

Objectives

→ Simulate Exchanges between surface and atmosphere

(momentum, heat, water, CO2, chemical species)

- > Separate the surface schemes from the atmospheric model
 - allows to use the same surface code for several atmospheric models and Offline runs

(AROME, MESONH, ALADIN, ARPEGE, ...)

- easy switch between surface schemes and options

- > Both simple schemes and up-to-date ones, including:
 - imposed fluxes for « ideal » cases
 - tiling: 4 surfaces (sea, lakes, town, vegetation) in the grid mesh
 - tiling (patches) in the vegetation scheme itself: forest, grass, etc.

SURFEX: the externalized surface

- Initialisation or physiographic fields
 - Ecoclimap
 - Prescribed by user (soon)
- Initialisation of variables
 - From several file format
- · Run
- · Diagnostics

The externalized surface

· 4 surface types: the tiles

The Nature surface is divided in patches

The Physical schemes

Sea and ocean:

prescribed SST, Charnock formula

- > will soon include a better bulk formulation
- > project to implement a 1D oceanic mixing layer

Lakes:

prescribed temperature, Charnock formula

Vegetation and soil: ISBA (Interface Soil Biosphere Atmosphere)

Town: TEB (Town Energy Balance)

ISBA: general

Simulates: exchanges of heat, water, and CO2

soil and vegetation temperature,

soil liquid water and ice

snow

1 to 12 patches (number of patches is user's choice)

Exemples:

1 patch = classical aggregated scheme

3 patches = 1 patch bare soils

+ 1 patch low vegetation

+ 1 patch trees

12 patches = flat bare soil + rocks + perm. snow

+ C3, C4 and irrigated crops, C3, C4 and irrigated grass

+ evergreen and deciduous broadleaf trees, needleaf trees

ISBA:

Soil options: Force restore, 2 layers, temp, water, ice

Force restore, 3 layers , temp, water, ice

Diffusion, N layers, temp, water, ice

Vegetation options:

Noilhan and Planton 89 (~Jarvis)

AGS (photsynthesis and CO2 exchanges)

AGS and interactive vegetation

Hydrology options:

no subgrid process

subgrid runoff, subgrid drainage

Snow options:

1 layer, varying albedo, varying density (Douville 95)

3 layers, albedo, density, liquid water in snow pack

(Boone and Etchevers 2000)

operational ARPEGE scheme (soon)

TEB:

Canyon approach:

detailed radiation scheme (trapping - shadow effect)

ISBA FR 2L: Force Restore / 2 soil layers

The original version (Noilhan and Planton,1989, Noilhan and Mahfouf,1996)

 Five prognostic variables for soil+vegetation

$$\frac{\partial T_s}{\partial t} = C_T(R_n - H - LE) - \frac{2\pi}{\tau} (T_s - T_2)$$

$$\frac{\partial T_2}{\partial t} = \frac{1}{\tau} (T_s - T_2)$$

$$\frac{\partial w_g}{\partial t} = \frac{C_1}{\rho_w d_1} (P_g - E_g) - \frac{C_2}{\tau} (w_g - w_{geq})$$

$$\frac{\partial w_2}{\partial t} = \frac{1}{\rho_w d_2} (P_g - E_g - E_{tr}) - \frac{C_3}{d_2 \tau} \max[0., (w_2 - w_{fc})]$$

$$\frac{\partial W_r}{\partial t} = vegP - (E_v - E_{tr}) - R_r$$

$$0 \le w_g \le w_{sat}$$
$$0 \le w_2 \le w_{sat}$$
$$0 \le W_r \le W_{rsat}$$

ISBA soil option: 3L

· Reservoirs:

- Surface
- Root zone
- Subroot zone
- Improved simulation of soil water content
- Boone et al, 1999

ISBA soil option : diffusion : DF

- diffusion equations for heat and water
- · temperature, liquid water, ice in the same layers
- · possibility of soil texture profile; vertical root distribution = 1995

ISBA soil option (DF and FR): soil ice model

- Boone et al, 2000, as Giard and Bazile 2000 in ARPEGE/ALADIN
- Force restore coefficients modified according to icing/thawing of the soil layers
- Improved simulation of surface temperature (release of latent heat when the soil freeze)

ISBA:

Soil options: Force restore, 2 layers, temp, water, ice

Force restore, 3 layers , temp, water, ice Diffusion, N layers , temp, water, ice

Vegetation options:

Noilhan and Planton 89 (~Jarvis)

AGS (photsynthesis and CO2 exchanges)

AGS and interactive vegetation

Hydrology options:

no subgrid process

subgrid runoff, subgrid drainage

Snow options:

1 layer, varying albedo, varying density (Douville 95)

3 layers, albedo, density, liquid water in snow pack

(Boone and Etchevers 2000)

operational ARPEGE scheme (soon)

TEB:

Canyon approach:

detailed radiation scheme (trapping - shadow effect)

ISBA vegetation options: Jarvis, A-gs

ISBA vegetation options: A-gs

Root-zone soil moisture:

ISBA-A-gs simulations from 2001 to 2003

LAI:

ISBA:

Soil options: Force restore, 2 layers, temp, water, ice

Force restore, 3 layers , temp, water, ice Diffusion, N layers , temp, water, ice

Vegetation options:

Noilhan and Planton 89 (~Jarvis)

AGS (photsynthesis and CO2 exchanges)

AGS and interactive vegetation

Hydrology options:

no subgrid process

subgrid runoff, subgrid drainage

Snow options:

1 layer, varying albedo, varying density (Douville 95)

3 layers, albedo, density, liquid water in snow pack

(Boone and Etchevers 2000)

operational ARPEGE scheme (soon)

TEB:

Canyon approach:

detailed radiation scheme (trapping - shadow effect)

ISBA: hydrology options

- Surface runoff
- Gravitational drainage

Subgrid gravitational drainage (Noilhan-Mahfouf 96)

Both depend on soil texture

Subgrid runoff over saturated areas (Habets 99)

Results of SIM over France: Water budget monitoring

Simulation of the soil wetness index:

 $SWI = \frac{\mathbf{w}_2 - \mathbf{w}_{wilt}}{\mathbf{w}_{fc} - \mathbf{w}_{wilt}}$

3june 2005

Deviation from 1995-2003 mean

Application in hydrology: River discharge

 ISBA coupled with the hydrological model MODCOU

> 16 years of simulated discharge Seine at Poses (outlet)

Hydrological applications : Ensemble forecast

- ECMWF ensemble forecasts (precipitation, température)
- Désagegation
- · SIM runs

Applications in hydrology : lateral redistribution in catchments

m3/m3

ISBA:

Soil options: Force restore, 2 layers, temp, water, ice

Force restore, 3 layers , temp, water, ice Diffusion, N layers , temp, water, ice

Vegetation options:

Noilhan and Planton 89 (~Jarvis)

AGS (photsynthesis and CO2 exchanges)

AGS and interactive vegetation

Hydrology options:

no subgrid process

subgrid runoff, subgrid drainage

Snow options:

1 layer, varying albedo, varying density (Douville 95)

3 layers, albedo, density, liquid water in snow pack

(Boone and Etchevers 2000)

operational ARPEGE scheme (soon)

TEB:

Canyon approach:

detailed radiation scheme (trapping - shadow effect)

SNOW schemes

- 1 layer model :
 - 1 layer, varying albedo, varying density
 - (Douville 1995)
- 3 layer model : ES
 - 3 layers, albedo, density, snow heat and liquid water in snowpack
 - 3 prognostic variables: thickness of each layer, snow density, snowpack heat content
 - Diagnostic variables: snow water equivalent, snowpack liquid water, snow layer temperature
 - (Boone and Etchevers 2000)
- ARPEGEALADIN operational scheme soon!
 - Current work of Andrey Bogatchev

Comparison with detailed snow model (CROCUS) and observations

ISBA:

Soil options: Force restore, 2 layers, temp, water, ice

Force restore, 3 layers , temp, water, ice

Diffusion, N layers, temp, water, ice

Vegetation options:

Noilhan and Planton 89 (~Jarvis)

AGS (photsynthesis and CO2 exchanges)

AGS and interactive vegetation

Hydrology options:

no subgrid process

subgrid runoff, subgrid drainage

Snow options:

1 layer, varying albedo, varying density (Douville 95)

3 layers, albedo, density, liquid water in snow pack

(Boone and Etchevers 2000)

operational ARPEGE scheme (soon)

TEB:

Canyon approach:

detailed radiation scheme (trapping - shadow effect)

TEB: physics

Masson 2000, Masson et al 2002, Lemonsu et al 2003

- Only 1 road, 1 roof, and 2 *identical* facing walls
- → ONLY ONE WALL SEB
- \rightarrow Only one wall temp.
- → Only one road temp.

- Rain and snow interception
- Latent heat fluxes
- Heat conduction in the materials
- Anthropogenic fluxes

Conclusion

An introduction to SURFEX

- Many options for soil, vegetation, hydrology, snow with extensive validations, and tested in MesoNH research model and AROME
- Tiling / patches
- Offline, Coupled (implicit, explicit) mode
- Use of ECOCLIMAP data (► P. Le Moigne)

· Now:

- Work to couple SURFEX with ALADIN/ ARPEGE in a configuration close to the present surface scheme (▶ D. Giard).
- Implicit coupling (► P. Le Moigne), not all options available in implicit mode (DF, snowES, TEB)
- In the future: many opportunities to test the various options in the ALADIN, AROME and ARPEGE configurations and improve the physics