Implementation of SURFEX in ARPEGE/ALADIN

(physical interface part)

Progress, current status and remaining issues

Lukša Kraljević, Francois Bouyssel, Patrick Le Moigne, Piet Termonia, Rashyd Zaaboul

luksa.kraljevic@cnrm.meteo.fr

Overview

- SURFEX externalized surface model
- SURFEX can be run independently from the atmospheric model – off-line mode, and as a part of atm. model – online mode
- Interface between the surface and the atmosphere is implemented by a limited number of surface fluxes, and small number of surface variables
- The interface is comprised of a call to a single subroutine in physical calculation (in APLPAR)
- Coupling can be implicit and explicit
- Implicit coupling needed for coupling with ARPEGE/ALADIN due to the long time step (\geq 480 s up to 1800 s)

Technical overview

- Phasing of code from CY 25 to CY 29 SCM was needed (APLPAR, ACDIFV1, ACDIFV2, ACHMTLS)
- After phasing to CY 29 SCM and testing, the code is phased to CY 30T1 3D model
- The implementation in ARPEGE/ALADIN benefited from the previous work done for AROME
- Initialization procedures developed for AROME are adopted and modified to fit ARPEGE/ALADIN
- SURFEX calling routine ARO_GROUND_PARAM is adopted from AROME and modified

Implicit coupling

- Needed to assure numerical stability for long time steps occurring in ALADIN/ARPEGE
- Implemented according to the paper by Best et al. (2004)
- Implicit coupling developed in climate group on CY 25 SCM
- Surface fluxes calculated in the middle between downward and upward sweep of vertical diffusion.
- Operational diffusion routine (ACDIFUS) is split in two parts (ACDIFV1 and ACDIFV2), and the call to SURFEX (ARO_GROUND_PARAM) is added in between

Enquiry mode

- Enquiry mode for SURFEX is developed in order to get the values of some variables without doing surface calculations
- Functionality is provided by GET_FLUX_n and GET_SURF_VARS_n subroutine
- The variables that can be enquired are:
 - Surface fluxes, radiative temperature, albedos
 - air temperature and humidity at 2m, fractions of sea, water, nature, town, surface humidity over water, sea, nature, town, snow fraction over vegetation and ground, surface and thermal roughness lengths

Implementation in 3D model

- We benefited from the work done for AROME
- Initialization of SURFEX is separated from the initialization of AROME (new SUPHMSE subroutine added)
- The same SURFEX initialization procedure used for AROME and ARPEGE/ALADIN
- Emissivity, surface radiative temperature, surface specific humidity are passes from one time step to the other
- CPG_GP and CPG_END are modified to save pseudo historical fields (PGPAR)
- APLPAR of 3D model is modified, and ACDIFV1 and ACDIFV2 are phased to CY30T1
- The effort to make SURFEX & ARPEGE/ALADIN work together is in progress currently in a "bug hunting" phase

Implementation of SURFEX in 3D ARPEGE/ALADIN – data flow

Differences in implementation of the surface scheme with/without SURFEX

Turbulent exchange coefficients

- Ex. coeff. calculated by ACHMTLS – thin black, SURFEX – red
- The greatest differences in the first 10 time steps
- In 2nd t.s. 12% for Cd and 19% for Ch
- Otherwise differences are very small
 - Max 3% for Cd
 - Max 2% for Ch

Antifibrillation

- Solution proposed by Piet Termonia but:
- The solution assumes the existence of antifibrillation coefficients (PXDROV, PXHROV) modifies the calculus of implicit coupling coefficients
- Turbulent exch. coeff. are needed for calculation of antifibrillation coeffs
- Antifibrillation coefficients should be computed by SURFEX because the calculation of turb. ex. coefs in ARPEGE/ALADIN is in the contrast with the philosophy of externalization

Antifibrillation - continued

- The scheme is beneficial for the results but in the current situation breaks the spirit of externalization
- In order to use it, the antifibrillation coefficients or turbulent exchange coefficients should be provided by SURFEX

Antifibrillation – another approach

- Use the existing AF scheme
- Instead of computing surface AF coefficients use AF coefficients from the lowest model level
- Not a clean solution but it works well

Results vegetation = 1(1)

- Sensible Heat Flux
- Differences < 8 W m⁻²

- Latent Heat Flux
- Differences < 40 W m⁻²

Results vegetation = 1(2)

- Surface temperature (K)
- Differences < 0.75 K

- Surface reservoir (m³/m³)
- Differences $< 0.002 \text{ m}^3/\text{m}^3$

Results vegetation = 1(3)

- Deep temperature (K)
- Differences < 0.2 K

- Deep reservoir (m³/m³)
- Differences $< 0.0001 \text{ m}^3/\text{m}^3$

Results vegetation = 0(1)

- Sensible Heat Flux
- Differences < 40 W m⁻²

- Latent Heat Flux
- Differences < 20 W m⁻²

Results vegetation = 0(2)

- Surface temperature (K)
- Differences < 1.5 K

- Surface reservoir (m³/m³)
- Differences < 0.02 m³/m³

Results vegetation = 0(3)

- Deep temperature (K)
- Differences < 0.5 K

- Deep reservoir (m³/m³)
- Differences $< 0.00005 \text{ m}^3/\text{m}^3$

Conclusions

- 1D tests show that implicit coupling is well done and it is fit for 3D
- Technical obstacles for using SURFEX in ARPEGE/ALADIN

 i.e. diagnostics of roughness lengths, surface humidity
 and fractions of snow, are solved
- The problem of initialization of SURFEX is solved thanks to the effort made by the AROME team to separate initialization of SURFEX from the initialization of AROME
- ARPEGE/ALADIN code is modified to include SURFEX but still there are critical bugs

Future

- Find and correct all bugs in ARPEGE/ALADIN SURFEX interface
- Validation of SURFEX in 3D ARPEGE/ALADIN forecast
- Adaptation of surface and upper-air analysis to SURFEX

Thanks!