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ABSTRACT

High-resolution maps of the urban heat island (UHI) and building energy consumption are relevant for

urban planning in the context of climate change mitigation and adaptation. A statistical–dynamical down-

scaling for these parameters is proposed in the present study. It combines a statistical local weather type

approach with dynamical simulations using the mesoscale atmospheric modelMeso-NH coupled to the urban

canopy model Town Energy Balance. The downscaling is subject to uncertainties related to the weather type

approach (statistical uncertainty) and to the numerical models (dynamical uncertainty). These uncertainties

are quantified for two French cities (Toulouse and Dijon) for which long-term dense high-quality observa-

tions are available. The seasonal average nocturnal UHI intensity is simulated with less than 0.2 K bias for

Dijon, but it is overestimated by up to 0.8 K for Toulouse. The sensitivity of the UHI intensity to weather type

is, on average, captured by Meso-NH. The statistical uncertainty is as large as the dynamical uncertainty if

only one day is simulated for each weather type. It can be considerably reduced if 3–6 days are taken instead.

The UHI reduces the building energy consumption by 10% in the center of Toulouse; it should therefore be

taken into account in the production of building energy consumption maps.

1. Introduction

a. Background

Weather and climate impact transportation, water

resourcesmanagement, agriculture, and urban planning.

These impacts must be quantified at a small spatial

scale (e.g., a motorway, vineyard, or building block).

Meteorologists and climate scientists are therefore

often confronted with requests for meteorological

parameters at a spatial resolution that cannot be

achieved by state-of-the-art weather forecast or Earth

system models.

Downscaling techniques have been developed to

derive meteorological parameters at high spatial reso-

lution from low-resolution numerical simulations or

sparse observations (Rummukainen 2010). Three cat-

egories of downscaling exist: 1) Statistical downscaling

is based on relationships between large-scale predic-

tors (e.g., atmospheric circulation patterns) and local-

scale predictants (e.g., precipitation at a station) (Wilby

et al. 2009). While it is computationally efficient, it does

not preserve physical consistency between parameters,

relies on observational data for calibration, and assumes
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that the statistical relationships are constant (e.g.,

between historical and future climate). 2) Dynamical

downscaling consists of forcing a high-resolution atmo-

spheric model (e.g., a regional climate model; Jacob et al.

2014) with results from a lower-resolution model (e.g., an

Earth system model). Dynamical downscaling is indepen-

dent of observations andpreserves the physical consistency

between meteorological parameters. Its disadvantages

are the high computational cost and the difficulty to

correct for biases of the coarse-resolution model. 3)

Statistical–dynamical downscaling (SDD; Frey-Buness

et al. 1995) is a combination of statistical and dynamical

downscaling. It assumes that the small-scale meteorologi-

cal phenomenon of interest depends on themeteorological

situation. Relevant meteorological situations are selected

and short-term (e.g., a few hours, a few days) high-

resolution numerical simulations are conducted. SDD

allows the use of a physically based atmospheric model

while keeping the computational cost reasonably low.

SDDhas been applied frequently to wind (Mengelkamp

et al. 1997; Najac et al. 2011; Martinez et al. 2013; Svoboda

et al. 2013; Badger et al. 2014) and precipitation in complex

terrain such as that of theAlpine region (Frey-Buness et al.

1995; Fuentes and Heimann 2000), central Asia (Reyers

et al. 2013), and Vietnam (Tran Anh and Taniguchi 2018).

SDDhas been further applied towinter storms (Pinto et al.

2010), ocean modeling (Cassou et al. 2011), and the urban

heat island effect (Hoffmann et al. 2018). SDD is thus

mainly applied to meteorological phenomena, which

are strongly influenced by the prevailing complex to-

pography. The benefit of employing a physically based

high-resolution numerical model is highest in these

applications.

SDD is subject to two different types of uncertainty.

On the one hand there is the uncertainty due to biases

in the large-scale meteorological data or the high-

resolution numerical model, hereafter referred to as

the ‘‘dynamical’’ uncertainty. On the other hand, there

is the uncertainty due to the use of a limited number of

meteorological situations rather than a climatological

time series (e.g., 30 years), hereafter referred to as the

‘‘statistical’’ uncertainty. For any given meteorological

situation, there may be nonnegligible variability of the

small-scale parameter of interest. Boé and Terray (2008),

for example, found large differences in precipitation in-

tensity for nearly identical large-scale meteorological

situations. Previous studies have investigated the relative

importance of the dynamical and statistical uncertainty,

but never in relation to urban climatology. Fuentes and

Heimann (2000) and Reyers et al. (2013) conclude that

the dynamical uncertainty dominates for precipitation in

the Alpine region and central Asia, respectively. Najac

et al. (2011) found that for near-surface wind in France,

the dynamical uncertainty dominates for mountainous

areas, whereas the statistical uncertainty dominates in

largely flat northwestern France.

Urban areas are characterized by strongly heteroge-

neous topography and exhibit a different local climate

than surrounding rural areas. This is due to the differ-

ences of the surface balances of energy, water, and

momentum (Oke et al. 2017) between urban and rural

areas. Urban areas are usually less vegetated than rural

areas, leading to less evapotranspiration during the day.

The storage of heat in construction materials leads to a

larger daily amplitude of the storage heat flux. Further,

three-dimensional building geometry leads to shading of

solar radiation and traps infrared radiation. Human ac-

tivities also release heat and moisture (Sailor 2011). The

most widely described urban climate phenomenon is the

higher air temperature in urban areas compared to rural

areas: the urban heat island effect (UHI). It is usually

most pronounced during the evening and night and can

reach an intensity of 5 to 10K (Oke 1973) under fa-

vorable meteorological conditions. The UHI negatively

impacts human thermal comfort and health (Gabriel

and Endlicher 2011) during warm weather situations

and interacts with building energy consumption. It re-

duces (increases) the energy consumption for heating

(air conditioning).

b. Present study

The present study is conducted within the framework

of the French Applied Modeling and Urban Planning

Law: Climate and Energy (MApUCE) project, which

aims to provide information on urban morphology and

indicators characterizing the urban climate and building

energy consumption for a selection of about 50 large

French urban agglomerations. The first objective is to

propose an SDD for the UHI and building energy

consumption to be used to produce these indicators,

and to discuss its uncertainties. The second objective is

to quantify the statistical and dynamical uncertainty

for two French cities (Toulouse and Dijon) for which

long-term high-quality observations of urban near-

surface air temperature are available.

The SDD is based on the previous work of Hoffmann

et al. (2018), who used the simulated UHI patterns from

short-term numerical simulations for different mete-

orological situations to estimate the climatological

UHI pattern. This method is suitable for the UHI

(the urban–rural temperature difference), but not for

the quantification of thermal climate indicators (e.g., the

number of hot days) or building energy consumption,

which depend on the absolute value of air temperature.

Therefore, computationally cheap long-term integrations

of an urban canopy model in offline mode are conducted
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here. Following Lemonsu et al. (2013), the urban heat

island patterns obtained from short-term integrations are

superposed on the rural forcing to construct forcing

data representative for the urban boundary layer. The

long-term integrations allow the spatial distribution of

thermal climate indicators and building energy con-

sumption in the urban area to be quantified.

Section 2 provides a general description of the pro-

posed SDD, and a discussion of its uncertainties. The

model configuration and the employed datasets are de-

scribed in section 3, the results in section 4. Conclusions

are drawn in section 5.

2. Statistical–dynamical downscaling for the UHI
and building energy consumption

a. The proposed statistical–dynamical downscaling

In the following, the observed or simulated difference

of air temperature between urban and rural areas is

denoted with UHI, whereas the air temperature differ-

ence between a numerical model simulation including

urbanization effects and a simulation without urbaniza-

tion is denoted with urban influence on air temperature

(UI). The proposed SDD for the UHI and building

energy consumption consists of 4 steps (Fig. 1):

1) Selection of meteorological parameters relevant for

the UHI.

2) Identification of local weather types (LWT) by clus-

tering the meteorological parameters.

3) High-resolution short-term numerical integration of

a mesoscale atmospheric model coupled to an urban

canopy model for the selected LWT to calculate the

UHI and UI.

4) Long-term numerical integration of the urban can-

opymodel in offlinemode using theUI patterns from

the short-term integrations to calculate thermal cli-

mate indicators and building energy consumption.

1) SELECTION OF METEOROLOGICAL

PARAMETERS

The basic assumption of the SDD is that the UHI

depends on the local meteorological conditions. This is

justified by the well-established links between the UHI

intensity and the prevailing wind speed, cloud cover,

relative humidity, and pressure (Oke et al. 2017). The

UHI intensity is lower for higher wind speed, since there

is more turbulent mixing and more advection processes

between urban and rural areas. It is also lower for higher

relative humidity and cloud cover, since for such situa-

tions there is less downwelling solar radiation during the

day and more downwelling terrestrial radiation at night.

The wind direction is relevant to the spatial pattern of

the UHI. The SDD proposed in the present study relies

on daily values of wind speed (FF), direction (DD),

specific humidity (Q), precipitation (RR), and daily

temperature range (DT). These can be obtained from a

routine observation station or numerical model output

representative for the rural areas close to the urban

FIG. 1. The statistical–dynamical downscaling methodology.
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area of investigation. Numerical model output can be

representative for both historical and future climate

conditions.

2) IDENTIFICATION OF LWT

A clustering of the meteorological parameters de-

scribed in Hidalgo et al. (2014) and Hidalgo and Jougla

(2018) is made to assign each day to a LWT. The LWT

describe the series of states of the atmosphere above a

location in their usual succession that define its local

climate. The notion of local means here the atmospheric

conditions representative of the background rural area

surrounding the city. To identify how many LWT are

needed to describe the local climatology, an iterative

procedure increasing the number of LWT is performed.

There are different ways to quantify the resulting clus-

tering quality to fix the optimal number of LWT. Hidalgo

et al. (2014) defined the clustering quality by evaluating

the hourly time series of the meteorological parameters.

LWT are more suitable for the UHI than synoptic- or

hemispheric-scale circulation regimes, since the UHI is

mainly shaped by the meteorological conditions in and

around the immediate vicinity of the city. Hoffmann and

Schluenzen (2013), for example, found that synoptic-scale

weather patterns explain only about 15% of the UHI

intensity variance for Hamburg, Germany, whereas the

combination of these weather patterns with local-scale

meteorological parameters explains about 50% of the

UHI variance (Hoffmann et al. 2018). Every LWT is

characterized by its so-called centroid day. The partition-

ing aroundmedoids (PAM) classification algorithmassigns

cluster centroids, which are actual elements of the en-

semble to be clustered. This is not the case for algorithms

like k-means, which aggregate elements around fictitious

points corresponding to the average of the cluster. Below,

‘‘centroid day’’ denotes the actual cluster centroid for a

classification algorithm like PAM and the day closest to

the cluster centroid for an algorithm like k-means. It is

further assumed that, independently of the LWT, the

UHI needs to be dynamically simulated in all seasons of

the year, since different physical processes can be relevant.

Solar radiation, the main driver of the surface energy bal-

ance, varies through the seasons. In the cold (warm) season,

heating (air conditioning) might contribute to the urban

energy balance. Depending on the climatic region, vege-

tation may be more active in different seasons. An ex-

ception could be made for a city in a tropical climate with

nearly no seasonal difference inmeteorological conditions.

3) HIGH-RESOLUTION SHORT-TERM NUMERICAL

INTEGRATIONS OF ATMOSPHERIC MODEL

Short-term numerical integrations using a mesoscale

atmospheric model are carried out for the selected

LWT. They must be conducted for at least one day for

each LWT and season, typically the centroid day.

More days can be simulated to reduce the uncertainty

due to intracluster variability. Independently of the

number of days representing each LWT, a spinup of

one or two days before each day of investigation is

required due to the high thermal inertia of the urban

materials. The mesoscale model should include a state-

of-the-art urban canopy model to take into account the

specifics of the urban energy balance. The numerical

simulations provide the spatial distribution of the UHI

in the urban canopy layer (e.g., at 2m above ground),

and on top of the urban roughness sublayer, which is

located at about 2–5 times the average building height

(Roth 2007). The results provide information on the

UHI intensity and pattern for different meteorological

situations, such as summer situations with a risk for

heat stress and winter situations with large heating

energy consumption and a risk of road icing.

The so-called nourban simulations are performed to

calculate the urban influence on simulated air temper-

ature [UIsim(x, d); Eq. (1)]. For the ‘‘nourban’’ simula-

tions, the urban areas are replaced with a land surface

cover typical for the rural areas surrounding the city:

UIsim(x,d)5Tsim
urb (x, d)2Tsim

nourb(x, d), (1)

where T sim denotes the simulated air temperature,

x denotes the space coordinate, and d denotes one

day. The UHI is usually characterized by a daily cycle

with the largest values in the evening and night and

lowest values in the morning. For this reason, daily time

segments of UIsim, rather than daily average values,

should be taken. The nocturnal UHI can be shaped by

the meteorological conditions prevailing on the pre-

ceding day (e.g., Hoffmann et al. 2012). Therefore, the

daily time segments should not start at midnight, but

rather in the morning, when the UHI is minimal or

slightly negative (e.g., Hidalgo et al. 2008). In the

present study, we limit our discussion to the superposi-

tion of the urban influence on air temperature to the

rural forcing data. However, other meteorological pa-

rameters can also be influenced by urban areas. Relative

humidity is usually lower, mainly because air tempera-

ture is higher. If the urban canopy model is forced with

specific or absolute humidity, this effect is considered

implicitly via the higher air temperature in the forcing.

Specific or absolute humidity is usually only slightly

different between urban and rural areas. Downwelling

(nocturnal) longwave radiation might be systematically

higher in urban areas due to the higher (nocturnal) air

temperature in the urban boundary layer. This could be

taken into account but is not investigated in the present
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study. Downwelling shortwave radiation and precipi-

tation can also be modified by the urban area, but the

patterns of differences cannot be expected to be statis-

tically significant using short-term numerical integra-

tions alone.

4) LONG-TERM NUMERICAL INTEGRATION OF

THE URBAN CANOPY MODEL IN OFFLINE MODE

The selection of LWT is tailored to the UHI, the

temperature difference between urban and rural areas.

The LWT are not strongly related to the absolute value

of air temperature. The results from the short-term nu-

merical integrations alone are therefore not suitable for

calculating climatological averages of thermal climatic

indicators. Such are the spatial distribution in the urban

area of the frequency of hot days (Tmax. 308C), tropical
nights (Tmin . 208C), or the energy consumption for

heating and air conditioning. These indicators cannot be

derived from statistical recombination of the results

from the short-term numerical integrations only. For

this reason, the SDD is extended by long-term integra-

tions (e.g., 10–30 years) of the urban canopy model in

so-called offline mode. In such computationally cheap

simulations, the urban canopy model is forced by me-

teorological parameters representative for the top of the

urban roughness sublayer. Forcing data can be obtained

from numerical model output (e.g., from analysis or

reanalysis data) or routine observation data represen-

tative for the rural areas surrounding the city. For rou-

tine observation data, observed air temperature (wind

speed) at 2m (10m) above ground must be extrapolated

to the forcing height, for example as described by

Lemonsu et al. (2013). To account for the urban influ-

ence on air temperature above the urban roughness

sublayer (Turb), the spatial pattern of the simulatedUI at

this height is superposed to the rural forcing data (Trur).

The 10–30-yr time series of UI is not known, since the

short-term numerical integrations cover only one or few

days for each LWT. Based on the short-term integra-

tions, an estimation of the UI for each season (seas) and

LWT [k(d)] [cUIsimseas,k(d)(x); Eq. (2)] is calculated, where

k(d) denotes the daily time series of the LWT. Different

methods to estimate cUI and the related uncertainties

will be discussed in the following section:

"(seas,k)T
urb

(x,d)5T
rur
(x, d)1 cUIsimseas,k(d)(x) . (2)

b. Uncertainties of the statistical–dynamical
downscaling

The uncertainties of the SDD are due to the weather

typing approach (statistical uncertainty), potential bia-

ses of the numerical model (dynamical uncertainty), and

application to very complex topography or future cli-

mate. In this section, the quantification of the statistical

and dynamical uncertainty is described, assuming that

long-term high-quality urban observations and long-

term numerical integrations of a high-resolution model

are available. The uncertainties due to heterogeneous

topography and potential SDD application in future

climate are briefly described, but will not be further in-

vestigated in the present study.

1) STATISTICAL UNCERTAINTY

The statistical uncertainty quantified here corresponds

to that which results from the reconstruction of the full

time series of the simulated urban influence on air tem-

perature [UIsim(x, d), the ‘‘reference’’] from the results

of the short-term numerical integrations for a reduced

number of LWT. In this section, the uncertainty arising

from this reconstruction for different estimators of theUI

pattern per LWT [cUIsimseas,k(d)(x)] is analyzed. The yearly

mean UI [UIsim(x); Eq. (3)], the seasonal mean UI

[UIsimseas(x); Eq. (4)] and the mean UI for one LWT (WTk)

and season [UIsimseas,k(x); Eq. (5)] are defined:

UIsim(x)5
1

N
d

�
d

UIsim(x,d), (3)

UIsimseas(x)5
1

N
seas

�
d2seas

UIsim(x,d), and (4)

UIsimseas,k(x)5
1

N
seas,k

�
d2(seas,k)

UIsim(x, d). (5)

In Eqs. (3)–(5), Nd denotes the total number of days,

Nseas denotes the number of days in a season, andNseas,k

denotes the number of days of LWT k in a season. The

uncertainty of the reconstructed time series of UI is

quantified by calculating the spatial bias [Eq. (6)] and

spatial root-mean-square error [rmse; Eq. (7)]. The

seasonal average UI patterns are calculated using the

seasonal frequencies of the LWT (fk) as weights [Eq.

(8)]. The seasonal pattern correlation (pacoseas) be-

tween the reconstructed and reference UI patterns [Eq.

(9)] quantifies the degree of agreement between the

reconstructed and reference UI patterns:

bias(x)5
1

N
d

�
d

"(seas,k) UIsimseas,k(d)(x)b 2UIsim(x,d)

� �
,

(6)

rmse(x)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
d

�
d

"(seas,k) UIsimseas,k(d)(x)b 2UIsim(x, d)

� �2s
,

(7)
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UIsimseas(x)b 5�
NWT

k51

f
k
UIsimseas,k(x)b , and (8)

paco
seas

5 cor UIsimseas(x)b , UIsimseas(x)

� �
; (9)

NWT denotes the number of LWT, and cor denotes the

Pearson correlation coefficient.

In the following, two possible methods are introduced

to specify cUIsimseas,k(d)(x). In both methods, cUIsimseas,k(d)(x)

can be obtained from a small number of short-term

numerical integrations:

d WT-CENT-UI: UI corresponds to the daily cycle

simulated for the LWT centroid day dc
seas,k ["(seas,

k) cUIsimseas,k(d)(x)5UIsim(x, dc
k,seas)].

d WT-NDAY-UI: UI corresponds to the mean daily

cycle for the LWT centroid day and N2 1 randomly

selected additional days {"(seas, k) cUIsimseas,k(d)(x)5

(1/N) [UIsim(x, dc
k,seas) 1�N21

i51 UIsim(x, di)]}.

WT-CENT-UI corresponds to the assumption that ev-

ery day belonging to one LWT is represented by the

corresponding LWT centroid day. WT-NDAY-UI cor-

responds to an optimized version of WT-CENT-UI

to reduce the uncertainty due to intracluster variabil-

ity. The evaluation measures obtained for these two

methods will be compared with three benchmarks:

d NO-UI is defined as neglecting the urban influence on

air temperature ["(seas, k) cUIsimseas,k(d)(x)5 0].
d MEAN-UI is defined as using the average annual daily

cycle of UI ["(seas, k) cUIsimseas,k(d)(x)5UIsim(x)].
d WT-MEAN-UI is defined as using the average

daily cycle of UI for each LWT k and season

["(seas, k) cUIsimseas,k(d)(x)5UIsimseas,k(x)].

The bias for MEAN-UI and WT-MEAN-UI is 0. The

uncertainty of the reconstructed UI for the different

estimators is related to the ratio between the inter- and

intracluster variability, which can be quantified with

the explained UI variation due to the clustering

[EVC; Eq. (10)]:

EVC5 �
Nd

d51

UIsimseas(d),k(d)(x)2UIsim(x)
h i2

UIsim(x,d)2UIsim(x)
h i2 . (10)

For EVC 5 1, the UI is exactly the same for each

day belonging to a given LWT. In this case, the recon-

structed time series for WT-MEAN-UI, WT-CENT-

UI, and WT-NDAY-UI is identical to the reference

(bias5 0, rmse5 0, paco5 1). In the more realistic case

of 0 , EVC , 1, UIsim(x) is not exactly the same for

each day belonging to one LWT, and WT-MEAN-UI

no longer corresponds to the reference (rmse. 0). The

UI simulated for the LWT centroid day [UIsim(x, dc
k)]

can differ by a residual «(x) from UIsimseas,k(x) due to

intracluster variability [Eq. (11)]. The rmse for

WT-CENT-UI will therefore be larger than for

WT-MEAN-UI, and the bias and paco will differ from

their optimum values (bias 6¼ 0, paco , 1). For WT-

NDAY-UI, the bias, rmse, and paco will converge

toward those for WT-MEAN-UI the more days are

simulated per LWT:

UIsim(x,dc
seas,k)5UIsimseas,k(x)1 «(x) . (11)

2) DYNAMICAL UNCERTAINTY

The dynamical uncertainty is related to potential

shortcomings of the high-resolution atmospheric model

in simulating the UHI for different LWT and seasons. It

can only be quantified at those locations for which urban

air temperature observations are available. Observation

data might themselves be biased or unrepresentative for

the spatial scale simulated by the numerical model. This

further reduces the potential to quantify the dynamical

uncertainty. TheUHI is defined as temperature difference

between an urban (xurb) and rural station (xrur) [Eq. (12)]:

UHI(x
urb

,d)5T(x
urb

, d)2T(x
rur
,d). (12)

If sufficiently long time series of observed (UHIobs) and

simulated (UHIsim) are available to calculate the mean

UHI intensity per LWT and season, it is possible to

quantify the dynamical uncertainty by comparing the

simulated [Eq. (13)] and observed [Eq. (14)] average

UHI intensity for each LWT and season:

UHIsimseas,k(xurb)5
1

N
seas,k

�
d2(seas,k)

UHIsim(x
urb

,d), and

(13)

UHIobsseas,k(xurb)5
1

N
seas,k

�
d2(seas,k)

UHIobs(x
urb

, d). (14)

It is further quantified whether the differences be-

tween the LWT and seasonal average UHI intensity

and the seasonal average UHI intensity are consis-

tent between the numerical simulations and the

observations [Eqs. (15) and (16)]. To objectively

quantify this, the cluster difference consistency in-

dex [CDCI; Eq. (17)] is defined. CDCI is 1 for per-

fect agreement between simulated and observed

UHI intensity differences and 21 for exactly oppo-

site differences:
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DUHIsimseas,k(xurb)5UHIsimseas,k(xurb)2UHIsimseas(xurb) ,

(15)

DUHIobsseas,k(xurb)5UHIobsseas,k(xurb)2UHIobsseas(xurb), and

(16)

CDCI
seas

5 �
NWT

k51

f
k

(
12

jDUHIsimseas,k(xurb)2DUHIobsseas,k(xurb)j
max[jDUHIsimseas,k(xurb)j, jDUHIobsseas,k(xurb)j]

)
. (17)

3) CONTRIBUTION OF THE STATISTICAL AND

DYNAMICAL UNCERTAINTY

The contribution of the statistical and dynamical un-

certainty is quantified by calculating the bias and rmse as

defined in Eqs. (6) and (7) for three different estimators

of the UHI [ dUHIseas,k(d)(xstat)].

d STAT: Statistical uncertainty arising from taking

one single day per season to represent each LWT

["(seas, k) dUHIseas,k(d)(xstat)5 UHIobs(xstat, d
c
k)].

d DYNA: Dynamical uncertainty only ["(seas, k)dUHIseas,k(d)(xstat)5 UHIsim(xstat, d)].
d STAT-DYNA:Combined statistical and dynamical uncer-

tainty ["(seas, k) dUHIseas,k(d)(xstat)5UHIsim(xstat, d
c
k)].

4) OTHER UNCERTAINTIES

There exist a variety of uncertainties not covered

by the previously discussed statistical and dynamical

uncertainty.

d In areas with strongly heterogeneous topography (e.g.,

mountains, islands), it may not be possible to obtain

observation or reanalysis data representative for the

rural surroundings of the city. Routine observation

stations may be unrepresentative (e.g., when sepa-

rated from the city by mountains) or unavailable

(e.g., a city on a small island). Analysis or reanalysis

data are available globally, but for heterogeneous

topography their resolution may be too coarse to

provide forcing data representative for the rural areas

close to the city.
d Elevation differences within the urban area are chal-

lenging for the proposed SDD. The UI that is super-

posed to the rural forcing is calculated as the difference

between the ‘‘urban’’ and the ‘‘nourban’’ simulations,

which have the same relief. An additional height cor-

rection can be added to construct the forcing for the

long-term offline simulations.
d The use of daily time segments of the simulatedUI leads

to jumps at the transition between days. A smoothing in

time can be applied to reduce these jumps.
d The SDD could be applied to future climate condi-

tions. In this case, it would be necessary to verify that

climate change can be represented by the pure change

in the frequency of the LWT. This might be the case

for LWT that are relatively independent of the

absolute value of air temperature, such as those used

in the present study. Otherwise, new LWT could

appear. Then, the clustering has to be repeated for

the future climate period. Furthermore, crucial pa-

rameters like sea surface temperature or soil mois-

ture could be different between the historical and

future climate. This can be considered by repeating

the short-term mesoscale model integrations for

future climate conditions.

3. Observation data and numerical model
simulations

The statistical and dynamical uncertainty of the pro-

posed SDD as defined in section 2 is evaluated for the

two midlatitude French cities Toulouse and Dijon.

a. Regional climate and local weather types

Toulouse (Dijon) is the fourth (17th) largest urban

area in France with around 466 000 (153 000) inhabitants

in the main municipality. Toulouse is located in a plain

in the southwest of France, 80 km north of the Pyrenees

mountain chain. Its climate consists of mild wet winters

and dry hot summers (Joly et al. 2010). The domestic

heating period extends from the end of October to mid-

May (Pigeon et al. 2007). Dijon is located in eastern

France, at the interface between the Saône plain in the

east and the Morvan low mountain range in the west. It

experiences a semicontinental climate with warm sum-

mers but a relatively high number of frost days in winter.

The average values of the meteorological parameters

for each LWT and the seasonal frequencies of the LWT

are shown in the Tables 1 and 2 (Tables 3 and 4) for

Toulouse (Dijon). The LWT are shaped by the regional

climate and topography of the two cities. In Toulouse,

the west–east-oriented Pyrenees mountain chain leads

to a high frequency of LWT with westerly and easterly

wind direction. In Dijon, the south–north-oriented

Morvan low mountain range leads to a high frequency

of LWT with southerly and northerly wind direction.
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The frequencies of the LWT differ as a function of the

season, because the LWT with the highest (lowest)

daily temperature amplitude do not occur during the

winter (summer) season. All LWT occur during the

transition seasons.

b. Urban meteorological observations and building
energy consumption data

For Toulouse, observed data are available from the

Canopy and Aerosol Particles Interactions in Toulouse

Urban Layer (CAPITOUL) campaign (Masson et al.

2008) between March 2004 and February 2005. This

exact time period is simulated with the numerical

models. Aministation network consisting of 21 stations

mounted on electrical towers at the border of the roads

was deployed in various districts representative of the

urban area. It measured air temperature and relative

humidity every 12min at 6m above ground. A second

station network measured air temperature and relative

humidity at 2m above ground and wind speed and di-

rection at 10m above ground at locations representa-

tive for the synoptic-scale conditions. Furthermore, a

pneumatic tower was mounted on top of the roof of a

20-m-high building in the city center. Tower measure-

ments were conducted at 27.5m above the roof for

small and moderate wind speed (FF , 70 kmh21), and

lower height for higher wind speed. At this tower, all

meteorological parameters required to force an urban

canopy model were measured. The position of the

stations with respect to the topography of Toulouse is

displayed in Figs. 2c and 2e (metadata are provided in

Table S1 in the online supplemental material).

An inventory of building energy consumption has been

compiled by Pigeon et al. (2007) for the time periodMarch

2004 to February 2005 based on the real deliveries of

natural gas and electricity provided by the energy pro-

viders. The electricity consumption is available every

10min at the urban district scale, and the natural gas

consumption is available each day at the scale of the

whole urban agglomeration. The spatial disaggregation of

the energy consumption data has been made by taking

into account the prevailing heating system type and the

building surface fraction to obtain a griddeddataset (100m

resolution) of daily building energy consumption values

for a 15km 3 15km domain centered over Toulouse.

ForDijon, observed data are available from a network of

60 stations namedMeasuringUrban Systems Temperature

of Air RoundDijon (MUSTARDijon; Richard et al. 2018)

since June 2014 (Figs. 2d,f). It measures air temperature

and relative humidity at 3m above ground every 30min. In

this study, the period from June 2014 to December

2016 is investigated. No building energy consumption

data are available for Dijon; the simulated values will

therefore not be evaluated in the present study.

c. UHI definition

For Toulouse (Dijon), the near-surface air tempera-

ture values observed at the stations 7; 12; 21 (1; 2; 6) and

TABLE 1. Average values of the meteorological parameters per local weather type (LWT) for Toulouse (1 Mar 2004–28 Feb 2005).

For the wind direction, quadrant 1 denotes 08–908, quadrant 2 denotes 908–1808, quadrant 3 denotes 1808–2708, and quadrant 4 denotes

2708–3608. Degrees are from north, clockwise.

LWT (k) DT (K) RR (mm day21) Q(g kg21) FF(m s21) DD(quad. ) fk

1 5.81 6.7 6.8 2.2 4 0.05

2 8.84 1.0 7.4 0.7 2 0.04

3 5.65 2.3 5.6 2.0 3 0.13

4 12.5 0.5 5.8 1.3 4 0.04

5 14.6 0.2 9.2 2.2 1 0.07

6 4.8 1.2 4.3 6.1 3 0.12

7 7.6 2.0 6.6 4.8 3 0.15

8 9.8 1.0 5.7 3.1 1 0.12

9 9.1 2.4 11.9 5.2 1 0.08

10 13.0 0.9 8.0 2.1 3 0.08

11 8.3 2.0 10.7 2.8 3 0.12

TABLE 2. Frequencies of local weather types (LWT) for the

seasons December–February (DJF), March–May (MAM), June–

August (JJA), and September–November (SON) for Toulouse

(1 Mar 2004–28 Feb 2005).

LWT (k) fDJF
k fMAM

k f JJAk f SON
k

1 0.06 0.05 0.01 0.09

2 0.04 0.02 0.05 0.06

3 0.19 0.21 0.01 0.13

4 0.06 0.04 0.01 0.06

5 0.00 0.05 0.13 0.10

6 0.32 0.10 0.00 0.04

7 0.09 0.22 0.15 0.13

8 0.23 0.15 0.00 0.08

9 0.00 0.01 0.13 0.17

10 0.01 0.13 0.13 0.03

11 0.00 0.02 0.38 0.11
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22; 24; 27 (33; 34; 35; 36; 38) are taken as representative

for the dense urban and rural environment, respectively.

The time series of the observed UHI [UHIobs(xurb, d)] is

then defined as the difference between the near-surface

air temperature in the dense urban and the rural

environment.

Stewart (2011) defined nine scientific criteria to eval-

uate the quality of UHI studies. Some of these cannot be

fully met in the present study. Elevation differences

between the urban and rural stations can influence the

UHI intensity. For Dijon, the rural stations located in

the low mountain range are therefore not taken into

account. The selected rural stations are on average 18m

lower than the selected urban stations; their elevation

difference should only slightly influence the results. For

Toulouse, rural station 24 is located 70m higher than the

urban stations. This elevation difference may influence

the results slightly. However, no elevation correction is

made, as it is not clear which lapse rate should be ap-

plied. Particularly at the night, when the UHI is largest,

there may be inversions, and thus the correction using a

dry adiabatic or a standard atmosphere lapse rate would

worsen the quality of the data. A further shortcoming of

the UHI definition for Toulouse is the fact that, while

the rural stations measure at 2m above the ground, the

urban stations measure at 6m above the ground. During

the CAPITOUL campaign, the sensitivity to measure-

ment height (6m vs 2m) has been tested for one urban

station; results showed that the influence was small. In

summary, the UHI definition for Dijon is more robust

than for Toulouse, since there are fewer elevation dif-

ferences between the urban and rural stations and the

variables of interest are measured at the same height

above ground.

d. Numerical simulations

To evaluate the SDD, long-term numerical simula-

tions are performed using the mesoscale atmospheric

modelMeso-NH (Lafore et al. 1998; Lac et al. 2018). It is

used to dynamically downscale the European Centre for

Medium-RangeWeather Forecasts (ECMWF) Integrated

Forecasting System high-resolution operational fore-

cast analyses. Their horizontal resolution is about 40km in

2004–05, 16km from 26 January 2010 to 7March 2016, and

about 9km since 8March 2016 (https://www.ecmwf.int/en/

forecasts/documentation-and-support/changes-ecmwf-

model). The analysis data are downscaled via three

intermediate nesting steps to a horizontal resolution of

250m. The horizontal grid resolutions of the four do-

mains are 8 km (D1), 2 km (D2), 1 km (D3), and 250m

(D4). Table 5 summarizes the employed physical pa-

rameterizations; the delimitation of the model domains

is displayed in Figs. 2a and 2b. For more details on the

model configuration, the reader is referred to section 3

of Kwok et al. (2019).

Meso-NHis coupledwithSurfaceExternalisée (SURFEX;

Masson et al. 2013) to solve the surface energy budget.

SURFEXemploys the urban canopymodel TownEnergy

Balance (TEB;Masson 2000) for urban areas and the soil–

vegetation–atmosphere–transfer model ISBA (Noilhan

and Planton 1989) for rural areas. TEB assumes a simple

urban geometry with buildings aligned along street can-

yons and solves the surface energy budget separately for

a representative roof, wall, and road. In-canyon urban

TABLE 3. As in Table 1, but for Dijon (1 Jun 2014–31 Dec 2016).

LWT (k) DT (K) RR (mm day21) Q(g kg21) FF(m s21) DD(quad. ) fk

1 6.3 1.1 4.4 2.6 3 0.08

2 7.5 3.8 6.7 1.5 1 0.09

3 6.1 2.1 5.3 3.2 4 0.14

4 14.0 0.2 8.7 1.4 2 0.08

5 12.3 0.6 7.0 1.6 3 0.10

6 12.1 0.9 8.1 1.7 4 0.13

7 16.0 1.0 9.6 1.4 1 0.05

8 7.3 3.4 9.4 2.2 3 0.08

9 6.5 10.0 9.5 2.5 4 0.07

10 10.1 0.0 5.4 4.2 2 0.10

11 4.5 2.1 5.6 1.4 2 0.08

TABLE 4. As in Table 2, but for Dijon (1 Jun 2014–31 Dec 2016).

LWT (k) fDJF
k fMAM

k f JJAk f SON
k

1 0.16 0.14 0.00 0.06

2 0.16 0.09 0.02 0.11

3 0.36 0.14 0.01 0.09

4 0.01 0.05 0.16 0.07

5 0.04 0.12 0.15 0.08

6 0.05 0.11 0.20 0.13

7 0.00 0.05 0.11 0.04

8 0.00 0.03 0.19 0.06

9 0.01 0.08 0.11 0.07

10 0.06 0.16 0.05 0.16

11 0.15 0.03 0.00 0.13
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FIG. 2. (a),(b) Overview of the model domains and topography. (c),(d) Location of the stations with respect

to elevation and (e),(f) plane area building density. Station metadata are given in the Tables S1 and S2. In the

middle row, for Toulouse, white depicts the tower, black the urban station network, and red the synoptic

station network. For Dijon, white depicts the synoptic station Longvic airport and black the urban station

network.
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vegetation is taken into account with the approach of

Lemonsu et al. (2012). A building energy module (Bueno

et al. 2012; Pigeon et al. 2014) solves the energy budget

of a representative building at district scale. Vertical

profiles of meteorological parameters in the street

canyon are calculated using the surface boundary

layer (SBL) scheme of Hamdi and Masson (2008). A

similar SBL scheme is employed in rural areas. Data

on the urban form and function of Toulouse and

Dijon are taken from the MApUCE database (http://

mapuce.orbisgis.org/). These data deal with urban

morphology (Bocher et al. 2018), construction materials

and their physical properties (Tornay et al. 2017), human

behavior related to building energy consumption

(Schoetter et al. 2017), and urban vegetation (Crombette

et al. 2014). The center of Toulouse (Dijon) is charac-

terized by historical red brick (limestone) buildings with

roofs mainly covered with tiles. The land-cover pa-

rameters for the rural areas are taken from the 1 km

resolution Ecosystem ClimateMap (ECOCLIMAP-I)

database (Masson et al. 2003; Champeaux et al. 2005).

Only the model output for D4 is analyzed. The model

output from the vertical level of the SBL scheme closest

to the height of the station observation is taken. For the

stations measuring at 2 or 3m above the ground, this

is exactly 2m; for the stations measuring 6m above

ground, the corresponding SBL level is at about 5m

above ground. The average of the model output for all

grid points within a distance of less than 250m to the

station (2–4 grid points) is calculated.

Evaluation of building energy consumption simulated

by the coupled Meso-NH-TEB and the TEB offline is

restricted to Toulouse, since an inventory of building

energy consumption is available only for this city. The

total building energy consumption is the sum of the

energy consumption due to electrical appliances, lighting,

cooking, and heating of buildings. The building energy

consumption due to electrical appliances, lighting and

cooking is specified as a function of building use, house-

hold characteristics, and sociodemographical factors

based on surveys of energy use in France (Bourgeois

et al. 2017). The building energy consumption due to

heating of buildings is simulated by the building energy

model included in TEB as a function of the prevailing

meteorological conditions, the characteristics of the

building envelope (available from Tornay et al. 2017),

the type of the heating system, and the heating setpoint

temperature. The heating setpoint temperature is speci-

fied as a function of building use, the type of the heating

system, and sociodemographical factors as described in

Bourgeois et al. (2017) and Schoetter et al. (2017). Air

conditioning was not a relevant contribution to building

energy consumption in Toulouse during summer 2004.

The SURFEX offline simulations are forced by the

meteorological parameters observed at the tower at

about 20m above the average building height. The air

temperature observed at the tower (Tobs
tow) placed in the

city center represents the conditions in the urban envi-

ronment at the position of the tower (xtow). During a

practical application of the SDD, high-quality observa-

tions from routine meteorological stations are usually

not available in the city center since these stations are

placed at sites representative for the synoptic-scale

meteorological conditions outside the city center (e.g.,

airports). To take into account the uncertainty due to

the use of observations from a location outside the urban

area, the air temperature at forcing height corrected for

the urban influence at the position of the Blagnac airport

station [xapt; number 22 in Figs. 2c and 2e; Eq. (18)] is

calculated. The forcing data for SURFEX containing

the spatial pattern of the UI are then calculated fol-

lowing Eq. (19):

T
rur
(x

apt
, d)5Tobs

tow(xtow, d)2 [Tsim
urb (xtow,d)

2Tsim
nourb(xapt,d)], and (18)

"(seas,k)T
urb

(x, d)5T
rur
(x

apt
,d)1 cUIsimseas,k(d)(x) , (19)

4. Results

a. Model performance at synoptic stations

The hourly values of meteorological parameters are

evaluated at the synoptic stations Météopole (number

26 in Figs. 2c and 2e) and Longvic airport (number 0 in

Figs. 2d and 2f) for Toulouse and Dijon, respectively.

Evaluation measures are provided in Tables 6 and 7.

TABLE 5. Physical parameterizations employed for the Meso-NH simulations.

Domain

Horizontal

resolution (km)

Time

step (s)

Parameterization of

deep convection

Parameterization of shallow

convection and dry thermals Mixing length calculation

D1 8 15 Kain and Fritsch (1990) Pergaud et al. (2009) Bougeault and Lacarrère (1989)

D2 2 15 None Pergaud et al. (2009) Bougeault and Lacarrère (1989)

D3 1 15 None None Bougeault and Lacarrère (1989)

D4 0.25 7.5 None None Deardorff (1980)
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In general, the model performance is acceptable, given

that Meso-NH is forced only at the lateral boundaries

and no data assimilation takes place. A noteworthy

model deficiency is the warm bias of 3K for JJA in

Toulouse. Interestingly, a similar warm bias in JJA is

not found in Dijon, which is probably due to the dif-

ferent regional climate or topography. Downwelling

solar radiation at the surface is overestimated for

both cities and all seasons. Wind speed and direction

are simulated well for both cities. In summary, model

evaluation reveals two main issues: the warm bias for

JJA in Toulouse and the general overestimation of

downwelling shortwave radiation. The investigation

of the physical mechanisms related to these biases is

beyond the scope of the present study.

b. Statistical uncertainty

The evaluation measures defined in section 2 to

quantify the statistical uncertainty of the SDD are

displayed in Fig. 3 (Fig. 4) for Toulouse (Dijon). In

this section, both the results for UI at 2m above

ground (UI2M), relevant for the screen-level condi-

tions, and UI at 10m above the urban canopy layer

(UI10M), relevant for the reconstruction of the forcing

for the SURFEX offline simulations, are discussed.

The bias (Fig. 4, top line) and rmse (Fig. 4, middle

line) are shown as an example for the grid point cov-

ering station 12 (1) for Toulouse (Dijon), which is

located in the city center. The results for the pattern

correlation (paco) (Fig. 4, bottom line) are displayed

as an example for the average nocturnal (0200 to

0500 local time) UI in DJF.

NO-UI leads to the worst results for all evalua-

tion measures, and WT-MEAN-UI leads to the best.

However, for WT-MEAN-UI rmse 6¼ 0, because the

LWT do not explain the entire UI variation. For

Toulouse, the ECV [Eq. (10)] at the location of the

stations is between 45% and 65% for UI2M and 35%

and 55% for UI10M. The corresponding ranges for

Dijon are 20%–60% and 20%–55%, and the lowest

values of ECV are found for stations far from the city

center. The values obtained for EVC are higher than

those reported by Hoffmann and Schluenzen (2013)

for synoptic-scale weather patterns and in the same

order of magnitude as those obtained by Hoffmann

et al. (2018) by the combination of these weather

patterns with local meteorological predictors of the

UHI. It is also plausible that ECV is lower for UI10M

than for UI2M since the further away from the sur-

face, the less the air temperature is directly influenced

by the underlying land cover.

The results show that simulating only the centroid

day to represent each LWT (WT-CENT-UI) leads to

suboptimal values of the rmse and paco. For both

cities, the rmse for WT-CENT-UI is larger than for

WT-MEAN-UI, which demonstrates that the small-scale

intra-LWT variability dominates over the explained

UI variation by the LWT. The paco also deviates from

its optimum value of 1, especially for UI10M, which is

less constrained by the surface than UI2M. If 3–6 days

TABLE 6. Evaluationmeasures calculated based on hourly values

of meteorological parameters simulated by Meso-NH at the syn-

optic station Météopole (No. 26, Fig. 2c) in Toulouse. The desired

accuracy for the calculation of the hit rate is 2 K for air tempera-

ture, 14% for specific humidity, 1 m s21 for wind speed, and 308 for
wind direction.

DJF MAM JJA SON

Air temperature, 2m

Bias (K) 20.3 0.2 3.1 20.2

Rmse (K) 1.9 1.7 3.8 1.9

Hit rate 0.73 0.78 0.33 0.74

Specific humidity, 2m

Bias (g kg21) 20.1 0.3 20.2 0.0

Rmse (g kg21) 0.5 0.8 1.3 0.9

Hit rate 0.80 0.75 0.73 0.79

Total downwelling solar radiation

Bias (W m22) 1.2 23.1 57.7 5.1

Wind speed, 10m

Bias (m s21) 0.4 0.3 0.7 0.4

Rmse (m s21) 1.4 1.4 1.6 1.3

Hit rate 0.55 0.59 0.50 0.62

Wind direction, 10m

Rmse (8) 59.2 59.5 67.9 68.4

Hit rate 0.64 0.60 0.56 0.56

TABLE 7. As in Table 6, but for the station at Dijon Longvic airport

(No. 0 in Fig. 2d).

DJF MAM JJA SON

Air temperature, 2 m

Bias (K) 20.1 20.5 20.3 21.1

Rmse (K) 2.0 1.8 2.3 2.2

Hit rate 0.72 0.76 0.62 0.62

Specific humidity, 2 m

Bias (g kg21) 0.0 0.5 0.2 20.1

Rmse (g kg21) 0.6 1.0 1.3 0.9

Hit rate 0.77 0.66 0.73 0.79

Total downwelling solar radiation

Bias (W m22) 7.7 12.5 26.0 1.5

Wind speed, 10m

Bias (m s21) 0.3 0.0 0.2 0.1

Rmse (m s21) 1.4 1.3 1.4 1.3

Hit rate 0.56 0.59 0.58 0.61

Wind direction, 10m

Rmse (8) 69 64 68 69

Hit rate 0.6 0.59 0.53 0.56
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FIG. 3. Evaluation measures for the reconstructed time series of the urban influence on air temperature (UI)

for Toulouse. (a),(b) Bias and (c),(d) rmse of the UI time series at the location of station 12 in central Toulouse.

(e),(f) Pattern correlation (paco) of the nocturnal (2 to 5 local time) UI for DJF. 1000 Bootstrap resamples have

been drawn to estimate the confidence intervals. The cross depicts the median, the confidence intervals the 5th to

95th percentile of the model evaluation measures.
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FIG. 4. As in Fig. 3, but for Dijon.
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are simulated for each LWT, the evaluation measures

converge toward their optimum values. For Toulouse

(Dijon), only 1 (2.5) year is available. Therefore, the days

to be considered for each LWT have been selected using

the bootstrapping method so as not to artificially reduce

the uncertainty by sampling all days. Here, 1000 bootstrap

samples are taken from the original by using sampling

with replacement to estimate the confidence intervals

following Efron (1979).

For other grid points in the urban areas, very similar

results are found for the bias and the rmse (not shown).

For the paco, the results are generally better for other

seasons than those shown for DJF, mainly due to lower

advection.

In Fig. 5 (Fig. 6), the seasonal mean nocturnal UI2M

patterns are shown for Toulouse (Dijon). The left col-

umn displays the results obtained when recombining

the UI patterns simulated for the LWT centroid days,

the middle column the results obtained when simu-

lating 6 days per LWT. The right column shows the

results obtained from the long-term simulation (the

reference). For both cities, the average UI2M patterns

obtained using the LWT centroid days are not substan-

tially different from the reference, since the urban influ-

ence on near-surface air temperature is shaped largely by

the local topography. This is consistent with the relatively

high values for paco found for WT-CENT-UI. However,

there are some shortcomings for WT-CENT-UI. For

Toulouse, the UI is too low in JJA and too high in

SON, which is considerably improved for WT-6DAY-UI.

Similar conclusions can be drawn for UI10M (not shown),

although the spatial pattern for WT-6DAY-UI differs

more from the reference than for UI2M, which corrob-

orates the results obtained for paco (Figs. 3e,f and 4e,f).

c. Dynamical uncertainty

The dynamical uncertainty is quantified by evaluating

the simulated nocturnal (0200 to 0500 local time) UHI

intensity per season and LWT for Toulouse (Fig. 7) and

Dijon (Fig. 8). Only those LWT that occur for more than

5 days for each season are analyzed, since Stewart (2011)

state that UHI intensities calculated from one or only a

few nights lack robustness. Seasonal average UHI inten-

sities are captured for Dijon, with biases of only 0.1–0.2K.

The UHI is lowest in DJF (Fig. 8a), and highest in MAM

(Fig. 8b) and JJA (Fig. 8c). Meso-NH captures well these

seasonal differences. For Toulouse, the UHI intensity

is slightly (0.3K) overestimated in DJF (Fig. 7a) and

considerably (up to 0.8 K) overestimated in the other

seasons. This overestimation is found for all LWT.

For both cities and all seasons, the values for the CDCI

(Figs. 7 and 8) are larger than 0. This is an encouraging

result, since it demonstrates that, on average, for LWT

with a relatively low (high) observed UHI intensity,

the simulated UHI intensity tends to be relatively low

(high). Meso-NH therefore captures, on average, the

relationship between the UHI intensity and the LWT.

However, there are single LWT for which the simulated

UHI intensities show biases even though the seasonal

average UHI intensity is simulated well. In Dijon, this is

the case for LWT 6 in DJF (Fig. 8a) and LWT 7 in JJA

(Fig. 8c). Both these LWT are characterized by a rela-

tively high daily temperature amplitude and low wind

speed. For Toulouse, this is the case for LWT 7, which is

characterized by a medium temperature amplitude and a

moderate westerly wind. Investigation of the UI for the

problematic seasons and LWT reveals that Meso-NH

simulates a relatively strong UI for these LWT, not only

in the city center, but also in the suburban areas and

nearly rural areas where the rural stations are located.

As a consequence, the simulated UHI, the difference

between the urban and rural stations, is too low for these

LWT. A possible reason is that the model grid points

taken to represent the rural stations are not completely

free of buildings. For Toulouse, the plane area building

density is 0, 0.05, and 0.12 for stations 24, 27, and 22, re-

spectively. ForDijon, the values of the plane area building

density for the rural stations are between 0.0 and 0.08. The

grid points of the rural stations might be too heavily influ-

enced by the urbanization for the problematic LWT.

The observed daytime (1300 to 1600 local time) UHI

is lower than the nocturnal UHI for all seasons, LWT

and the two cities (not shown). This is consistent with

knowledge about the UHI effect. For Dijon, the simu-

lated and observed UHI agree, with up to 0.5K bias for

some LWT. For Toulouse, similar to the nocturnal UHI,

larger biases are found. The UHI intensity is overestimated

by 0.5 to 1.0K in MAM, SON, and DJF, whereas it is

underestimated by about 0.5K in JJA. These biases

are relatively independent of the LWT.

An interesting finding is that the UHI intensity is

considerably better simulated forDijon than for Toulouse.

This might be due to the fact that the station observations

available to define the UHI are more robust for Dijon,

since there are more rural stations available, the elevation

differences are lower, and the urban and rural stations

measure at the same height.

d. Contributions of statistical and dynamical
uncertainty

The evaluation measures quantifying the contribu-

tions of the statistical and the dynamical uncertainty

are given in Table 8. Results show that for the bias in

Toulouse the dynamical uncertainty dominates. No

relevant bias is simulated for Dijon. For the rmse, the

statistical and the dynamical uncertainty have about
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FIG. 5. Seasonal means of nocturnal (2 to 5 local time) urban influence on air temperature in 2m above ground for

Toulouse. (left) Weighted average of the UI patterns simulated for the LWT centroid days (WT-CENT-UI); (middle)

as in (left), but when simulating 6 days per LWT (WT-NDAY-UI with N 5 6; WT-6DAY-UI); (right) reference

solution from the long-term numerical integration.
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FIG. 6. As in Fig. 5, but for Dijon.
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the same relevance if only one day is taken to repre-

sent each LWT per season.

e. Sensitivity of near-surface air temperature to plane
area building density

Evaluation of the UHI intensity is limited by the

availability of stations representative for the rural en-

vironment, especially for Toulouse. The objective of this

section is to quantify whether Meso-NH accurately

captures the sensitivity of the near-surface air temper-

ature on the plane area building density, which is one of

the most relevant urban morphology parameters. For

Toulouse, only the urban ministation network is used to

make sure that all temperature values are measured at

the same height above ground. The simulated and ob-

served values of air temperature at the different stations

are displayed as a function of the plane area building

density for Toulouse (Dijon) in Fig. 9 (Fig. 10). The

sensitivity of the near-surface air temperature on the

plane area building density is defined here as the slope of

the regression lines in the figures. For Toulouse, the

simulated sensitivities are slightly overestimated, except

for the JJA season (Fig. 9c). This is consistent with the

findings for theUHI, but the results show thatMeso-NH

generally captures the sensitivity well. Interestingly, the

residuals from the linear regression displayed in Fig. 9

are consistent between the model and the observations

for some stations and for all seasons. The simulated and

observed air temperature is relatively high for stations 2,

10, and 21. Station 10 is located on a river island, and

stations 2 and 21 are located close to the river. For these

stations, the nearby water heats the air during the night.

This phenomenon is captured byMeso-NH. For stations

1 and 20, the simulated and observed air temperature is

relatively low for all seasons. These stations are far away

from the city center. For this reason, they are cooled

FIG. 7. Simulated and observed nocturnal (2 to 5 local time)UHI intensity in Toulouse per season and local weather

type. The point depicts the mean, the errorbar the standard deviation of the mean.
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by advection from the adjacent rural areas. This is

captured byMeso-NH and consistent with the findings

of Kwok et al. (2019). Interestingly, station 15, which

is located about 100m higher than the other stations is

not an outlier, probably due to the presence of in-

versions during the night.

For Dijon, the sensitivity of near-surface air tem-

perature to plane area building density is captured,

which is consistent with the findings for the UHI. An

interesting model deficiency for Dijon is that Meso-NH

does not capture that stations 2, 10, 12, 27, 30, 40, and

41, which are located between the end of a valley of the

Morvan low mountain range and the city center mea-

sure relatively lower air temperature in JJA (Fig. 10c).

This might be due to a shortcoming of Meso-NH in

simulating katabatic flows from the low mountain

range toward the city. The too-coarse vertical resolu-

tion of 20m (first model level in 10m above ground)

could be the reason.

f. Influence of the UHI on building energy
consumption

The influence of the UHI on building energy consump-

tion is investigated for Toulouse, since an inventory for the

TABLE 8. Results for evaluation measures quantifying the con-

tributions of the statistical and the dynamical uncertainty. STAT:

Statistical uncertainty arising from using one single day to repre-

sent each LWT per season, DYNA: dynamical uncertainty, and

STAT-DYNA: both uncertainties.

Bias (K) Rmse (K)

Toulouse

STAT 0.0 1.4

DYNA 0.4 1.0

STAT-DYNA 0.4 1.4

Dijon

STAT 20.1 1.1

DYNA 20.1 0.8

STAT-DYNA 20.2 1.0

FIG. 8. As in Fig. 7, but for Dijon.
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time period of the CAPITOUL campaign is avail-

able for a domain of 15 km 3 15 km covering the

center of Toulouse (Pigeon et al. 2007). Only the

influence of the UHI on heating energy consumption

can be investigated, since there has been very little

air conditioning use in Toulouse during summer

2004. Figure 11a displays the spatial distribution of

the anthropogenic heat flux due to the simulated

heating energy consumption for DJF 2004–05 for a

simulation when the urban influence on air tem-

perature is neglected (NO-UI). The highest values

(.50Wm22) are simulated in central Toulouse,

which is no surprise, since the density of heated floor

space is highest in this area. The superposition of the

UIsim(x, d) patterns from the long-term Meso-NH

integration leads to a reduction of the building

energy consumption of about 5Wm22 in central

Toulouse (Fig. 11b). This corresponds to 10%–15%

of the absolute values (Fig. 11c). In the suburban

areas, the UHI reduces the heating energy consump-

tion by 0%–5%.

Figure 12 displays the time series of daily total

(heating and electrical appliances) building energy

consumption averaged for the domain displayed in

Fig. 11. The simulation results are compared to the

inventory of Pigeon et al. (2007). The inventory energy

consumption exhibits a strong annual cycle. It is low in the

warm season and strongly increases during the domestic

FIG. 9. Sensitivity of near-surface air temperature to plane area building density for Toulouse.
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heating period, during which it varies strongly with

air temperature. The coupled Meso-NH-TEB simu-

lation (Fig. 12a) captures the time series of building

energy consumption. The simulations conducted in

offline mode forced with the observed meteorolog-

ical data and considering the reference time series of

UIsim(x, d) from the long-termMeso-NH integration

are of similar quality to those of the coupled simu-

lation (Fig. 12b). It is further investigated whether

the use of the simulated UI patterns for the LWT

centroid days (WT-CENT-UI; Fig. 12c) instead of

the reference UIsim(x, d) time series degrades the

model performance. No relevant differences of the

simulated building energy consumption are found

compared to the simulation with the reference UI

patterns.

5. Conclusions and outlook

This study describes a statistical–dynamical down-

scaling for the urban heat island and building energy

consumption. It is based on short-term numerical

integrations of a mesoscale atmospheric model for a

selection of local weather types (LWT) to calculate

the urban heat island effect and long-term numerical

integrations of an urban canopy model to calculate

the building energy consumption. The uncertainties of

this method related to the LWT approach (statistical

FIG. 10. As in Fig. 9, but for Dijon.
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uncertainty) and due to the employed mesoscale model

Meso-NH (dynamical uncertainty) were analyzed for two

French cities (Toulouse and Dijon). Meso-NH captures

the seasonal average nocturnal UHI intensity for Dijon,

but it overestimates the UHI intensity during the transi-

tion seasons for Toulouse. For both cities and all seasons,

the relationship between the UHI intensity and the

LWT is captured on average. This means that for LWT

with relatively high (low) observed UHI intensity,

Meso-NH tends to simulate a relatively high (low) UHI

intensity. However, somemodel deficiencies have been

identified. They are related to an underestimation of

the simulated UHI intensity for LWT with a relatively

high UHI intensity. For these LWT, the near-surface

air temperature measurements at the rural stations

are biased by urbanization. This can be due to the

too-coarse spatial resolution of the mesoscale model

(250m 3 250m), which is not necessarily representative

for the immediate vicinity of the stations. An inter-

esting finding is that the simulated UHI intensity is

closer to the observations for Dijon, where the eleva-

tion differences between the urban and rural stations

are lower and the rural and urban stations measure at

the same height above ground. This suggests that ap-

parent model deficiencies for Toulouse can also be due

to a less robust definition of the observed UHI for this

city. For both cities, the statistical uncertainty is of a

similar magnitude as the dynamical uncertainty if only

one day is simulated to represent one LWT. Simulating

3–6 days for each LWT can considerably reduce the

statistical uncertainty and is therefore recommended.

The UHI reduces the simulated building energy con-

sumption by about 10% in the center of Toulouse; it

should therefore be taken into account during the

production of high-resolution maps on building energy

consumption.

FIG. 11. (a) Simulated anthropogenic heat flux due to heating energy consumption in the 15 km 3 15 km domain covering

the center of Toulouse during DJF 2004–05. (b),(c) Absolute and relative difference due to the urban influence on air tem-

perature (UI).

FIG. 12. Time series of daily values of building energy consumption averaged for the domain shown in Fig. 11. The inventory is taken

fromPigeon et al. (2007). (a) TEB coupled withMeso-NH, (b) offline simulationwith superposition of the spatial distribution of the urban

influence on air temperature (UI) obtained from the long-termMeso-NH-TEB simulation to the rural forcing data, and (c) as in (b), but

superposing using the simulated UI for the LWT centroid day [UIsim(x, dc
k,seas)].

880 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 59



Future work on the statistical–dynamical downscaling

method could investigate whether there is an added

value of superposing the urban influence on the

downwelling longwave radiation to the forcing data.

Furthermore, the application of such a downscaling

method in cities with more complex topography should

be tested and potential issues related to coastal or

mountain effects investigated. For cities larger than

those investigated in the present study, the urban in-

fluence on air temperature may be of relevance even in

rural areas adjacent to the city. It could be investigated

whether taking this effect into account would change

thermal climate indicators or building energy con-

sumption in a relevant manner in rural areas. An ap-

plication of the downscaling to future climate conditions

is challenging since the changes in parameters such as

soil moisture between historical and future climate are

not represented by the local weather types. Therefore,

dynamical simulations will have to be made for future

climate conditions, which creates the challenge of con-

structing forcing data for the mesoscale model based on

climate model results.

In the follow-up of the present study, the presented

statistical dynamical downscaling will be applied to

about 50 French cities using high-resolution analysis

data from the AROME France model (Seity et al. 2011)

to select the LWT (Jougla et al. 2019). The results allow

comparison of the urban heat island intensity of a

variety of French cities of different size, geographical

situation, and regional climate using a homogeneous

modeling approach and the homogeneous MApUCE

dataset on urban form and functioning. The urban

heat island and building energy data can also be combined

with data on sociodemography or public health to calcu-

late population exposure and quantify the vulnerability of

the population.Urban climaticmapswill be derived based

on the simulated thermal climate indicators to inform

public authorities about the thermal climate at high spatial

resolution and to identify districts with large building

energy consumption.
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