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Introduction

Moving towards the multi-layer explicit snow scheme (ISBA-ES) suggest using adjusted/new DA

schemes. A more advanced surface data assimilation scheme would allow for i) flexible observation

vector (including satellite observations with advanced footprints), an extended control vector (snow

water equivalent, density, heat/temperature). The local ensemble transform Kalman filter (LETKF)

(Hunt et al 2007), is simple to implement, scalable and effective. However, ensemble based methods

rely on realistic ensembles which is one of the main challenges with the LETKF.

The Local Ensemble Transform Kalman Filter

The LETFK is performed independently on every model grid point. For each point the relevant obser-

vations are selected and used. The LETKF update equations are:

xa = x̄b + Xbwa

wa = Wa + w̄a

w̄a = P̃a(Yb)T R−1(yo − ȳb)
Wa = [(k − 1)P̃a]1/2

P̃a = [(k − 1)I/ρ + (α ◦ (Yb)T R−1)Yb]−1

where x represent the ensemble control vector, X the ensemble anomalies, a and b indicate analysis

and background respectively, w is the transformation weights between the background and the anal-

ysis, Yb represent the ensemble observation equivalent. P̃ and R are the error covariance matrices.

ρ and α are tunable parameters for inflating the background error covariance matrix and to apply lo-

calization (inflation of R), respectively.

Multi-layer Physics

Moving from a single to a multi-layer soil and snow schemes drastically increase the number of prog-

nostic variables relative to the current force-restore option. With the explicit snow and diffusion soil

schemes, analysis updates should be consistent and preferably computed using the same assimilation

scheme.

Variable ISBA Force - Restore ISBA Diffusion

soil temperature 2 14

soil water content 2 14

snow water equivalent 1 12

snow density - 12

snow heat (temperature) - 12

total 5 64

Table 1. Illustration of the potential increase in analyzed variables from ISBA Force-Restore to ISBA Diffusion Models

Ensemble Generation

The LETKF relies on a realistic ensemble to distribute observation information to the state variables

and care has to be taken when generating the ensemble members. In this work, ensemble members

are constructed by perturbing the atmospheric forcing input. In this way the model physics ensures

”realistic” relationships between the control variables, and thus reliable ensemble covariance and fol-

lowing increments. We use cross correlated noise between the forcing parameters in a temporal AR(1)

process. The filter also use the ensemble correlations to spread the observed information spatially, so

spatial patterns are required in the noise fields. We have used a 2D convolution and a random remap-

ping of precipitation to obtain these spatial patterns, more advanced methods should be considered

in future work.
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Figure 1. Remapping of precipitation forcing using random index advection. Orig denote the deterministic precipitation

field, remap the basic remapping, and remap_oro an adjusted version where remapping is dampened in areas with steep

and high topography. Upper panels show precipitation fields, and lower show the differences.

Experimental Setup

Forcing DA Members

Ref Nordic analysis - 1

ctrl MEPS - 1

open loop MEPS + pert - 15

daexp as openloop sd obs from Ref 15

Table 2. Experiments
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Results

Initial tests using snow depth observations indicate positive impact at observation locations (Fig. 2)

and in terms of error-spread relation (Fig. 3). The filter is able to adjust the state in most situations,

which suggest physical consistency of the ensemble. Perturbations to air temperature forcing were

later added to help rapid melting events.

Figure 2. Time-series of snow depth at two observation locations

nov. 2022 mars mai juli
date

0.0

0.1

0.2

0.3

sn
ow

de
pt

h 
di

ff 
[m

]

ctrl_skill
openloop_skill
openloop_spread
daexp_skill
daexp_spread

Figure 3. Spread-Skill time-series at observation locations

Spatial Impact

By using synthetic observations from a reference experiment, we can measure the impact of our anal-

ysis away from the observation locations. Figure 4 shows the average impact of the analysis update

through the difference in root mean squared error between the analysis and first guess. Overall, the

filter performs well over flat areas and poorly over mountainous areas. The latter suggest that the

ensemble generation needs more development.

Figure 4. RMSE(analysis) - RMSE(first guess) snow depth 150 day average

FutureWork

Investigate variable transformation of bounded and undefined variables.

Extend observation and control vectors to include assimilation of snow temperature.

Assimilate satellite observations of e.g. snow cover.

Improve ensemble generation by using machine learning methods: i) increase ensemble size

using emulators, ii) sample from complex distributions using generative models.

Figure 5. Time-series of T2m ensemble spread (top) and ensemble correlation between T2m and snow temperature

per model level.


