Modelling the impact of irrigation in the Ebro basin using the Meso-NH mesoscale model (preliminary study)

P. Le Moigne, S. Donier, A. Boone
CNRM Météo-France/CNRS, Toulouse
Outline

Motivation

Accounting for irrigation in Meso-NH model

Impact of irrigation on surface fields, and the boundary layer

Conclusions and Perspectives
Motivation of the study

To simulate irrigation with Meso-NH model in the Ebro basin

- How to identify and isolate the irrigated vegetation type
- How to simulate irrigation in the model

To assess the role of irrigation at mesoscale

- Using Meso-NH model in two configurations with and without irrigation
- Impacts on surface and PBL variables

To prepare for higher resolution simulations
Meso-NH mesoscale model setup

- Non-hydrostatic model (Lac et al., 2018)
- Scales from meters to kilometres
- 1d turbulence scheme (BL89)
- Shallow (EDMF) and deep convection (KF)
- Microphysics (ICE3)
- LBCs 3h from AROME operational model @1.3km
- Test case 16 July 2016, anticyclonic situation
- 90x90 points, 8km grid mesh, 8s tstep
- 90 vertical layers (44 in PBL < 2500m)
- Irrigation option:
 - Initial soil moisture at field capacity
 - Water supply of 10^{-4} kg/m²/s (i.e. 8.6mm/d)
SURFEX Land Surface Model setup

- SURFEX LSM (Masson et al., 2013) is coupled to Meso-NH
- ISBA model for vegetation (diffusive transfers)
- Representation of land covers is based on the 1km ECOCLIMAP global database, representative of vegetation types in the period 1999-2006
- SURFEX uses 19 classes, 1 for irrigation
- Modified land cover map
 - To irrigate only the Ebro basin on C3 crops
 - To increase the irrigated fraction
- **Sensitivity experiments:**
 - ARO without irrigation
 - IRR with irrigation
Soil Wetness Index

8UTC

16UTC

ARO

IRR - ARO

TSWI AROI - AROM 08h

TSWI AROI - AROM 16h
Impact on surface variables: IRR - ARO @8UTC

T2M

U10M

LE

HU2M

DIR10M

H
Impact on surface variables: IRR - ARO @16UTC

T2M

U10M

LE

HU2M

DIR10M

H
Impact on PBL

- Vertical NS cross section
- Potential temperature, Mixing Ratio, Turbulent Kinetic Energy
Turbulent Kinetic Energy TKE

8UTC

12UTC

16UTC

ARO

IRR - ARO
Potential Temperature Theta

8UTC

12UTC

16UTC

ARO

IRR - ARO
Mixing Ration Rv

8UTC

12UTC

16UTC

ARO

IRR - ARO
Summary and Outlook

• An irrigation parameterization was successfully tested in Meso-Nh model coupled to SURFEX
• A water supply of 8.6mm/d has a large impact on surface and boundary layer variables
• Important to select vegetation surfaces to be irrigated (land cover)
• Close to the surface, an important cooling is experienced associated to an air moistening
• Boundary layer height is impacted, as well as vertical transport of humidity, and vertical distribution of heat
• Starting point for higher resolution simulation (@2km) with Meso-NH
• Need to refine selection of irrigated areas
• Use of higher resolution ECOCLIMAP-SG @300m resolution