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Outline

o Dynamical core in ACCORD

o SI time scheme
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Dynamical core in ACCORD

Basic equations

o hydrostatic primitive equation system (HPE) or Euler equations (EE); recently
implemented quasi elastic equation system (QE)

o prognostic variables ~v, T, qs = ln(πs), in EE with w, q̂ = ln( p
π
)

Discretization

o spectral method for horizontal direction

o hybrid vertical coordinate η based on hydrostatic pressure π(η) = A(η) +B(η)πs;
A(top) = B(top) = 0, A(bottom) = 0, B(bottom) = 1

o finite differences or finite elements for vertical direction discretization

o semi-implicit or iterative centred implicit scheme for time discretization

o semi-Lagrangian advection
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Semi-Implicit time scheme

System evolution

dX

dt
=MX

Linearization

X = X∗ + X′, ∂
∂t
M−→ L∗

Using linear model L∗ we get

dX

dt
= L∗[X]

t
+ (M−L∗)X

and discretize in time to obtain

Semi-implicit scheme

X+ −X0

∆t
= L∗

(
X+ + X0

2

)
+ (M−L∗)X+ 1

2

or

Iterative centered implicit scheme

X+(n) −X0

∆t
=
L∗X+(n) + L∗X0

2
+

(M−L∗)X+(n−1) + (M−L∗)X0

2

We know that both can be second order accurate in time when some care is taken (averaging
along semi-Lagrangian trajectory).
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Full model

Temperature

dT

dt
=

κT

κ− 1
(D + d)

Horizontal momentum

d~v

dt
= −RT

∇π
π
−∇φ−RT∇q̂ −

1

m

∂(p− π)

∂η
∇φ

Vertical momentum

dw

dt
=

g

m

∂(p− π)

∂η

Pressure departure

dq̂

dt
=

1

κ− 1
(D + d)−

1

π

dπ

dt

Surface pressure

dqs

dt
= −

1

πs

∫ 1

0

∇ · (m~v)dη

Diagnostic relations

dπ

dt
= ~v · ∇π −

∫ η

0

∇ · (m~v)dη′

φ = φs −
∫ 1

η

mRT

p
dη′

d = −
p

mRT

(
∇φ

∂~v

∂η
− g

∂w

∂η

)

Definitions

D = ∇ · ~v

κ =
cp

R

m =
∂π

∂η
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Basic state

Current state:

o stationary

o resting

o hydrostatically balanced (πs∗)

o dry

o isothermal (T ∗)

o with constant orography (∇φ∗ = 0)
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Basic state

New:

o stationary

o resting

o hydrostatically balanced (πs∗)

o dry

o isothermal (T ∗)

o with constant orographic slope (in absolute value, |∇φ∗| 6= 0)
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Linear model

Temperature

∂T

∂t
=

κT ∗

κ− 1
(D + d)

Horizontal momentum

∂~v

∂t
= −RT ∗

∇π
π∗
−∇φ−RT ∗∇q̂ −

1

m∗
∂π∗q̂

∂η
∇φ∗

Vertical momentum

∂w

∂t
=

g

m∗
∂π∗q̂

∂η

Pressure departure

∂q̂

∂t
=

1

κ− 1
(D + d) +

1

π∗

∫ η

0

m∗Ddη′

Surface pressure

∂qs

∂t
= −

1

πs∗

∫ 1

0

m∗Ddη

Diagnostic relations

∇φ = ∇φs −
∫ 1

η

∇
(
mRT

p

)
dη′

∇φ∗ = gΛ∗S∗ (η)

d = −
p

mRT

(
∇φ

∂~v

∂η
− g

∂w

∂η

)

Definitions

Λ∗ =
1

g
||∇φs||∗

S∗ (η) =
B(η)πs∗

π∗(η)

m∗ =
∂π∗

∂η
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Linearized slope in SI

Modified vertical divergence

d =
p

mRT

(
∇φ

∂~v

∂η
− g

∂w

∂η

)
Time evolution in linear model

∂~v

∂t
= A− Λ∗S∗ (η)B

∂w

∂t
= B

∂d

∂t
=

1

RT ∗

[
∇φ∗ ∂∗

(
∂~v

∂t

)
− g∂∗

(
∂w

∂t

)]
=

1

RT ∗

[
gΛ∗S∗ (η)∂∗A− gΛ∗2S∗ (η) (S∗∂∗B + B∂∗S∗)− g∂∗B

]
where

∂∗X =
π∗

m∗
∂X

∂η
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Linearized slope in SI

We omit the first order terms in Λ∗ and then ∂~v
∂t

is unchanged and all operators of the RHS of ∂d
∂t

apply on q̂.

Time evolution in linear model

∂~v

∂t
= A−����

���Λ∗S∗ (η)B
∂d

∂t
=

1

RT ∗

[
(((

((((
((

gΛ∗S∗ (η)∂∗A− gΛ∗2S∗ (η) (S∗∂∗B + B∂∗S∗)− g∂∗B
]

Finally, since B = g (∂∗ + 1) q̂

Time evolution in linear model

∂~v

∂t
= A  

∂D

∂t
=

∂(∇ · ~v)

∂t
= ∇ · A

∂d

∂t
= L∗newq̂
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Linearized slope in SI

We can define
New vertical Laplacian operator

L∗new = α ∂∗ (∂∗ + 1) + β (∂∗ + 1)

α = 1 + Λ∗2S∗2 (η)

β = Λ∗2S∗ (η) ∂∗S∗ (η)

Λ∗ = 0 : L∗new → L∗v = ∂∗ (∂∗ + 1)

S∗ (η) = 0 : L∗new → L∗v

How to discretize the proposed solution?

New discretized vertical Laplacian operator

[∂∗(∂∗ + 1)X]l = . . .

[(∂∗ + 1)X]l = . . .

S∗(ηl) = . . .

∂∗S∗(ηl) = . . .

How to set boundary conditions?
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Linearized slope in SI

Does L∗new have only real and negative eigenvalues?

For an example of 87 vertical levels used in Czech operations we are safe.

0 1 2 3 4 5
-0.084

-0.083

-0.082

-0.081

-0.080

-0.079

Max value of eigen values depending on Λ(courtesy of N.Kastelec)

Then we can eliminate the discretized equations up to horizontal divergence D and solve the
Helmholtz equation for D.
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Idealized tests

Vertical velocity for the Schär mountain case depending on Λ∗. (∆x = 500m,∆z = 250m,
mountain height h = 250m,T0 = 288K,u0 = 10m/s,∆t = 32 s)

Λ∗ = 0 Λ∗ = 1

(courtesy of N.Kastelec)
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Real simulations @200m

←−We show results of 200m
simulation over Alps.
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Real simulations @200m

The basic algorithmic choices for ALARO configurations @200m are:

Dynamical core

o semi-Lagrangian advection scheme with 4 iterations for trajectory calculation

o PC time scheme with one iteration, cheap variant (SL trajectories are not
recalculated in corrector)

o modified vertical divergence d4 for vertical motion, transformation to vertical
velocity w in the non-linear model

o reference values of the linear model: SITR=300K, SITRA=100K, SIPR=900hPa

o no decentering

o semi-Lagrangian horizontal diffusion applied on all model variables + TKE,TTE,
hydrometeors

o linear truncation for all spectral fields except orography; quadratic truncation of
orography
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Real simulations @200m

ALARO physics

o radiation scheme ACRANEB2

o turbulence and shalow convection scheme TOUCANS, model 2

o scale aware deep convection and microphysics scheme 3MT

Initialization

o initialization with 3DVAR + surface DA (canari) for 2.325km run; dynamical
adaptation + DFI for 500m and 200m runs

Particular choices for ALARO@200m:

o cubic truncation of orography

o SITRA=50K

o no 3MT (deep convection), only STRAPRO (stratiform precipitation)
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Real simulations

Vertical velocity for the alpine case 19 August 2022 OUTC + 24hours.
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Real simulations

Vertical velocity depending on Λ∗ for the alpine case 19 August 2022 OUTC + 24hours.

Λ∗ = 0 Λ∗ = 1

With additional iterations of the SI scheme,
the integration crashes.
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Real simulations

Vertical velocity depending on Λ∗ for the alpine case 19 August 2022 OUTC + 24hours.

Λ∗ = 0 Λ∗ = 1

PC+1

PC+2
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Real simulations
Averaged spectral norms of vertical divergence for the alpine case 19 August
2022 OUTC + 24hours.

Λ∗ = 0 Λ∗ = 1

PC+1

PC+2
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Linearized slope in SI

Conclusions

o We must continue our efforts.

o We plan to test various possible definitions of vertical function S∗ (η).

o We plan to test various possible discretizations including boundary
conditions.

o We plan to make further idealised tests and real simulations.

o If the time scheme allows a source of a noise, further time iterations may
not help to stabilize the scheme. To the contrary, the scheme with further
iterations may show even less stability.
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Vertical motion variable

Fabrice Voitus proposed a modification of the vertical velocity defined in the model to simplify
the bottom boundary condition and allow more precise calculation.

https://events.ecmwf.int/event/167/contributions/1379/attachments/794/1401/AS2020-Voitus.pdf

Current state

w =
dz

dt

d = −g
p

mRT

∂w

∂η
+X

X =
p

mRT

∂V
∂η
∇φ

∂d

∂t
= −

g2

RT ∗
L∗vq̂

L∗v = ∂∗ (∂∗ + 1)

Fabrice’s definition

W = w−V · S (η)
1

g
∇φs

d = −g
p

mRT

∂W

∂η
+X

X =
p

mRT

∂V
∂η
∇ (φ− S (η)φs)−

p

mRT
V∂∇φ

∂η

∂d

∂t
= −

g2

RT ∗
L∗modq̂

L∗mod = ∂∗
(
∂∗ + 1 + Λ∗2S (η) γ∗

)
Then discretization of these terms involves interpolations between half levels (where w is
represented) and full levels (where V is represented) and is cumbersome ...
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Bottom boundary condition

Current state

in the non-linear model

ws = Vs
1

g
∇φs

dws

dt
=

d
(
Vs

1
g
∇φs
)

dt

while in the linear model explicit guess of d
is calculated consistently and used in the
implicit part

Complicated and not exact! It is a source of
noise which may grow.

Fabrice’s definition

in the linear and non-linear model

Ws = 0

dWs

dt
= 0

Easily applicable!
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Real simulations

Vertical velocity for the alpine case 19 August 2022 OUTC + 24hours.

w W

PC+1

PC+2
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Real simulations
Averaged spectral norms of vertical divergence for the alpine case of 19 August 2022
OUTC + 24hours.

w W

PC+1

PC+2
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Vertical motion variable

Conclusions and advertisements

o The modification is available in cycle CY49t1 under namelist option
NVDVAR=5, thanks to Fabrice Voitus and Karim Yessad.

o The new formulations may help to further reduce the non-linear residual of
the ICI time scheme and to get rid of the noise coming from steep
orography, especially in high resolutions.
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o

Tack för din uppmärksamhet!
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