951) “return-to-isotropy” hypothesis, Eq. 27. In combination with the energy
budget Eqs. 20 and 21, it results in expressions of the longitudinal, Ax = Ex/EK, transverse,
Ay = Ey/EK, and vertical, Az = Ez/EK, shares of TKE characterized by the following
features: (i) in neutral stratification Az = Ay ; (ii) with strengthening stability Ax increases
at the expense of Az (which therefore decreases), while Ay does not depend on stratification.

However, these features are inconsistent with modern experimental evidence. Available
atmospheric data demonstrate that, (i) in neutral stratification A(0)

z ≡ Az
∣∣
ς=0 is essentially

smaller than A(0)
y ≡ Ay

∣∣
ς=0 , (ii) with strengthening stability Ay increases and Ax decreases,
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Fig. 3 The shares of the turbulent kinetic energy EK: longitudinal Ax = Ex /EK (along the mean wind,
red circles), transverse Ay = Ey/EK (green squares) and vertical Az = Ez/EK (black triangles), after the
Kalmykia-2007 field campaign of the A.M. Obukhov Institute of Atmospheric Physics of the Russian Acad-
emy of Sciences (courtesy of Rostislav Kouznetsov). The lines show our inter-component energy exchange
model, Eq. 50, with C0 = 0.125, C1 = 0.5 and C2 = 0.72, converted into z/L dependences with the aid of
Eq. 71

tending towards horizontal isotropy: Ay → Ax , (iii) the vertical energy share, Az , generally
decreases with increasing ς = z/L , and at ς > 1 levels off at a quite small but non-zero
limit (see for example Fig. 3). It is conceivable that the stable stratification, suppressing the
energy of the vertical velocity Ez , facilitates the energy exchange between the horizontal
velocity energies Ey and Ex , and thereby causes a tendency towards isotropy in the hor-
izontal plane. This newly revealed feature calls for revision of the traditional concept of
“return-to-isotropy”.

We characterize the static stability by the normalized flux Richardson number, Rif/R∞,
varying from zero in neutral stratification to 1 in extremely stable stratification, and propose
the following model reflecting the above principal features of the TKE redistribution between
the velocity components:

Q11 = −2Cr

tT

(
Ex − 1 − C1 − C2 Rif/R∞

3
E⇔

)
, (48a)

Q22 = −2Cr

tT

(
Ey − 1 + C1 + C2 Rif/R∞

3
E⇔

)
, (48b)

Q33 = −2Cr

tT

(
Ez − EK + 2

3
E⇔

)
, (48c)

where E⇔ is that part of the TKE participating in the inter-component energy exchange:

E⇔ =
(

1 + C0
Rif

R∞

)
EK − (1 + C0)

Rif

R∞
Ez . (49)
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Substituting the energy exchange model, Eqs. 48–49, in the steady-state version of the energy-
budget equations 20, 21 yields:

Ax = 1

(1+Cr)(1−Rif )
+

(
1 − C1 − C2

Rif

R∞

)
Cr

3(1 + Cr)

[
1 + Rif

R∞
[
C0 − (1 + C0)Az

]]
,

(50a)

Ay =
(

1 + C1 + C2
Rif

R∞

)
Cr

3(1 + Cr)

[
1 + Rif

R∞
[
C0 − (1 + C0)Az

]]
, (50b)

Az = Ez

EK
= Cr(1 − 2C0 Rif/R∞)(1 − Rif ) − 3Rif

(1 − Rif ){3 + Cr[3 − 2(1 + C0)Rif/R∞]} , (50c)

where C0, C1 and C2 are dimensionless empirical constants. Figure 3 shows the energy shares
Ai , determined by Eq. 50 and converted into the z/L dependence using Eq. 71 (Sect. 3.4).
Fitting theoretical curves, Eqs. 50a and 50b, to rather scarce data presented in the figure
yields tentative estimates of C1 = 0.5 and C2 = 0.72. In our further analyses they are not
needed. Of the TKE shares we use only Az , Eq. 50c, to determine Ez in Eqs. 43 and 44 for
the eddy viscosity and eddy conductivity.

According to Eq. 50c, Az varies between the following limits:

Az |Ri=0 = A(0)
z = Cr

3(1 + Cr)
, (51)

Az |Ri→∞ = A(∞)
z = Cr(1 − 2C0) − 3R∞

1−R∞
3 + Cr(1 − 2C0)

, (52)

where the empirical constants C0, Cr and R∞ are determined below.

3.3 Stability Dependencies of the Basic Parameters of Turbulence, and Determination
of Empirical Constants

In the steady state, Eqs. 20, 21, 24, 29, 30, 32, 34 and 37 reduce to algebraic system of
equations governing local balances between the generation and dissipation terms. Although
this system is not closed (until the turbulent time scale tT is determined), it allows us to deter-
mine basic dimensionless parameters of turbulence as universal functions of the gradient
Richardson number Ri, Eq. 3.

Combining Eqs. 24, 30 and Eq. 32 yields the following expressions of the shares of TKE
and TPE as universal functions of the flux Richardson number:

EK

E
= 1 − Rif

1 − (1 − CP)Rif
, (53)

EP

E
= CP Rif

1 − (1 − CP)Rif
. (54)

Then using Eq. 47 to determine Cθ :

Cθ = (1 − R∞)A(∞)
z

CP R∞
, (55)

and combining Eqs. 45, 53–55 we determine the gradient Richardson number Ri and the
turbulent Prandtl number PrT:

Ri = PrT Rif = Cτ

CF
Rif

(

1 − Rif (1 − R∞)A(∞)
z

R∞(1 − Rif )Az(Rif )

)−1

. (56)
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Fig. 4 Ri dependence of the flux Richardson number Rif = −βFz/(τ S) for meteorological observations:
slanting black triangles (Kondo et al. 1978), snowflakes (Bertin et al. 1997); laboratory experiments: slanting
crosses (Rehmann and Koseff 2004), diamonds (Ohya 2001), black circles (Strang and Fernando 2001); DNS:
five-pointed stars (Stretch et al. 2001); LES: triangles (our DATABASE64). Solid line shows the steady-state
EFB model, Eq. 56, with Rif → R∞ = 0.25 at Ri → ∞

Fig. 5 Ri dependence of the turbulent Prandtl number PrT = KM/KH, after the same data as in Fig. 4
(meteorological observations, laboratory experiments, DNS, and LES). Solid line shows the steady-state EFB
model, Eq. 56

Equations 50c, 56 determine Ri as the universal infinitely increasing function of Rif and,
thereby, implicitly determine

• Rif as universal monotonically increasing function of Ri approaching R∞ at Ri → ∞;
• and PrT as infinitely increasing function of Ri having the asymptote: PrT → Ri/R∞ at

Ri → ∞.

Comparison of these functions with data in Figs. 4 and 5 yields quite certain empirical esti-
mate of R∞ = 0.25 (cf. Schumann and Gerz 1995), implying a very strong asymptotic Ri
dependence of the turbulent Prandtl number: PrT ≈ 4Ri at Ri � 1.

Data for very small Ri in Figs. 4 and 5 are consistent with the well-established empiri-
cal value of the turbulent Prandtl number in neutral stratification (e.g., Elperin et al. 1996;
Churchill 2002; Foken 2006):

PrT → Pr (0)
T = Cτ

CF
= 0.8 at Ri → 0. (57)
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Fig. 6 Ri dependence of the vertical share of TKE Az = Ez/EK, for meteorological observations: squares
[CME = Carbon in the Mountains Experiment, Mahrt and Vickers (2005)], circles [SHEBA = Surface Heat
Budget of the Arctic Ocean, Uttal et al. (2002)], overturned triangles [CASES-99 = Cooperative Atmosphere-
Surface Exchange Study, Poulos et al. (2002); Banta et al. (2002)], six-pointed stars [Lindenberg station of
the German Weather Service, Engelbart et al. (2000)]; laboratory experiments: diamonds (Ohya 2001); DNS:
five-pointed stars (Stretch et al. 2001). Solid line shows the steady-state EFB model, Eqs. 50c and 56, with
C0 = 0.125

As follows from Eq. 56 in a linear approximation with respect to Ri, the turbulent Prandtl
number at Ri � 1 behaves as

PrT ≈ Pr (0)
T + (1 − R∞)A(∞)

z

R∞ A(0)
z

Ri. (58)

Taking empirical values of R∞ = 0.25, A(0)
z = 0.2 and A(∞)

z = 0.03 (see Fig. 6 below),
Eq. 58 yields PrT ≈ 0.8 + 0.45Ri . This means that PrT in the strong-turbulence regime
typical of boundary-layer flows varies insignificantly, increasing from 0.8 at Ri = 0–0.9 at
Ri = 0.25. In the background of the quite natural spread of data, it is practically impossible to
recognise such a weak dependence empirically. Over decades, this inherent feature of bound-
ary-layer turbulence has served as a basis for the widely used assumption PrT = constant
and given the name “Reynolds analogy”. Our theory justifies it as a reasonable approximation
for the strong-turbulence regime (0 < Ri < 0.25), and reveals its absolute inapplicability to
the weak-turbulence regime (Ri > 1), where the Ri dependence of PrT becomes an order
of magnitude stronger: d PrT/d Ri ≈ 4. Zilitinkevich (2010) has already pointed out the
strongly different Ri dependences of PrT at large and small Ri in connection with the con-
ceptual inadequacy of the currently used design of DNS of the stably stratified turbulence
for small Ri.

Owing to Eq. 56, the above Eqs. 50c, 53 and 54 determine the vertical share of TKE Az ,
and the ratios EK/E and EP/E as universal functions of Ri. Figure 6 shows empirical data
on Az together with theoretical curve plotted after Eq. 50c. Inspection of this figure yields
rough estimates of A(0)

z = 0.2 and A(∞)
z = 0.03. Consequently, Eq. 51 yields Cr = 1.5, and

using the above estimate of R∞ = 0.25, Eq. 52 yields C0 = 0.125.
Figure 7 gives an empirical verification of the Ri dependence of EP/E after Eq. 54. At

Ri → ∞ it has the limit:

EP

E
→ CP R∞

1 − (1 − CP)R∞
. (59)
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Fig. 7 Ri dependence of the potential-to-total turbulent energy ratio EP/E , for meteorological observations:
overturned triangles (CASES-99), and laboratory experiments: diamonds (Ohya 2001). Solid line shows the
steady-state EFB model, Eqs. 54, 56

Empirical data in Fig. 7 are basically consistent with the curve and allow for estimating
the limit: EP/E |Ri→∞ → 0.13. Using the above estimate of R∞ = 0.25, this yields
CP = 0.86. We recall that CP is the ratio of the dissipation time scales for TKE and TPE.
Venayagamoorthy and Stretch (2006, 2010) investigated these scales using experimental
data on grid-generated turbulence (Srivat and Warhaft 1983; Itsweire et al. 1986; Yoon and
Warhaft 1990; Mydlarski 2003) and data from DNS of the stably stratified (Shih et al. 2000)
and neutrally stratified (Rogers et al. 1989) homogeneous sheared turbulence. Their analy-
sis demonstrated that the time-scale ratio is relatively insensitive to Ri, which supports our
treatment of CP as a universal constant.

The steady-state version of Eq. 24 together with Eq. 43 yield the following Rif dependence
of the dimensionless turbulent flux of momentum:

(
τ

EK

)2

= 2Cτ Az(Rif )

(1 − Rif )
, (60)

while the steady-state version of Eq. 29 together with Eqs. 44–45 yield the Rif dependence
of the dimensionless turbulent flux of potential temperature:

F2
z

EK Eθ

= 2Cτ

CP

Az(Rif )

PrT
. (61)

Here, the function Az(Rif ) is determined from Eq. 50c and the function Rif (Ri), from
Eq. 56; hence Eq. 60 specifies the Ri dependence of (τ/EK)2 and Eq. 61, the Ri dependence
of F2

z /(EK Eθ ).
Available data on (τ/EK)2 together with the theoretical curve plotted after Eq. 60 are

shown in Fig. 8. They are consistent with the commonly accepted estimate of (τ/EK)Ri→0 =
0.2 (e.g., Monin and Yaglom 1971) and, in spite of a large spread, confirm a pronounced
decrease in τ/EK with increasing Ri. Using this figure we roughly estimate 2Cτ A(0)

z = 0.08
and (using the above empirical value of A(0)

z = 0.2) determine Cτ = 0.2.
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Fig. 8 Ri dependence of the squared dimensionless turbulent flux of momentum (τ/EK)2, for meteorological
observations: squares (CME), circles (SHEBA), overturned triangles (CASES-99); laboratory experiments:
diamonds (Ohya 2001); LES: triangles (our DATABASE64). Solid line shows the steady-state EFB model,
Eq. 60

Fig. 9 Ri dependence of the squared dimensionless turbulent flux of potential temperature F2
z /(EK Eθ ), for

meteorological observations: squares (CME), circles (SHEBA), overturned triangles (CASES-99); laboratory
experiments: diamonds (Ohya 2001); LES: triangles (our DATABASE64). Solid line shows the steady-state
EFB model, Eq. 61

Empirical verification of Eq. 61 shown in Fig. 9 demonstrates a reasonably good corre-
spondence between the theory and data, and allows for determining the small-Ri limit:

(
F2

z

EK Eθ

)

Ri→0

= 2Cτ

CP

A(0)
z

Pr (0)
T

= 2A(0)
z CF

CP
= 0.12, (62)

which yields CF/CP = 0.3. Since CP = 0.86 is already determined, we obtain CF = 0.25.
The above estimates provide empirical values of our basic dimensionless constants:

C0 = 0.125, CF = 0.25, CP = 0.86, Cr = 1.5, Cτ = 0.2, R∞ = 0.25. (63)

We admit that the empirical foundation of these estimates is not quite solid. We deliberately
selected datasets shown in different figures to avoid biasing clouds of data points. Our reason
is that the algebraic version of the model selected for validation against empirical data is
valid only for stationary homogeneous turbulence, whereas available datasets (except DNS
of the stably stratified turbulence for given Richardson numbers) basically correspond to
heterogeneous and/or non-stationary turbulence. Our estimation of the empirical constants
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from quite limited and not fully reliable datasets is to some extent justified by the facts that
the constants are interdependent (changing one of them we are forced to change all others),
and the number of constants is less than the number of the employed empirical dependen-
cies. This made it possible to determine the entire set of constants searching for the optimal
solution to the over-determined set of algebraic relations expressing the unknown constants
through the measurable parameters.

As follows from Eq. 47, the constant Cθ = lim(Ez/EP) |Ri→∞ is not independent.
Then the identity Ez/EP = Az(E/EP − 1), Eq. 52 for A(∞)

z , and our empirical estimate of
lim(E/EP) |Ri→∞ = 8 (resulted form Eq. 59 and Fig. 7) yield:

Cθ = Cr(1 − 2C0)(1 − R∞) − 3R∞
[1 + (CP − 1)R∞][3 + Cr(1 − 2C0)] = 0.105. (64)

The above theoretical results are quite unusual considering that the stability dependenc-
es of the dimensionless parameters of turbulence, in particular, the Ri dependencies of the
flux Richardson number Rif and the turbulent Prandtl number PrT, given by Eq. 56, are
determined from an unclosed system of equations, regardless of the particular formulation
of the turbulent dissipation time scale tT. The latter is determined in the next section from
asymptotic analysis of the velocity shear and TKE budget in the strong- and weak-turbulence
regimes.

3.4 Turbulent Dissipation Time and Length Scales

The time scale tT or the length scale l appear in the Kolmogorov closure for the dissipation
rates, Eqs. 1, 19, 25, 33. Until the present, determination of these scales remained one of
the most uncertain aspects of the turbulence closure problem. The only simple case, when l
is easily determined, is the non-rotating neutrally stratified boundary layer flow over a flat
surface, where the turbulent length scale is restricted only by the distance from the surface,z.
Then the “master length scale” l0 = l|Ri=0 can be taken proportional to z:

l0 = l|Ri=0 = Cl z, (65)

where Cl = constant.1 In stable stratification, an additional restriction appears due to the
balance between the kinetic energy of a fluid parcel and its potential energy acquired at
the expense of displacement. Using the Obukhov length scale L , Eq. 41, to quantify this
restriction, and leaving aside the restriction caused by the Earth’s rotation, it stands to reason
that the turbulent length scale l in the stably stratified boundary layer close to the surface
monotonically increases with increasing height: l = l0 ∼ z at z � L , whereas far from the
surface it levels off: l ∼ L at z � L .

In view of these two limits, the easiest way to determine l that comes to mind is the inter-
polation of the type l ∼ z/(1 + constant z/L), employing either the Obukhov length scale L
or alternative stratification length scales: E1/2

K /N , ε
1/2
K /N 3/2, etc. However, no such inter-

polation has led to satisfactory results. The problem is aggravated by the lack of high-quality
data on the stability dependence of tT or l. The point is that tT ≡ EK/εK or l ≡ E1/2

K tT are
virtual parameters determined through EK and εK, which both are not easily measurable.
Therefore hypothetical interpolation formulae for tT or l are verified indirectly, through the
overall performance of the turbulence closure model. This method does not offer a clear
understanding as to which elements of the closure are correct and which are erroneous.

1 Obukhov (1942) developed a method for determining the master length scale for complex domains.

123



360 S. S. Zilitinkevich et al.

Instead, Zilitinkevich et al. (2010) have revealed the stability dependence of the turbulent
time scale indirectly from the stability dependence of the velocity shear S determined quite
accurately in numerous field experiments and LES. For the neutrally stratified boundary-layer
flow (with Ri � 1, z/L � 1), taking l = Cl z and combining the steady-state version of
Eq. 24 with Eqs. 51 and 60 yields the familiar wall law:

S = τ 1/2

kz
, (66)

where k is the von Karman constant expressed through Cl and other dimensionless constants
of the EFB closure:

k = Cl

[
2Cτ Cr

3(1 + Cr)

]3/4

. (67)

Adopting the conventional empirical value of k = 0.4, yields Cl = 2.66, and hereafter we
include k instead of Cl in the set of basic empirical constants of the EFB closure.

Alternatively, in very stable stratification (at Ri > 1, z/L � 1), Eqs. 39 and 46 yield the
following asymptotic expression of the velocity shear:

S = −βFz

R∞τ
= τ 1/2

R∞L
. (68)

while straightforward interpolation between Eqs. 66 and 68 reads

S = τ 1/2

kz

(
1 + k

R∞
z

L

)
. (69)

Clearly, there are no a priori grounds to expect that Eq. 69 is valid between the limits set by
Eqs. 66 and 68. But fortunately this happens to be the case: Eq. 69 shows excellent agreement
with experimental data for steady-state non-rotating sheared flows over the entire range of
stratifications from neutral to extremely stable.

Indeed, the linear z/L dependence of the “velocity �-function”:

�M ≡ kz

τ 1/2 S = 1 + Cu
z

L
, (70)

established by Monin and Obukhov (1954) for the stably stratified atmospheric surface layer
(where Ri varies from 0 to 0.25, and z/L varies from 0 to 10), was confirmed in numerous
experiments (e.g., Monin and Yaglom 1971) and LES that yielded quite solid estimates of
the empirical constants k ≈ 0.4, Cu ≈ 1.6 (see Fig. 10). On the other hand, adopting the
conventional empirical value of k ≈ 0.4 and the estimate of R∞ ≈ 0.25 based on experi-
mental, LES and DNS data for very stably stratified flows (covering a wide range of Ri from
1 to 102), the empirical constant k/R∞ on the r.h.s. of Eq. 69 (precisely analogous to Cu in
Eq. 70) is also estimated as k/R∞ ≈ 1.6. What this means is that Eq. 69 agrees very well
with experimental data on the velocity gradient over the entire range of stratifications from
Ri < 0.25 (in the atmospheric surface layer) up to Ri ∼ 102 (in LES, DNS and laboratory
experiments). On these grounds Eq. 69 can be considered as a firmly established feature of
the locally balanced steady-state stably stratified sheared flows.

Combining Eq. 69 with the definition of the flux Richardson number, Eq. 40, yields the
following relations linking Rif and z/L:

Rif = kz/L

1 + k R−1∞ z/L
,

z

L
= R∞

k

Rif

R∞ − Rif
. (71)
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Fig. 10 Dimensionless wind-velocity gradient �M = (kz/τ1/2) (∂U/∂z) versus dimensionless height ς

based on the Obukhov length L in the stably stratified atmospheric boundary layer, after LES (our DATA-
BASE64). Solid line is plotted after Eq. 70 with Cu = k/R∞ = 1.6. Open triangles correspond to ς = z/L ,

black triangles to ς = z/[(1 + C��z/E1/2
K )L] with C� = 1

Furthermore, substituting −τi3∂Ui/∂z = τ S after Eq. 69 into the steady-state version of the
TKE budget equation, Eq. 24, and accounting for Eq. 71, yields the stability dependence of
the turbulent dissipation time and length scales, tT and l, in terms of either z/L or Rif :

l = tT E1/2
K = kz

(EK/τ)3/2

1 + k(R−1∞ − 1)z/L
= kz

(
EK

τ

)3/2 1 − Rif/R∞
1 − Rif

, (72)

where EK/τ is expressed by Eq. 60 as a universal function of Rif (that can be converted
into a function of z/L using Eq. 71). Equation 72 has quite expected asymptotes: l ∼ z
for z/L → 0, and l ∼ L for z/L → ∞. However, it essentially differs from the mere
linear interpolation between 1/z and 1/L , since the factor (EK/τ)3/2 on the r.h.s. of Eq. 72
strongly increases with increasing stability and approaches a finite limit only at Ri > 1,
which is outside geophysical boundary-layer flows, where Ri is typically less than 0.25 (see
the empirical Ri dependence of EK/τ in Fig. 8).

In addition to the effect of stratification, l and tT are affected by the angular velocity
of the Earth’s rotation � = 7.29 × 10−5 s−1, which involves the rotational length-scale
limit: E1/2

K /�. Accordingly, we determine the master length l0 interpolating between the
surface limit, Eq. 65 and the above mentioned rotational limit, which yields l0 = Cl z/(1 +
C��z/E1/2

K ), where C� is empirical dimensionless constant. Then Eq. 72 becomes

l = tT E1/2
K = kz

1 + C��z/E1/2
K

(
(EK/τ)3/2

1 + k(R−1∞ − 1)z/L

)
,

= kz

1 + C��z/E1/2
K

(
EK

τ

)3/2 (
1 − Rif/R∞

1 − Rif

)
. (73)
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Blackadar (1962) was probably the first who called attention to the effect of the Earth’s
rotation on the turbulent length scale. He proposed a relation analogous to Eq. 73 with the
only difference being that the rotational turbulent length-scale limit was defined through the
ratio U/ f , where U is the mean wind velocity (rather than turbulent velocity scale E1/2

K ) and
f = 2� sin ϕ is the Coriolis parameter (rather than the angular velocity of Earth’s rotation
�). In our notation Blackadar’s relation becomes l0 = Cl z/ (1 + CB f z/U ), where CB is an
empirical dimensionless coefficient. Relying upon its commonly accepted empirical value
CB = 1.5 × 103 (e.g., Sorbjan 2012) and accounting for the typical value of the intensity of
turbulence in the free atmosphere E1/2

K /U ∼ 10−3, yields a rough estimate of our dimen-

sionless constant: C� ∼ CB(E1/2
K /U ) ∼ 1. We do not strictly follow Blackadar (1962)

because E1/2
K is obviously more relevant than U as the turbulent velocity scale, and � is

more relevant than f as the rotational frequency scale. Indeed, f characterizes exclusively
the vertical component of the vector �i (i = 1, 2, 3), which affects the horizontal velocity
components, whereas turbulent motions are essentially three-dimensional and are affected
by all three components of �i (see Glazunov 2010).

It is significant that the traditional stratification parameters Rif = −τ S/Fz and z/L =
−βFzz/τ 3/2, widely used in the atmospheric boundary layer, are based on the local values
of turbulent fluxes τ and Fz . In the context of the turbulence closure problem, these are just
the unknown parameters to be determined. Therefore closure models formulated in terms of
Rif or z/L imply iteration procedures with no guarantee that errors in determining τ and Fz

(in very stable stratification comparable with τ and Fz as such) would not disrupt the con-
vergence of iterations. To overcome this difficulty, we propose a new energy stratification
parameter:

 = EP/EK. (74)

The steady-state versions of Eqs. 24 and 30 allow us to express Rif through  and vice versa:

Rif = 

CP + 
. (75)

In terms of , Eq. (73) becomes

tTE = l

E1/2
K

= kz

E1/2
K + C��z

(
EK

τ

)3/2 (
1 − 

∞

)
. (76)

Here, ∞ = CP R∞/(1−R∞) = 0.14 is the maximal value of  corresponding to extremely
stable stratification, and the additional subscript “E” in tTE indicates that Eq. 76 determines
the turbulent dissipation time scale tT in the equilibrium state corresponding to a local balance
between the production and the dissipation rates of turbulence. The ratio EK/τ is determined
after Eqs. 60 and 75:

(
EK

τ

)2

= CP

2Cτ (CP + )Az
, (77)

and the vertical share of TKE Az , is determined after Eqs. 50c and 75:

Az = Ez

EK
= ∞(Cr − 3/CP)(CP + ) − 2CrC0(CP + +∞)

3∞(1 + Cr)(CP + ) − 2Cr(1 + C0)(CP + ∞)
. (78)

As evidenced by Eqs. 50c (or 78), Az monotonically decreases with increasing stability and
at Rif → R∞ (or  → ∞) tends to a finite positive limit, whereas tTE, Eq. 72 diminishes
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to zero. Equations 76–78 close the algebraic version of the EFB closure. Clearly, determining
tTE (or l) is fully equivalent to the determining the TKE dissipation rate ε = EK/tK.

3.5 Application to Boundary-Layer Turbulence

Equation 71 links the flux Richardson number Rif with the dimensionless height ς = z/L
based on the Obukhov length scale L , Eq. 42. This relation is valid not too far from the
surface, namely at z � E1/2

K /�, where the master length scale l0, Eq. 73, reduces to Cl z.
However, in the upper part of the atmospheric boundary layer the effect of � on the master
length scale l0 can be significant. Indeed, the TKE at the upper boundary of the layer becomes
very small compared to its near-surface value. Taking � = 7.29 × 10−5s−1 and adopting a
rough estimate of E1/2

K |z=h ≈ 0.1 m s−1 yields the rotational length scale E1/2
K /� ∼ 103 m,

which is quite comparable with the typical boundary-layer height h ∼ 5 × 102 m. Anyhow,
close to the surface the effect of rotation on l0 is obviously negligible. Hence, using Eq. 71, the
dimensionless parameters of turbulence, presented in Sects. 3.2 and 3.3 as universal functions
of Rif , can be reformulated as universal functions of ς = z/L .

The concept of similarity of turbulence in terms of the dimensionless height ς has been
proposed by Monin and Obukhov (1954) for the “surface layer” defined as the lower one
tenth of the boundary layer, where the turbulent fluxes of momentum τ , temperature Fz and
other scalars, as well as the length scale L , are reasonably accurately approximated by their
surface values: τ = τ |z=0 ≡ u2∗, Fz = Fz |z=0 ≡ F∗, L = L |z=0 ≡ L∗. This widely
recognised similarity concept was confirmed, particularly for stable stratification, in numer-
ous field and laboratory experiments (see Monin and Yaglom 1971; Sorbjan 1989; Garratt
1992) and more recently through LES and DNS. Nieuwstadt (1984) extended this concept to
the entire stable boundary layer employing local z-dependent values of the fluxes τ, Fz and
the length L instead of their surface values: u2∗, F∗ and L∗.

The EFB closure as applied to steady-state non-rotating boundary-layer flows is fully
consistent with the Monin–Obukhov and Nieuwstadt similarity theories. Considering the
immense available information on atmospheric boundary-layer turbulence, we present exam-
ples of theoretical relationships potentially useful in modelling applications:

the ratio of TPE to TTE, Eq. 54:

EP

E
= CP R∞ς

R∞/k + [1 + (CP − 1)R∞] ς
, (79)

the vertical share of TKE, Eq. 50c:

Az = Ez

EK
=

R∞Cr + kς
[
Cr(1 − 2C0) − 3R∞(R∞+kς)

R∞+kς(1−R∞)

]

3R∞(1 + Cr) + kς[3 + Cr(1 − 2C0)] , (80)

the turbulent Prandtl number, Eq. 56:

PrT = Cτ

CF

[
1 + a1ς + a2ς

2

1 + a3ς

]
, (81)

and the gradient Richardson number [from Eqs. 71, 81]:

Ri = Rif PrT = Cτ kς

CF(1 + R−1∞ kς)

[
1 + a1ς + a2ς

2

1 + a3ς

]
, (82)

123



364 S. S. Zilitinkevich et al.

where a1, a2 and a3 are known empirical constants:

a1 = 3k(1 + Cr)
(1 − 2C0)(R−1∞ − 1) − 3C−1

r

3 + Cr(1 − 2C0)
, (83)

a2 = k2

R∞
[
(1 − 2C0)(R−1∞ − 1) − 3C−1

r

]
, (84)

a3 = k

R∞

(
6(C0 + 1)

3 + Cr(1 − 2C0)
+ 2(R∞ − C0) − 1

)
. (85)

According to the EFB closure, the mean velocity gradient in a steady-state non-rotating
boundary-layer flow is expressed by Eq. 69 that implies the following ς-dependence of the
eddy viscosity: KM = τ/S = kτ 1/2z [1 + (k/R∞)ς]−1. Therefore Eqs. 71 and 82 allow us
to determine the turbulent Prandtl number PrT, eddy conductivity KH = KM/PrT, potential
temperature gradient ∂�/∂z = −Fz/KH, and the “temperature �-function”:

�H ≡ kTτ 1/2z

−Fz

∂�

∂z
=

[
1 + a1ς + a2ς

2

1 + a3ς

] (
1 + k

R∞
ς

)
, (86)

where kT = (CF/Cτ )k = 0.5 is the temperature von Karman constant, and k = 0.4 is the
velocity von Karman constant, Eq. 67.

In Fig. 11, Eq. 86 is compared with our LES. Because all model constants in Eq. 86 are
already determined from other empirical dependencies, very good agreement between the
theory and LES data in Fig. 11 serves as an independent verification of the EFB model. Given
the velocity and temperature � functions, Eqs. 70 and 86, the ς dependence of the gradient
Richardson number is immediately determined: Ri = k(Cτ /CF)ς�H/�2

M. Its comparison
with our LES is shown in Fig. 12. Besides the LES data points, in Figs. 10, 11 and 12 we
demonstrate the two versions of the bin-averaged data shown as open triangles for ς = z/L
and black triangles for ς = z/((1 + C��z/E1/2

K )L) with C� = 1. In Figs. 11 and 12
black triangles obviously better fit theoretical curves at large ς . This supports the estimate of
C� = 1 and confirms that the Earth’s rotation starts affecting the turbulent length and time
scales already in the upper part of the planetary boundary layer—at a few hundred m height.

To the best of our knowledge, none of Eqs. 79–86 has been obtained before. Moreover,
in the traditional interpretation of the Monin–Obukhov similarity theory it was taken as self-
evident that the maximal values of ς = z/L achievable in the atmospheric surface layer
(factually never exceeding 10) can be attributed to the very strong static stability regime
that was given the name “z-less stratification regime”. Accordingly, it was assumed that at
z � L the distance above the surface does not affect turbulence and, therefore, should dis-
appear from any similarity-theory relations, for instance, from the expressions on the r.h.s.
of Eqs. 79–81, 85, which therefore should turn into universal constants.

This reasoning is not quite correct, since the point is that really strongly-stable stratifica-
tion is principally unattainable neither in the surface layer nor in the atmospheric boundary
layer. The boundary-layer flows correspond to quite small gradient Richardson numbers
Ri � 1 and only moderate dimensionless heights ς � 10. Moreover, even at ς → ∞, the
similarity functions do not necessarily turn into finite constants, but can also tend to zero
(as for instance the dimensionless heat flux: Eq. 61 and Fig. 9) or to infinity (as, for instance,
the ς dependencies of Ri and PrT: Eq. 82 and Fig. 5). Factually, the atmospheric boundary
layer is a weakly-stable strong-turbulence layer characterized by the gradient Richardson
number essentially <1 and dimensionless heights ς = z/L < 10. The strongly-stable strat-
ification with Ri � 1 and ς � 102 corresponds to the weak-turbulence regime typical of
the free atmosphere.
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Fig. 11 Same as in Fig. 10 but for the dimensionless potential temperature gradient �H =
(−kTzτ1/2/Fz) (∂�/∂z). Solid line is plotted after Eq. 86. Open triangles correspond to ς = z/L , black

triangles to ς = z/[(1 + C��z/E1/2
K )L]

Fig. 12 Gradient Richardson number Ri versus dimensionless parameters ς = z/L (white triangles) and
ς = l0/L (black triangles) based on the Obukhov length scale L , after our LES. Solid line shows our model.

Open triangles correspond to ς = z/L , black triangles to ς = z/[(1 + C��z/E1/2
K )L]

4 Hierarchy of EFB Turbulence Closures

4.1 General Prognostic Model

The algebraic model presented in Sect. 3 is based on the steady-state versions of the energy-
and flux-budget equations, Eqs. 24, 30, 34, 37; and, as with any other algebraic closure, has
a limited area of application (in particular, it erroneously prescribes total decay of turbulence
in the regions of flow with zero mean shear, e.g., at the axes of jets). In its general form, the
EFB closure employs prognostic versions of the above equations, with the non-local third-
order transport terms �K, �P, �

(τ)
i and �

(F)
z expressed through the conventional turbulent

diffusion approximation:
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DEK

Dt
− ∂

∂z
KE

∂ EK

∂z
= −τi3

∂Ui

∂z
+ βFz − EK

tT
, (87)

DEP

Dt
− ∂

∂z
KE

∂ EP

∂z
= −βFz − EP

CPtT
, (88)

Dτi3

Dt
− ∂

∂z
KFM

∂τi3

∂z
= −2Ez

∂Ui

∂z
− τi3

Cτ tT
(i = 1, 2), (89)

DFz

Dt
− ∂

∂z
KFH

∂ Fz

∂z
= −2(Ez − Cθ EP)

∂�

∂z
− Fz

CFtT
. (90)

The turbulent transport coefficients: KE for the turbulent energies, and KFM, KFH for the
turbulent fluxes are taken proportional to the eddy viscosity KM, Eq. 43:

KE/CE = KFM/CFM = KFH/CFH = EztT, (91)

where CE, CFM and CFH are dimensionless constants to be determined empirically.
Generally speaking, the vertical component of TKE Ez is governed by the prognostic

Eq. 21 with the pressure terms Qii determined through the inter-component energy exchange
concept, Eqs. 48–49. For practical purposes we recommend a simpler approach based on the
quite natural assumption that the TKE components are transported altogether. Then, given
EK, the vertical TKE (which appears in Eqs. 89, 90) is determined as Ez = Az EK, where
Az = Az() is determined by Eq. 78 with  = EP/EK based on the prognostic parameters
EK and EP:

Ez = Az EK, Az = Az() [Eq. 78],  = EP[Eq. 88]
EK[Eq. 87] . (92)

We recall that the TKE EK and its dissipation rate εK vary in space and time and are trans-
ported by both the mean flow and the turbulence. Hence, the turbulent dissipation time scale
tT = EK/εK is also transported in space and varies in time. In the steady state, its local-
equilibrium value tTE is expressed through EK, Az and  by Eqs. 76–78. Generally the
equilibrium is, on the one hand, distorted due to non-steady and non-local processes and, on
the other hand, re-established by the local adjustment mechanisms. Such counteractions are
modelled by the relaxation equation:

DtT
Dt

− ∂

∂z
KT

∂tT
∂z

= −CR

(
tT
tTE

− 1

)
, tTE = tTE (EK, Az,) [Eqs. 76–78], (93)

where the relaxation time is taken proportional to the local-equilibrium dissipation time scale
tTE determined through EK, Az and  by Eq. 76–78; KT = CT EztT is the same kind of
turbulent exchange coefficient as KE, KFM, KFH; CT and CR are dimensionless constants
to be determined empirically.

By and large, the general EFB closure model consists of:

(a) five prognostic Eqs. 87–90, 93 for TKE EK, TPE EP, vertical turbulent flux of momen-
tum τi3 (i = 1, 2), vertical turbulent flux of potential temperature Fz , and turbulent
dissipation time scale tT (which determines the TKE dissipation rate εK = EK/tT);

(b) three diagnostic relations: Eq. 76 for the local-equilibrium turbulent time scale tTE, Eq. 77
for EK/τ , and Eq. 78 for the vertical share of TKE Az .

In addition to empirical constants of the algebraic version of the EFB closure (already
determined in Sect. 3), the general EFB closure includes additional constants CE, CFM, CFH,
CT and CR that are to be determined through case studies by fitting results from numerical
modelling with observational and LES data.
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Compared to the currently used closure models, the EFB closure benefits from the fol-
lowing advancements:

• consistent energetics based on the prognostic budget equations for TKE EK and TPE
EP, Eq. 87 and 88, and reliable stratification parameter  = EP/EK;

• generally non-gradient concept of the turbulent transport based on the budget equations
for the turbulent fluxes, Eqs. 89–90;

• advanced concept of the inter-component exchange of TKE, Eqs. 48–50, 78;
• advanced concept of the turbulent dissipation time scale, Eqs. 76, 93.

4.2 Down-Gradient Transport Models

In a number of problems the steady-state version of the flux-budget Eqs. 89–90 provides a
quite sufficient approximation. It essentially simplifies the model, keeping in force all the
above benefits, except for the possibility of reproducing presumably rare cases of the non-
gradient turbulent transports. Therefore, for extensive environmental-modelling applications,
the EFB closure can be reduced to the following equations:

(a) Prognostic energy budget equations, Eqs. 87 and 88, for TKE EK and TPE EP, supple-
mented with diagnostic formulation, Eq. 92, for the vertical TKE Ez ;

(b) Prognostic formulation, Eqs. 76–78, 93, for the turbulent dissipation time scale tT;
(c) Steady-state versions of the flux-budget equations, Eqs. 89 and 90, that provide diagnos-

tic down-gradient transport formulation of the vertical turbulent fluxes in terms of the
eddy viscosity KM and eddy conductivity KH:

τi3 = −KM
∂Ui

∂z
, Fz = −KH

∂�

∂z
, (94)

KM = 2Cτ EztT, KH = 2CF EztT

(
1 − Cθ

EP

Ez

)
, (95)

where Ez, EP and tT are determined through the equations listed above in paragraphs (a)
and (b). As needed, the model can be further simplified keeping only two prognostic equa-
tions, Eqs. 87 and 88, for EK and EP; and determining other parameters diagnostically:
Ez—through Eq. 92, tT = tTE—through Eqs. 76–78, and the vertical turbulent fluxes τi3 and
Fz—through Eqs. 94 and 95.

4.3 Minimal Prognostic Model

Until recently common practice was limited to the sole use of the TKE budget equation—e.g.
Mauritsen et al. (2007) and Angevine et al. (2010) employed the TTE budget equation. Be
that as it may, closure models based on only one prognostic energy budget equation inevitably
miss some essential features of non-steady regimes of turbulence. Principal inaccuracy of
the one-equation approach is rooted in the difference between the TPE and TKE dissipation
times: CPtT and tT, respectively. Because CP = 0.86 (see Sect. 3.3), TPE dissipates more
rapidly than TKE, which is why one particular equation (for TKE, TPE or TTE) is insufficient
to accurately reproducing turbulence energetics. With this warning, we propose the simplest
prognostic version of the EFB closure model based on the TTE budget equation:

DE

Dt
− ∂

∂z
KE

∂ E

∂z
= −τi3

∂Ui

∂z
− E

tT[1 − (1 − CP)Rif ] (96)
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It is derived by adding Eqs.87 and 88 and expressing the sum EK + EP/CP approximately
through diagnostic Eqs. 53 and 54. Equation 96 is preferable compared to the TKE budget
equation because E is a conserved property (it becomes an invariant in the absence of pro-
duction and dissipation) in contrast to EK that continuously feeds the potential energy EP.
Except for E , all other parameters are determined in this version of the closure diagnostically:

(a) EK, EP—through Eqs. 53, 54:

EK = E
1 − Rif

1 − (1 − CP)Rif
, EP = E

CP Rif

1 − (1 − CP)Rif
, (97)

(b) Az and Ez—through Eq. 50c:

Az = Cr(1 − 2C0 Rif/R∞)(1 − Rif ) − 3Rif

(1 − Rif ){3 + Cr[3 − 2(1 + C0)Rif/R∞]} , Ez = Az EK, (98)

(c) tT—through Eq. 76 rewritten in terms of Rif :

tTE = kz

E1/2
K + C��z

(
EK

τ

)3/2 1 − Rif/R∞
1 − Rf

, (99)

(d) τi3 and Fz—through Eqs. 43, 44, 97:

τi3 = −KM
∂Ui

∂z
, KM = 2Cτ EztT, (100)

Fz = −KH
∂�

∂z
, KH = 2CF EztT

(
1 − CθCP Rif

(1 − Rif )Az

)
, (101)

(e) Rif —through its definition, Eq. 39:

Rif = −βFz

τi3∂Ui/∂z
. (102)

Setting the l.h.s. of Eq. 96 equal to zero, this model reduces to the steady-state EFB model
considered in detail in Sect. 3.

5 Conclusions

Over several decades, operationally used closure models conceptually followed Kolmogorov
(1941, 1942): they limited the representation of turbulence energetics to the TKE budget
equation and employed hypothetical expressions of the eddy viscosity and eddy conduc-
tivity of the type KM ∼ KH ∼ EKtT ∼ E1/2

K l. This “one energy-equation approach”,
originally proposed for neutrally stratified flows (and justified for neutral stratification),
became misleading when applied to stably stratified flows. It disregarded the energy exchange
between TKE and TPE controlled by the buoyancy flux βFz and, therefore, disguised the
condition that −βFz in the steady state cannot exceed the shear production of TKE. This
confusion gave rise to the erroneous but widely believed statement that steady-state turbu-
lence can be maintained by the velocity shear only at small gradient Richardson numbers:
Ri < Ric < 1, whereas at Ri > Ric turbulence inevitably degenerates and the flow becomes
laminar.

Obukhov (1946) was the first who applied the Kolmogorov closure to the thermally strat-
ified atmospheric surface layer. He accounted for the term βFz in the TKE equation (which
led him to discover the stratification length scale L , Eq. 41, now called the “Obukhov scale”)
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but in all other respects he retained the original Kolmogorov closure absolutely unchanged.
In particular, he disregarded the role of the TPE and the TKE ↔ TPE energy exchange.
Moreover, Obukhov preserved even the concept of the turbulence length scale l as merely
proportional to the height z, precisely as was stated in Kolmogorov (1941, 1942). And that
is in spite of Obukhov’s own discovery of the length scale L , which gave him grounds to
conclude that l should tend to L in strongly stable stratification. It is beyond question that
his model, generalizing the logarithmic wall law for the stratified flows, has made a great
stride forward in the physics of turbulence, not to mention that eventually it gave rise to the
famous surface-layer similarity theory (Monin and Obukhov 1954). However, in the context
of turbulence closure problem, Obukhov’s model was, to some extent, misleading. It is due
to the great authority of Kolmogorov, Obukhov and their school of turbulence, that further
efforts towards the development of turbulence closure models for meteorological and ocean-
ographic applications were over half a century limited to “mechanical closures” based on the
sole use of the TKE budget equation, disregarding the TPE, and applied for only cautious
corrections to Eq. (2): KM ∼ KH ∼ E1/2

K lT. This historical remark explains why a rather
simple “mechanical and thermodynamic” EFB turbulence closure was not developed already
long ago.

Our work on the EFB closure, commencing with Elperin et al. (2005) and reflected in
Zilitinkevich et al. (2007, 2008, 2009, 2010), has been inspired by numerous experimental
and numerical modelling studies that disclosed essential features of stably stratified turbu-
lence that dramatically contradicted traditional closure models (e.g. Fig. 5 demonstrating
asymptotically a linear Ri dependence of the turbulent Prandtl number). The present paper
summarizes results from this work. Compared to previous versions of the EFB closure, we
now advance the concept of the inter-component exchange of TKE (Sect. 3.2); clarify the
physical meaning of the turbulent dissipation time and length scales and have developed
diagnostic and prognostic models for these scales (Sects. 3.4 and 4.1); and have formulated a
hierarchy of EFB turbulence closures at different levels of complexity designed for different
applications.

The steady-state version of the EFB closure allows us to determine the stability dependen-
cies of the velocity and temperature gradients, the eddy viscosity and eddy conductivity, and
many other parameters of turbulence as functions of the dimensionless height z/L (Sect. 3.5).
It sheds new light on the Monin and Obukhov (1954) and Nieuwstadt (1984) similarity the-
ories and extends these to a much wider range of stably stratified flows. Eq. 82, linking z/L
with the gradient Richardson number Ri, reveals that the notion “strongly stable stratifica-
tion” is currently used in a rather uncertain sense. In boundary-layer meteorology, it implies
nothing but the strongest stratifications achievable in the atmospheric boundary layer, which
factually corresponds to the values of z/L in the interval 1 < z/L < 10. However, as follows
from Eq. 82, z/L < 10 corresponds to Ri < 1, that is to only weakly-stable stratification
inherent in the strong-turbulence regime. On the contrary, the strongly-stable stratification
inherent in the weak-turbulence regime is observed only outside the boundary layer, in the
free atmosphere, where Ri varies typically from 1 to 102, and could peak at 103 in the capping
inversions above the long-lived stable boundary layer. The above terminological confusion
has led to the erroneous treatment of the so-called z-less stratification regime (associated
with maximal z/L achievable in the surface layer) as the ultimate strongly-stable stratifica-
tion regime. As a result, the similarity theory in its traditional form was incapable of correctly
determining the asymptotic behaviour of the similarity functions at very large z/L . Equa-
tions 70 and 86 refine traditional surface-layer flux-profile relationships and offer scope for
improving the surface-flux algorithms in atmospheric models.
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Empirical validation of a turbulence closure model often reduces to comparison with
empirical data of the model results related only to the turbulent fluxes (τ , Fz , etc.) and the
mean flow parameters (U, �, etc.), with no consideration of other conclusions from the
model. Thus, we never found in the literature verifications of the operationally used TKE-
budget closure models in terms of the stability dependences of the ratios EK/τ or εK/(τ S)

in the steady state. In contrast, we verify results from our theory related to all the considered
characteristics of turbulence, first of all, in the steady-state regime of turbulence. This work
faces essential difficulties because of the lack of data on steady-state turbulence in strongly
stable stratification, and we were forced to very carefully select appropriate data presented
in our figures. Comprehensive empirical validation of the EFB turbulence closure is yet to
be performed. New, specially designed DNS and laboratory experiments are needed to real-
istically reproduce the weak-turbulence regime in stationary and homogeneous conditions.
Alternative validation tools, to provide case studies of the very stably stratified turbulent
flows in the atmosphere and hydrosphere, might use numerical models equipped with the
EFB turbulence closure employing our tentative estimates of the empirical constants.

We propose different prognostic versions of the EFB closure, from the most general
(Sect. 4.1) to the minimal (Sect. 4.3), for use in different applications depending on available
computational resources and scientific or operational goals. The general and the down-gra-
dient transport versions of the EFB closure (Sects. 4.1 and 4.2) are recommended for model-
ling the so-called “optical turbulence”. The latter is controlled by the temperature-fluctuation
“energy” Eθ = (N/β)2 EP (Lascaux et al. 2009) and, therefore, cannot be reliably recov-
ered from the turbulence closures disregarding the TPE budget equation. For operational
numerical weather prediction, air quality and climate modelling, we recommend, as suffi-
ciently accurate and not too computationally expensive, the three-equation version of the
TKE closure (Sect. 4.2).
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