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Abstract. The concept of targeted observations was imple-
mented during field experiments such as FASTEX, NORPEX
or WSRP in order to cope with some predictability problems.
The techniques of targeting used at that moment (adjoint-
based or ensemble transform methods) lead to quite disap-
pointing results: the efficiency of the additional observa-
tions deployed over sensitive areas did not turn out to remain
consistent from one case to another. The influence of tar-
geted observations on the forecasts could sometimes consist
of strong improvements, or sometimes strong degradations.
It turns out that the latter failure explains why the concept of
optimal sampling arose. The efficiency of adaptive sampling
appears to depend on the assimilation scheme that deals with
the observations. It is then very useful to integrate the na-
ture of the assimilation algorithm, as well as the deployment
of the conventional network of observations (redundancy is-
sues between targeted and conventional network) in the def-
inition of the sensitive pattern to be sampled. Therefore, we
chose the tool of the sensitivity to observations to allow us
to test such an approach. The sensitivity to targeted observa-
tions (that utilizes the adjoint of the linearized NWP model
and the adjoint of the assimilation operator) seems to be a
suitable tool to obtain an insight into the tricky issue of the
optimization of the sampling strategies.

To understand better the intrinsic patterns and the influ-
ence of the 3D-Var assimilation scheme on the sensitive
structures to be sampled, we present here some detailed re-
sults on a FASTEX targeting case. We focus on the drop-
sondes deployed by the Gulfstream IV (jet-aircraft) along its
first flight during Intense Observing Period 17 that started on
the 17 February 1997. The sensitivity to observation is used
as a diagnostic tool for studing targeting from a critical point
of view. It is shown that assimilation processes can have an
important effect on the classical sensitivity fields, and par-
ticularly on their vertical extension. For example, in the
studied case, the classical sensitivity fields remain at a lower
level than 400 hPa, whereas the sensitivity to observations
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stretches up to 250 hPa. However, the maximum values can
be found at approximately 700 hPa in both sensitivity fields.

The studied case shows that the efficiency of observations
depends not only on the sensitivity but also on the deviations
between the observations and the background field. An ex-
ample of the use of this diagnosis for comparing the relative
efficiency of different kinds of observations is also presented.
This work points out that it is very complicated to optimize
the efficiency of adaptive observations, and that the assimi-
lation of an entire set of observations (both conventional and
adaptive network) needs to be considered.

1 Introduction

Despite numerous advances in the domain of numeri-
cal weather forecasting (improvement in data assimilation
schemes and improvement in numerical models) during the
past few years, the forecast of some meteorological events
(like rapid cyclogenesis) remains a difficult problem. Since
these meteorological situations have often tragic socioeco-
nomic consequences, it is crucial to produce an accurate fore-
cast of such events. These forecast errors partly result from
inaccuracies in the initial conditions. These inaccuracies are
a consequence either of the errors in the observations and
in the background field, or of the inhomogeneous observa-
tion network, or of approximations made in the assimilation
scheme used for interpolating observations and for producing
initial conditions.

In order to try to improve the forecasting of such events,
a new observational strategy has been proposed. The pur-
pose was to add so-called adaptive or targeted observations
to the conventional observing network in order to control
the growth of forecast errors (Emanuel et al., 1995; Snyder,
1996). This observational network is adaptive in the sense
that the location of these measurements varies from day-to-
day (in opposition to the quasi-permanent conventional net-
work of observations). This strategy was tested during recent
field experiments: FASTEX (Joly et al., 1999), NORPEX
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(Langland et al., 1999), and WSRP (Szunyogh et al., 2000).
The results from these field experiments show that the in-
clusion of targeted data can significantly improve the fore-
cast in some cases. However, a large case to case variability
exists, and it seems that the efficiency of targeted observa-
tions depends on numerous parameters (Bergot, 1999). One
of the most important parameters is the assimilation scheme
used for producing initial conditions. In fact, targeted ob-
servations have to go through the assimilation scheme, to-
gether with conventional data, to produce initial conditions,
and their efficiency is strongly related to the accuracy of such
data assimilation processes (Bergot, 2001; Bishop et al., 2001;
Morss, 1999).

Sampling strategies, as tested during FASTEX, NORPEX
or WSRP, do not appear to be optimal in the sense that there
is no explicit care about redundancy (between targeted and
conventional observations) and that the number, the nature,
and the deployment of those adaptive observations do not
guaranty a maximum improvement on the subsequent fore-
casts at the lowest cost. Further progress in targeting should
consider such issues. Moreover, the effectiveness of the sam-
pling of the sensitive area appears to depend on the assimila-
tion scheme (Bergot, 2001). Therefore, it seems essential to
include the effects of the assimilation processes in the way
adaptive observations are defined (number, observed param-
eter, deployment). In this way, Baker and Daley (2000) have
explored, in an idealized context, a new approach calledsen-
sitivity with respect to observations, hereafter called sensitiv-
ities to observations. These sensitivities to observations are
defined in observation space, and point out the observations
in which a given forecast aspect is sensitive. This tool makes
it possible to highlight the effect of the assimilation scheme
on adjoint-based sensitivity patterns. One of the advantages
of sensitivity to observations is that it takes into account the
existing conventional observations, as well as the way the
targeted and conventional observations are assimilated.

The goal of this article is to illustrate the added value of
sensitivity to observations with respect to classical sensitivity
fields for real FASTEX targeted flights, and to explore the
potential use of sensitivity to observations in the context of
adaptive observations.

2 Sensitivity to observations: principle

The general theoretical principles of the sensitivity to obser-
vations are recalled here, and a more detailed formalism can
be found in Baker and Daley (2000) or Doerenbecher and
Bergot (2001, currently in progress). The sensitivity to ob-
servations will be applied within a variational assimilation
context, and the notations are following Ide et al. (1997).

Let xa(t) be the state vector, defined at timet, and called
analysis. It is the output from the assimilation process which
summarizes the information from all observations,y(t), and
from the background field,xb(t). Let t0 be the initializa-
tion time, andt1 be the final (or “verification”) time at which
a forecast aspectS [xf (t1)] = S [Mxa(t0)] is computed,

and letM be the linear approximation (or “tangent linear
model”) of the weather forecast modelM. Following the
first order expansion ofS , and following the definition of the
adjoint model,MT , the sensitivity with respect to initial con-
ditions,∇xS , is given by (see Rabier et al. (1996) or Errico
(1997) for more details)

∇xS = MT ∂S/∂x(t1). (1)

From the assimilation point of view, the initial conditions,
xa(t0), are related to the background field,xb(t0), and to
the observations,y(t0), by (see Ghil and Malanotte-Rizzoli
(1991) or Lorenc et al. (1986) for more details)

xa(t0) = xb(t0) + K
[
y(t0)−H

(
xb(t0)

)]
(2)

whereH is the so-called observation operator which inter-
polates from model variables to observation points.K stands
for the assimilation gain operator which combines the back-
ground error covariance matrixB, the observation error co-
variance matrixR, and the linearized observation operator
H:

K = (B−1 + HT R−1H)−1HT R−1. (3)

From a practical point of view, it should be noted that inverse
matrix (B−1 + HT R−1H)−1 = A represents the so-called
analysis error covariance matrix that depends on timet. In
the context of adaptive observations, one generally considers
the observational network to be composed of conventional
observations (noted with a subscriptc in the following equa-
tions), and of a targeted component (noted with a subscriptt
in the following equations). If errors in targeted observations
are uncorrelated with errors in the conventional observations,
the observation error covariance matrix,R, corresponding to
the whole network (noted with subscriptct in the following
equations) can be written as

Rct =
[
Rc 0
0 Rt

]
. (4)

Likewise, the observation operator should be detailed ac-
cording to the conventional and targeted observation systems,
andHct can be written[HcHt]; it corresponds to a specific
ordering of observed data according to type. Following this
idea, one may write the sensitivity to conventional obser-
vations,∇ycS , and the sensitivity to targeted observations,
∇ytS , as[
∇ycS
∇ytS

]
= KT

ct∇xS =
[

(ActHT
c R−1

c )T

(ActHT
t R−1

t )T

]
∇xS

=
[
R−1

c HcAct∇xS
R−1

t HtAct∇xS

]
(5)

whereAct is the analysis covariance error defined for both
the conventional and the targeted networks; it is worth re-
calling here thatA, as well asB, andR, are self-adjoint
(AT = A andR−T = R−1), so the superscriptT does
not necessarily appear, such as in the right-hand side terms
of Eq. (5). In those equations, the step that corresponds to
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the calculation of the classical sensitivity to initial conditions
clearly appears. The effect of the assimilation scheme and of
the conventional observations simultaneous to the adaptive
ones is mainly contained inAct. It is the keystone of this
sensitivity approach.

Most of the current assimilation schemes are based on the
variational method in which the analysis state is defined as
the minimum of a cost function. This means that the analysis
error covariance matrixA is not computed during the mini-
mization. Nevertheless, such information is required for the
calculation of the sensitivity to observations. In fact, we do
not need to know the actual matrix of the variance-covariance
of the analysis errors. What is needed is a projection of this
matrix along the sensitivity to initial conditions∇xS . The
3D-Var assimilation scheme does not give any information
aboutA, however, several methods exist for obtaining an
estimate of it (Fisher and Courtier, 1995). Following this
work, Doerenbecher and Bergot (2001, currently in progress)
showed how to obtain an accurate estimate of this matrix in
the unstable direction of the sensitivity in an operational 3D-
Var context. This method is applied here in the French op-
erational weather forecast ARPEGE model (Courtier et al.,
1991).

3 Application to FASTEX cases

3.1 FASTEX framework

A systematic survey of FASTEX targeted flights with 3D-
Var and 4D-Var assimilation systems (Bergot, 1999, 2001)
demonstrated that the improvement of the forecasts is
strongly case to case dependent. Moreover, these two studies
and other studies based on simulated observations (Bergot et
al., 1999; Bishop et al., 2001; Morss, 1999) described some
difficulties in sampling and analyzing sensitive areas. In this
sense, the sampling strategies of sensitive areas, as tested
during FASTEX, do not appear to be optimal. Here, “op-
timal” means that the deployment of adaptive observations
has to ensure a maximum improvement of the forecast with a
minimum number of suitable dropsondes. Such observations
consist of temperature, and wind and humidity measure-
ments. FASTEX provides the first opportunity for examining
the impact of targeted observations in an operational context,
and numerous targeted observations are available (see FAS-
TEX home page: http://www.cnrm.meteo.fr/fastex/). The
data collected during this campaign can be useful for bet-
ter understanding a posteriori why targeting implemented at
that time did not produce the expected strong impact.

The sensitivity to observations is used here in a purely di-
agnostic mode (i.e. once the observations have been made).
As shown hereafter, this approach can provide a powerful
tool to obtain an insight on how targeted observations will
influence forecast quality.

3.2 Application to FASTEX IOP17

3.2.1 Meteorological context and data set

The FASTEX IOP17 (Intensive Observing Period) case was
an example of explosive cyclogenesis, with a strong deep-
ening rate of 40 hPa in 24 hours, and with the lowest cen-
tral pressure (943 hPa at 00:00 UTC on the 20 February 1997)
ever observed during FASTEX. A synoptic description of
this IOP is given in Cammas et al. (1999).

A NOAA Gulfstream IV (hereafter GIV) flight mainly had
a targeting goal in the earlier stage of the development of the
cyclone (take off at 15:00 UTC and landing at 20:00 UTC on
the 17 February 1997). Twenty dropsondes were deployed
(see Fig. 1) inside the target area defined from the sensitivity
fields which were operationally computed by both Mét́eo-
France and the Naval Research Laboratory. In the first part
of the flight (northern and eastern legs of the flight), the son-
des were released below 350 hPa, while along the southern
flight track, the dropsondes were launched from above the
tropopause, near 150 hPa.

3.2.2 Sensitivity fields

In a first step, the classical sensitivity to initial conditions is
computed as during FASTEX: the forecast aspectS is the
enstrophy of the forecastxf (t1), vertically integrated be-
tween 950 and 790 hPa, and horizontally averaged over a ver-
ification area centered on the studied low (60◦ N–45◦ S and
15◦ W–0◦ W). Using the French NWP ARPEGE model, the
sensitivity is then computed with respect to the control vari-
ables, namely temperature, humidity, divergence, and vortic-
ity. The assimilation scheme used is 3D-Var. The targeting
time t0 (17 February 1997 at 18Z) corresponds to the anal-
ysisxa(t0), to the first guessxb(t0) and to the observations
yct. The forecasted trajectory is performed over 42 hours, so
that the verifying timet1 corresponds to the 19 February at
12:00 UTC. This range defines the optimization time for the
classical gradient to initial conditions∇xS .

The computation of the sensitivity field is similar to what
was done during FASTEX. However, it should be noted that
the sensitivity calculations are based on the trajectory issued
from the analyzed initial conditions at targeting timet0. This
is a major difference between the diagnostic context used
here and the operational one, in which the trajectory was nec-
essarily computed from some forecast initiated well before
the targeting time. However, for the studied case, the use
of either a diagnostic or an operational based trajectory does
not lead to many differences inside the location of sensitive
areas.

The classical sensitivity to initial conditions,∇xS , is com-
puted as detailed above, and is compared to the sensitivity to
targeted observations,∇ytS . This comparison allows us to
better understand the influence of the assimilation processes
on the sensitivity fields. Figures 2a, 3a, and 4a show the sen-
sitivity to initial conditions projected onto the targeted obser-
vation space,Ht∇xS , for theT, U andV observed param-
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Fig. 1. Gulfstream IV flight for
the IOP17, 15:00 UTC–20:00 UTC on
17 February 1997. Black dots indicate
the dropsonde positions. The solid ar-
row indicates the direction of the flight
and the star indicates the location of the
takeoff and landing at St-Johns, New-
foundland. The classical sensitivity
field to initial conditions of temperature
at 700 hPa, as defined during FASTEX,
is plotted as a background.

eters. These sensitivity fields are plotted as cross-sections
along the flight: the vertical axis represents the pressure level
of the measurement, and the dropsonde locations are plot-
ted in the horizontal axis, according to their distance. It is
worth recalling thatHt∇xS and∇ytS are defined in the
observation space and that sensitivity values are computed
at observation points. This implies some difficulties for a
suitable graphical representation. In the following figures,
values on observation space were interpolated in order to
be able to draw a set of isolines. This graphical choice al-
lows one to clearly depict the patterns of sensitivity. One can
notice strong sensitivity to initial conditions in the northern
and eastern part of the flight, for both temperature and wind.
The maximum of sensitivity is located at a low level, around
700 hPa, for the dropsonde #5 in the case of temperature, and
for the dropsonde #6 in the case of theU -wind andV -wind.

Figures 2b, 3b, and 4b show the sensitivity with respect to
observations,∇ytS , for temperature,U -wind andV -wind.
As previously explained, these sensitivity fields are plotted
as cross-sections along the flight. Both∇xS and∇ytS ex-
hibit high values in the northern part of the flight. The max-
imum sensitivity to observations for temperature is always
located at the dropsonde #5 near 700 hPa. The assimilation
processes have a weak effect on the location of these strong
sensitivities. A comparison of Fig. 2a and Fig. 2b shows that
the major difference between the patterns of sensitivity to
initial conditions and sensitivity to observations is their ver-
tical extension. While∇xS remains mostly confined in the
lowest levels of the atmosphere (below 500 hPa),∇ytS ex-
tends throughout the whole atmosphere. This is also clear
for U -wind (Fig. 3a and Fig. 3b). This increase in the vertical
extension of the sensitivity field is a consequence of the ver-

tical structure functions (vertical correlations) used in the as-
similation (see Appendix A). The same remark can be made
when the classical sensitivity to initial condition (Fig. 4a) is
compared to the sensitivity with respect to theV -wind obser-
vations (Fig. 4b). In the first case, the maximum sensitivity
remains at a level lower than 650 hPa. Although strongest
sensitivities are found at lower levels, when both∇ytS and
∇xS are examined, significant values of∇ytS can appear
up to 350 hPa, due to the vertical spreading of∇xS .

As shown in Th́epaut et al. (1996), structure functions can
easily be illustrated by single observation assimilation exper-
iments. Therefore, such an experiment has been performed
to illustrate the former point using a single wind observation
at 600 hPa. In this specific case, the increment represents the
structure function associated with the simulated observed pa-
rameter. The structure function can be associated with a col-
umn of the matrixA. It describes the covariances between
a given model parameter (or the closest to the observed pa-
rameter) with all other parameters. Such a single observation
experiment allows one to obtain an insight into asliceof A.

The corresponding final increment, plotted in Fig. 5, ex-
hibits a classical barotropic structure, keeping in mind that
the 3D-Var assimilation scheme is used here. Moreover, one
can notice the strong vertical correlation between the wind
at the observed level and the surrounding wind field: for one
observation located at 600 hPa, the depth over which the in-
crement is higher than half of the increment at 600 hPa is at
about 650 hPa. For the FASTEX case detailed in this sec-
tion, the inclusion of the assimilation processes in the sensi-
tivity approach leads to some significant changes in the sen-
sitivity patterns. If the classical sensitivity is confined below
500 hPa (the highest significant sensitivity maximum is lo-
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cated at 600 hPa in the northern part of the flight), the sensi-
tivity to targeted observations exhibits a strong extremum at
600 hPa, but also local extrema at levels as high as 300 hPa.
The latter clearly appears for the dropsonde #15 for all pa-
rameters, especially temperature. This vertical stretching of
sensitivity is interpreted as the effect of the structure func-
tions described in operatorAct (see the Appendix A for more
details).

These results suggest that the assimilation scheme can
have a strong influence on the structure of the sensitivity
fields, and particularly on the vertical extension of the sen-
sitive area.

3.2.3 Impact of targeted observations

The actual impact of targeted observations depends not only
on the sensitivity fields,∇ytS , but also on the amplitude of
the innovation vector,yt − Ht[xb(t0)]. For example, if the
observed value is similar to the background value, then the
impact will be small, even if the observation is located in-
side an area of strong sensitivity. To study this point, we
focus here on the so-called impact function which is directly
derived from the definition of sensitivity, as in Rabier et al.
(1996). In our particular case, the perturbation is defined as
the innovation vector,yt − Ht[xb(t0)], and the linear esti-
mate of the variation of the forecast aspectS is given by

δSo = (∇yoS )T
[
yo −Ho

(
xb(t0)

)]
(6)

where subscript “o” denotes a given type of observation.
With such a computation based on the linear hypothesis, we
directly obtain an estimate of the influence of a given kind
of observation on the forecast aspectS . This impact depicts
the actual influence of each observation, or group of obser-
vations, on the analysis and the subsequent forecast, as soon
as they become part of the whole observational network.

Using the same graphical conventions as in Fig. 2, Fig. 6
shows the contribution from each temperature observation
(Fig. 6a), and from each wind (combinedU andV compo-
nents) observation (Fig. 6b). The respective contributions
from each wind component to the impact function are given
in Figs. 7a and 7b, respectively. This impact combines the
signs of the innovation and of the sensitivities to targeted
observations. It points out small structures that contribute
sometime in an opposite manner, even for nearby measure-
ments, to the variationδS . In spite of some organized
tilted structures that could be detected in the innovation (not
shown), their combination with the sensitivity to the observa-
tions produces small-scale patterns, especially in the south-
ern part of the flight. In the northern part, we detect a tilted
structure. This is particularly noticeable for the temperature
in Fig. 6a with a quite uniform field below it and strong con-
tributions above it, but within a thin layer. Such opposite
local contributions which can be found on the vertical of a
given dropsounding may cancel out when the total contribu-
tion of that dropsounding to the impact function is consid-
ered.
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Fig. 2. GIV flight for IOP17. Sensitivity with respect to initial con-
ditions, projected onto the temperature observation space(a) and
sensitivity with respect to the observations of temperature(b). The
vertical axis represents the pressure level of the measurement and
the dropsonde locations are plotted in the horizontal axis accord-
ing to their distance from flight departure point (St-Johns, New-
foundland). The crosses represent the location of the temperature
measurements, and the vertical dotted lines represent the changes
in direction during the flight.

Due to of the practical implementation of targeting which
is achieved by means of dropsondes, it seems quite natural
to gather this impact information from each dropsonde by
integrating the contributions of each temperature and wind
measurement. It then appears that some contributions will
compensate each other. Therefore, a given dropsonde will
not necessarily have an overall strong contribution if one of
its single measurements has a strong impact.

It is then possible to separate the contributions from tar-
geted dropsonde data and from conventional RAOBS data or
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Fig. 3. Same as in Fig. 2, but for the observations ofU -wind.

satellite data (SATOB in this study), and to compare their
relative efficiency and influence on the forecast aspectS .
Unfortunately, the innovation vector,y(t) − H[xb(t0)], and
therefore the impact function,δS , can only be known once
the observations are made. However, the comparison be-
tween the sensitivity and the impact can tell us whether the
influence from observations is a consequence of either strong
errors in the initial conditions, i.e. large differences between
y(t) and the backgroundxb(t0) combined with weak sensi-
tivities, or strong sensitivities despite a weak innovation.

Figure 8a and Fig. 8b show the extremum of the impact
function for each dropsounding, in terms of temperature and
wind, respectively. Strong impacts are always present in the
northern part of the flight, for both temperature and wind.
These strong impacts correspond to a strong sensitivity to
initial conditions and to observations, as previously shown
(see Figs. 2 to 4). For the studied case, one can also no-
tice that the impacts for wind are generally stronger than
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Fig. 4. Same as in Fig. 2, but for the observations ofV -wind.

 
 
 
 

Fig. 5. Vertical correlation for assimilation of a single wind obser-
vation at 600 hPa. The bold line corresponds to half of the maxi-
mum value of the wind increments.

the impacts for temperature, for a given dropsounding. The
extremum generally have opposite signs: a decrease of the
forecast aspectS for wind is associated with an increase
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Fig. 6. Same graphical principle as in Fig. 2, but for the contribu-
tionsδSi of each targeted temperature observation(a) and of each
targeted couple of wind observations(b).

in S for temperature. Figure 8b also shows that the impact
function exhibits strong extrema in the southeastern part of
the flight. Dropsonde #10 does not correspond to any max-
imum of sensitivity to initial conditions, but sensitivity val-
ues remain high, especially at low levels (800–750 hPa) (see
Figs. 2 to 4). The examination of the sensitivity to obser-
vations clearly suggests that theV -wind component plays
a major role. For dropsonde #10 (Fig. 4b), a maximum of
sensitivity is found at 750 hPa. This maximum of∇ytS is
embedded in an area with significant negative values of in-
novation,yt − Ht[xb(t0)] (not shown), which produces the
strongestV -wind contribution toδS (Fig. 7b).

When focusing on the whole flight and considering all ob-
served parameters, it appears that most of the strong con-
tributions originate from wind measurements, i.e. the case
for dropsonde numbers 2, 4, 10 and 17. The strong contribu-
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Fig. 7. Same graphical principle as in Fig. 2, but for the contribu-
tions δSi of eachU component of wind targeted observations(a)
and of each targetedV component of wind targeted observations
(b).

tions of dropsonde numbers 2, 4 and 10 come from the conju-
gate effect of bothU -wind andV -wind based contributions.
In the case of the dropsonde #17, it is essentially aU -wind
based contribution; the sensitivity toV -wind is quite low in
this area. As far as temperature is concerned, this parameter
plays a role only in the northeastern part of the flight.

The strong impact of dropsonde #4 for wind, and drop-
sonde #8 for temperature are a consequence of strong dis-
crepancies between the observations and the background
field. With the sensitivity to observations being moderately
high (relative to its maximum which is located at another ob-
servation point), the innovation is responsible for those fairly
heavy contributions toδS .

Since we have a good confidence in the targeted obser-
vations, those discrepancies can be interpreted as errors in
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the background field. Moreover, it is helpful to recall here
that the sensitivity never indicates where initial errors are lo-
cated, and that the size of the errors should also be taken into
account. However, it seems that for the studied cases, strong
sensitivity is associated with a strong impact (but strong im-
pact is not always associated with strong sensitivity).

The modification of the forecast aspect,S , due to the in-
clusion of targeted observations is the vertical summation of
elementary impacts from each measurement at each level.
To study the efficiency of targeted observations, these sum-
mations are plotted in Fig. 8c and Fig. 8d for temperature
and wind (bothU andV -wind), respectively. For the stud-
ied case, the efficiency of targeted observations is clearly
stronger for wind than for temperature. The wind and tem-
perature impacts have often opposite effects. Figure 9 shows
the efficiency of each dropsounding for all measurements and
all levels. There is a strong correlation between Fig. 9 and
Fig. 8d. This shows, for the selected case, the predominance
of wind over temperature measurements in the efficiency of
targeted observations. One can also notice that dropsound-
ings can have opposite effects: for example, the northern
part of the flight leads to a decrease inS , while the south-
western part of the flight leads to an increase in it. Even
nearby observations can have strong opposite effects. This
example illustrates that it is very complicated to study and
to optimize the efficiency of targeted observations. More-
over, it has been shown by Bergot (2001) that the influence
of targeted flights on the forecasts is characterized by a large
spread among cases: strong impacts as well as quite unde-
tectable impacts were identified. In the latter case (weak
impact), this characteristic of the flight does not mean that
an observation by observation examination would depict any
weak contribution for each observation. We can notice some
strong opposite contributions to the variation of the impact.
In such cases, the effect of the flight itself will be small, as
all the contributions of measurements are summed up.

Another advantage of the sensitivity to observations asso-
ciated with the calculation of the impact is that it can be used
for comparing the relative efficiency of different kinds of ob-
servations. Figure 10 shows an example for the FASTEX
IOP17 case. The targeted observations, plotted as TEMP
messages, have the strongest impact, despite their low num-
ber (20 dropsondes). This impact is similar to the one from
the entire set of conventional observations. This kind of diag-
noses allows one to say that the targeted flight for FASTEX
IOP17 is relatively efficient (weak number of dropsondes, yet
strong impact). Similar results have been obtained by Bergot
(2001) and Langland et al. (1999). Figure 10 also demon-
strates that different kinds of observations can have opposite
effects on the forecast aspectS . For example, the PILOT ob-
servations (measurement of wind) have an effect, in absolute
value, similar to the SYNOP observations (surface measure-
ments), but with an opposite sign. Therefore, the PILOT +
SYNOP observations have no impact on the forecast aspect,
despite relatively large individual contributions. It must be
emphasized that the contribution to the impact of a given sub-
set of observations (used for computing the initial conditions

of the forecast) is valid only due to the presence in the analy-
sis of all the other observations: the actual contribution of the
subset to the impact will not be equal to the impact obtained
if only this subset were used in the assimilation.

4 Conclusions

The recent concept of adaptive observations has been tested
during the FASTEX field experiment carried out in January-
February 1997. The goal of this concept is to add targeted ob-
servations inside sensitive areas in order to locally improve
the initial conditions, and therefore the subsequent forecast.
Different works have shown that the efficiency of targeted
observations depends on numerous parameters, and particu-
larly on the assimilation scheme used. In this way, it seems
essential to include the assimilation processes in the defini-
tion of adaptive observations.

Following the preliminary work of Baker and Daley
(2000), the concept of sensitivity to observations has
been implemented in the French operational NWP model
ARPEGE. The sensitivity to observations is defined in the
observation space, and points out the observations to which
a given forecast aspect is sensitive. In this study, this new
tool is used in a diagnostic way (i.e. once the observations
are made) for assessing the efficiency of FASTEX targeted
observations for IOP17.

The results demonstrate that the assimilation scheme has
a strong influence on the vertical structure of the sensitiv-
ity fields, with a significant increase in their vertical exten-
sion. This tool is also utilized for comparing the efficiency
of different observations, with the calculation of the so-called
impact function. This impact function represents the modi-
fication of the forecast aspect,S , due to given observations,
under the linear hypothesis. For the studied case, strong sen-
sitivity is generally associated with strong impact. Never-
theless, the contrary is wrong, and strong impact does not
always correspond to strong sensitivity.

For this targeted flight, the efficiency of adaptive obser-
vations is clearly a consequence of the GPS wind measure-
ments from dropsondes, and the temperature measurements
have a weaker effect (about a fifth of the first for the consid-
eredδS ). Even nearby observations can have opposite effects
on the final variation of the forcast aspectS . If the gathered
contributions of all the observations of a targeted flight re-
sult in a weak contribution to the variation ofδS , it does not
imply that each observation or group of observations have
also a weak contribution on itself. This studied case clearly
shows that it will be very complicated to optimize a priori
(i.e. before the observations are done) the efficiency of tar-
geted observations.

This work advocates the use of sensitivity to observations
in order to study the efficiency of observations in an a
posteriori context (i.e. once the observations are made).
An important question now is to investigate the potential
of this tool in a prognostic mode in order to try to opti-
mize the efficiency of targeted observations. What will
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Fig. 8. GIV flight for IOP17. Modification ofS by targeted observations. Extremum of these modifications for temperature(a) and wind(b).
Vertical integration of these modifications for temperature(c) and wind(d). A given size of the symbols corresponds to similar modifications
in Figs. (a)–(b), and in Figs. (c)–(d). The black circles correspond to an increase inS , and the gray circles to a decrease inS .

be the most efficient sampling of a sensitive area, given
the assimilation scheme used, and given the conventional
observation network? There are two major problems for
answering such a question. The first problem is related to the
unknown size of the innovation vector (difference between
the background field and the observations). This work
has shown that observations located in a strong sensitivity
area have a strong impact. However, observations can
have a significant impact, even if they are not located at an
extremum of the sensitivity, but embedded in significant

values of the innovation. This clearly implies that not only
the sensitivity field should be taken into account, but also
the estimated innovation at the observation location. This
point will be studied in a future work. The second problem
is related to the definition of an optimal sampling of the
sensitive area. The optimization of a flight plan will be a
complicated problem: one wants to find the matrixHt that
maximizes∇ytS . A suboptimal solution is to find the opti-
mal location of targeted observations in a sequential manner.
In this case, one identifies the best location for one targeted
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Fig. 9. GIV flight for IOP17. Same as in Fig. 8 for the total impact
per dropsonde.
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Fig. 10. GIV flight for IOP17. Modification of the forecast aspect
S for different kinds of observations: SYNOP (surface measure-
ments), AIREP (commercial aircrafts data), SATOB (satellite data),
DRIBU (buoy data), TEMP (targeted dropsondes) and PILOT (alti-
tude wind data). The studied data are in a window of 110W/0 and
20N/70N.

observation at a time (the problem becomes in this way a
scalar optimization problem). Once this location has been
found, one identifies the best location for the next targeted
observation, given that all previous targeted observations
have been taken into account. This method is very efficient,
but is only a suboptimal method. This new tool should be
tested under real conditions, for example, during the prelim-
inary phase of the future THORPEX field experiment (The
Hemispheric Observing system Research and Predictabil-
ity EXperiment; http://box.mmm.ucar.edu/uswrp/field-
projects/fieldprojects.html).

Appendix A Effect of the covariances

A1 Formalism

The goal of this appendix is to show the relationship between
the vertical extension of the sensitivity to observations and
the vertical extent of the error covariances of the background
field. We chose to illustrate this point with a few low dimen-
sional examples. But first, it is necessary to clarify a few
notations (see also Baker and Daley, 2000).

A1.1 Mathematical notations

Prior to any result, we remain the readers of the principle of
KT that is used in the computation of the sensitivity to the
observations, and which performs a change from model to
observation space.

Observation Initial Conditions
Space Model Space

y
K−−−−−−−−−−−−−→

AHT R−1
xa

∇yS KT

←−−−−−−−−−−−−
R−1HA

∇xS

Moreover, it is worth recalling thatA can be calculated fol-
lowing two equivalent formulae:

A = (B−1 −HT R−1H)−1

= B−BHT (R + HBHT )−1HB.
(A1)

Let us consider the state vectorx of the model we choose to
work with. Letm be its dimension.x can be written as:

x =
[
x1 x2 . . . xi . . . xm

]T
. (A2)

From a similar point of view, let us consider the observation
vectory with dimensionn. Practically, with the NWP model,
n is smaller thanm:

y =
[
y1 y2 . . . yk . . . yn

]T
. (A3)

A andB are bothm×m symmetric matrices.R is an× n
matrix which we assure to be diagonal. This hypothesis is
quite a strong one: the measurement errors are supposed to
be uncorrelated between each other, even if the same drop-
sonde is used to perform them. This hypothesis is no longer
valid for satellite observations because errors in observations
performed by a given satellite are well-known to be corre-
lated. Moreover, this assumption of independence between
observation errors is particularly true between distinct obser-
vation types or platforms. However, we allow the variances
of observation errors to vary according to the location and
the type of observation. This agrees with the reality: the
same dropsonde is considered to provide less accurate mea-
surements (higher variances of the errors) at the top and bot-
tom of the atmosphere than at mid-levels. In other words,
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and as it is done in the operational assimilation scheme, the
observations errors are uncorrelated andR is kept diagonal.

Let aij andbij be the components corresponding to theith

column and thejth line of A andB, respectively.σo
k is the

kth element of the diagonal ofR.

A1.2 The simplified context

To give a more meteorological meaning to the cases studied
here, we will perform some numerical calculations within a
simplified context. The different components or parameters,
xj of the model state vectorx, correspond to the different
levels (m levels) of the atmosphere. Practically, we takem
to be50. In our experiments, we test different formulations
of the operators that are used in Eq. (A1.1) to show the ef-
fect of the structure functions depicted byB in the sensi-
tivity computations from different points of view. Two dif-
ferent kinds of variance and covariance descriptions for the
errors of background and observations are used. The first
one depicts a simplified situation in which the covariances
of the background errors are parameterized by a decreasing
exponential function of the distance between the model lev-
els. The range of the decrease of the covariances as well
as the variance of the background errors remains constant,
and equal to one at all levels. The variances of the obser-
vation errors are equal to1. This configuration is named
“flat” hereafter. In the second one, called a “curved” con-
figuration, we consider a slightly more complicated matrix
B. The covariances follow an exponential function as before,
but the variances of the background errors vary according to
the level, following a quadratic formulation (the variance is
greater near the ground and aloft than at mid-levels).

A2 Identical model and observation space

This case does not need to be illustrated with numerical re-
sults. We will only use a mathematical formalism. Let us
consider that each model grid point is an observation point.
In this particular case, let us consider that the interpolation
scheme is the identity (H = I). Using the fact thatA andR
are self-adjoint, we have the following property:

K = A ·HT ·R−1 = A ·R−1 (A4)

KT = R−T ·A = A ·R−1 = K. (A5)

It can be noted that the fact thatR is a diagonal matrix im-
plies that it can permuted withA.

K andKT correspond to the same operator; the effect of
the structure functions contained in them is then identical,
and the effect ofK on the innovation (in the forward analysis
process) is the same as the effect ofKT on the computation
of the sensitivity to observations.

A3 Single observation case without interpolation

Now let us consider a single observation measurement which
is performed at the location of a model grid-pointi. First, we

assume that the interpolation scheme is very simple:

H = [0 . . . 010 . . . 0] .
↑
i

(A6)

This means that the information contained in the observa-
tion is only transfered to the grid-pointi. Using the second
formulation ofA (Eq. A1), this configuration of observations
leads to the following expression for the component ofA:

[ajk] =
[
bjk −

bji · bik

σo
i + bii

]
. (A7)

A3.1 Forward case: analysis of this single observation

Let d be the innovation vector, i.e.d = (y − Hxb). The
analyzed field is given byxa = xb +AHT R−1d. Given the
formulation ofH, d simplifies to its single component:d =
di = yi−[xb]i, and the assimilation of this single observation
leads to the following analysis increment (δxa = xa − xb):

δxa =

[(
bik −

bii · bik

σo
i + bii

)
d

σo
i

]
k=1,m

=

[
d

σo
i + bii

bik

]
k=1,m.

(A8)

Considering thatd/σo
i + bii is a normalization factor (i is

defined as the observation position inH), δxa appears to be
the ith column ofB (i.e. [bik]k=1,m), weighted byd/(σo

i +
bii).

The single observation is simulated at the thirtieth level
with a measurement that makes the innovation be equal to
half of the standard deviation of the observation error:d =
σo/2. Figure A1 shows the analysis increment (bold line) for
both a “flat” formulation (a) and a “curved” formulation (b).
For the values of the statistics used in this experiment, we
find the maximum increment to be1/4, as it can be estimated
from the Eq. (A8) withk = 30, σo = bkk = 1 andd =
1/2. As explained in the main part of the paper in this single
observation context, the analysis increment (bold curve in
Fig. A1 represents the structure function associated with the
assimilation scheme used.

A3.2 Sensitivity to a single observation

Now let us focus on the adjoint problem of the assimilation
of a single observation. First of all, we recall hereafter the
formula that gives the sensitivity of a forecast aspectS to the
observations:

∇yS = R−1HA∇xS (A9)

where∇xS is the sensitivity ofS to the initial conditions of
the forecast (namelyxa). Let [gk] be thekth component of
∇xS = [gk]k=1,m. For a single observation experiment, the
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Fig. A1. Increment of assimilation for the “flat” formulation(a)
and the “curved” formulation(b). The circle shows the value of
the innovation vectord and location of the single observation in the
column of atmosphere. The bold curve shows the analysis incre-
ment corresponding to the assimilation of this single observation.
The dotted line on the left shows the covariances of the background
observed parameter with all the other model parametersbij . The
dotted line on the right shows the variancesbii on the vertical. Fi-
nally, the star shows the value ofσo.

sensitivity to the observation is a scalar. If∇yiS depicts this
scalar,

∇yiS =
m∑

k=1

aki.gk

σo
i

(A10)

which can be rewritten using the Eq. (A7) to replaceaki, and
the fact thatB is symmetric (i.e.bjk = bkj):

∇yi
S =

m∑
k=1

bki.gk

σo
i + bii

. (A11)

Eventually, we can isolate the scaling factor1/(σo
i + bii) to

write:

∇yiS =
1

σo
i + bii

m∑
k=1

bki.gk. (A12)

This last Eq. (A12) shows that the sensitivity to a single ob-
servation is not only influenced by what happens at pointi,
but also by all the neighbouring grid-points, according to the
structure function[bik]k=1,m. Now, let us imagine a sensi-
tivity to initial conditions,∇xS , with a significant extremum
with respect to a single grid-point. This means that the stud-
ied forecast aspect is highly sensitive to what is present in
the analysis state vector,xa, at a single levelk, the sensitiv-
ity to the other level being quite negligible. The sensitivity
to initial conditions can then be written:

∇xS =
[
0 . . . 0 gk 0 . . . 0

]T
. (A13)

In this case, the sensitivity ofS to the single observation is
given by:

∇yiS =
bki.gk

σo
i + bii

. (A14)

If we test different locations for this single observation, i.e.
if we performm separate experiments corresponding to the
observation located on one of them levels of the model (the
level of measurementi will vary from 1 tom), we can visual-
ize the structure function[bik]i=1,m. This is especially true if
the scaling factor1/(σo

i + bii) is uniform, i.e. if the variance
of both observation and background errors are uniform.

To illustrate the statements given above, we performed50
experiments, thus testing 50 different locations for the mea-
surement. We chose to place a unit peak of sensitivity to the
initial conditions at the thirtieth level, i.e. is settingg30 = 1
andgi = 0 if i 6= 30 in Eq. (A13).

Figure A2a depicts the “flat” situation where the variance
of background statistics are constant in the vertical. From
this choice arises the fact that the curve depicted by the suc-
cessive50 experiments corresponds to half of the structure
function[bik]i=1,m (k = 30 here). This effect becomes obvi-
ous when comparing the stepped curve to the left-hand dotted
one in Fig. A2a, which describes the successive sensitivities
to the varying single observation. In Fig. A2b, the variances
are in the “curved” configuration. In this more general con-
text, we again verify the theoretical result which emphasizes
the spreading effect of the structure functions contained inB.

A4 Single observation case with interpolation

In this subsection, we chose to compare the spreading ef-
fects due toB on the one hand, and due to the interpolation
scheme contained inH on the other hand. In this case, the
more complicated operatorH leads to a heavier mathemat-
ical formalism of little interest. It seems more useful to di-
rectly show numerical results.
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Fig. A2. Sensitivity to a single observation for the “flat” formula-
tion (a) and the “curved” formulation(b). The stepped line shows
the value of the sensitivity for each location of the observation at
the corresponding level. The bold solid curve shows the peak of
sensitivity to the initial conditions which is the same for all the ex-
periments. The dotted line on the left shows the covariances of the
background observed parameter with all the other model parame-
tersbij . The dotted line on the right shows the variancesbii on the
vertical. Finally, the stars show the different values ofσo along the
50 experiments.

We implemented a linear interpolation scheme that uses
p = 2 surrounding levels. Five contiguous levels are in-
volved in the interpolation:2 levels above,2 below and the
level of observation. These results are plotted in Fig. A3.
Comparing Figs. A2b and A3, it appears that the interpola-
tion scheme has quite a negligible influence. The reason for
this is that the range of the interpolation scheme is by far
much less than the range inherent in the background covari-
ances.
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Fig. A3. General case: the curves represent the same quantities as
in the Fig. A2.
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Fig. A4. Model space gridpoints and corresponding observations
for the first simple experiment configuration.

A5 Several types of observation

In this subsection, we shall give consideration to the ability
of the covariances of the background errors to spread sen-
sitivity to initial conditions from one atmospheric region to
the neighbouring ones. For this purpose, we will consider
that the model domain is divided intok regions. Taking
into account the non-spreading property of the interpolation
scheme,H can be written as:

H =


H1 0 . . . 0
0 H2 . . . 0
...

...
. . .

...
0 0 . . . Hk

 . (A15)
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To simplify the writing, we consider in the following that
there are two regions in the atmosphere (k = 2), and that
each one is observed with a network ofnk observations (we
haven = n1 +n2), see Fig. A4. The interpolation scheme in
H is assumed not to be able to transfer any information from
one region to another. With this strong assumption, we want
to show that the covariances, orK, are able to do so on their
own.

According to the previous hypothesis, let us calculateK.
The covariance errors matrices can be written as

R =
[
R1 0
0 R2

]
and B =

[
B11 B21

B12 B22

]
. (A16)

Then, using Eq. (A1),A can be rewritten as

A = BBHT

·


(R1 + H1B11HT

1 )−1 (H1B21HT
2 )−1

(H2B12HT
1 )−1 (R2 + H2B22HT

2 )−1


·HB. (A17)

At that point two hypothesis can be checked. They are based
on two cases where the background errors present in the both
regions are either correlated or not. The hypothesis of no-
correlation implies that both blockB21 andB12 are equal to
zero, and in that case, the Eq. (A17) yields:

A =
[
B11 −B11HT

1 (R1 + H1B11HT
1 )−1H1B11 0

0 B22 −B22HT
2 (R2 + H2B22HT

2 )−1H2B22

]
(A18)

Eventually, the adjoint of the gain operator is also block di-
agonal:

KT =

[
KT

1 0
0 KT

2

]
. (A19)

If one considers a forecast aspect which is sensitive to the
initial conditions in a single region, only observations located
in that region will lead to significant sensitivities to observa-
tions. To illustrate this statement, let∇xS be as follows:

∇xS =
[
g1 0

]T
. (A20)

Then, the sensitivity to observations writes:

∇yS =
[
KT

1 g1 0
]T

. (A21)

It appears that the forecast aspect is rather sensitive to ob-
servations belonging to the “lower” region. This result is
illustrated by Fig. A5 which was produced with the same nu-
merical package as before, withk = 2 regions,n = 5 obser-
vations (n1 = 2 andn2 = 3). The level of shift between the
two regions ish = 25. We use the “curved” configuration
of B that has been modified to keep zero covariances in both
extra diagonal blocks, i.e. that some correlations still exist
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Fig. A5. Sensitivity to 5 observations spread in the two layers
(separated by the chain line) of the atmosphere column. The hori-
zontal bars show the scaled sensitivity to the observation located at
the corresponding level (bold circles correspond to null sensitivity).
Bold line, dashed lines and the stars (all non-scaled) have the same
meaning as in the Fig. A1.

inside a given region, whereas there are no correlations be-
tween the two regions. One can note that there is no transfer
of information from the region where the gradient to initial
conditions∇xS is significant to the other region (bold cir-
cle with null sensitivity). In the case where the background
errors present in both regions are correlated, the theoretical
formulation of (A17) becomes heavy to handle :B21 and
B12 are not zero. Therefore,A is a full m ×m matrix, and
KT is not block diagonal:

KT =

[
KT

1 KT
21

KT
12 KT

2

]
. (A22)

Using the same gradient as stated previously (see Eq. A20),
the sensitivity to observations then writes:

∇yS =
[
KT

1 g1 KT
12g1

]T
. (A23)

As written in the previous paragraph, let us illustrate this
case with a numerical example given in Fig. A6. For this case
we again use the “curved” configuration ofB. One can note
that the sensitivity present in the upper region can easily be
spread to the lower region due to the correlation present inB.
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Fig. A6. Same as Fig. A1 with some correlations between all the
levels.
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