SURFEX http://www.umr-cnrm.fr/surfex/ Welcome to the SURFEX Home Page SURFEX (Surface Externalisée, in French) is a surface modelling platform developed by Météo-France in cooperation with the scientific community. SURFEX is composed of various physical models for natural land surface, urbanized areas, lakes and oceans. It also simulates chemistry and aerosols surface processes and can be used for assimilation of surface and near surface variables. SURFEX has its own initialisation procedures and can be used in stand alone mode and coupled to an atmospheric model. en SPIP - www.spip.net course material http://www.umr-cnrm.fr/surfex/spip.php?article423 http://www.umr-cnrm.fr/surfex/spip.php?article423 2024-03-11T08:11:01Z text/html en Patrick LE MOIGNE <p>PROGRAM <br class='autobr' /> PRESENTATIONS - Surfex General presentation - SURFEX installation and compilation - ECOCLIMAP and PGD - PREP - ISBA - TEB - Data assimilation in SURFEX - Water scheme <br class='autobr' /> PRACTICAL EXERCISES Exercises <br class='autobr' /> CORRECTIONS - ISBA - ISBA_snow - TEB - FLake - 2D case</p> - <a href="http://www.umr-cnrm.fr/surfex/spip.php?rubrique142" rel="directory">Training courses</a> <div class='rss_texte'></strong> <p><strong><a href='http://www.umr-cnrm.fr/surfex/IMG/png/planning-formation-surfex-2024-2.png' class='spip_in' type='image/png'>PROGRAM</a> </strong></p> <p><strong>PRESENTATIONS</strong><br class='autobr' /> - <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/2024_surfex_general.pdf' class='spip_in' type='application/pdf'>Surfex General presentation</a> <br class='autobr' /> - <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/2024_surfex_install_compil.pdf' class='spip_in' type='application/pdf'>SURFEX installation and compilation</a> <br class='autobr' /> - <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/2024_surfex_ecoclimap_pgd.pdf' class='spip_in' type='application/pdf'>ECOCLIMAP and PGD</a> <br class='autobr' /> - <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/2024_surfex_prep.pdf' class='spip_in' type='application/pdf'>PREP</a><br class='autobr' /> - <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/2024_surfex_isba.pdf' class='spip_in' type='application/pdf'>ISBA</a> <br class='autobr' /> - <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/2024_surfex_teb_compresse.pdf' class='spip_in' type='application/pdf'>TEB</a><br class='autobr' /> - <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/2024_surfex_assimilation.pdf' class='spip_in' type='application/pdf'>Data assimilation in SURFEX</a><br class='autobr' /> - <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/2024_surfex_watersurfaces_compresse.pdf' class='spip_in' type='application/pdf'>Water scheme</a></p> <p><strong>PRACTICAL EXERCISES</strong><br class='autobr' /> <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/2024_exercises.pdf' class='spip_in' type='application/pdf'>Exercises</a></p> <p><strong>CORRECTIONS</strong><br class='autobr' /> - <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/correction_isba_2024.pdf' class='spip_in' type='application/pdf'>ISBA</a> <br class='autobr' /> - <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/correction_isba_snow_2024.pdf' class='spip_in' type='application/pdf'>ISBA_snow</a> <br class='autobr' /> - <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/correction_teb_2024.pdf' class='spip_in' type='application/pdf'>TEB</a> <br class='autobr' /> - <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/correction_flake_2024.pdf' class='spip_in' type='application/pdf'>FLake</a> <br class='autobr' /> - <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/correction_2dcase_2024.pdf' class='spip_in' type='application/pdf'>2D case</a><br class='autobr' /> <!-- - [ISBA_hydro->doc246] --></p> <p><!-- --------------------------------------------------------------------------- }} {{Presentations}} - [Surfex General presentation->doc392] - [Surfex Applications->doc386] - [SURFEX installation and compilation->doc389] - [ECOCLIMAP and PGD->doc387] - [ISBA->doc405] - [TEB->doc393] - [Data assimilation in SURFEX->doc501] - [Water surfaces->doc391] {{ ---------------------------------------------------------------------------------- --><br class='autobr' /> <!-- }} {{Practical exercices}} [Documentation->doc388] [Package->data/stage_surfex_2020.tar.gz] {{ ---------------------------------------------------------------------------------- --><br class='autobr' /> <!-- }} {{Corrections}} - [ISBA and ISBA_snow->doc384] - [TEB->doc444] - [FLake->doc494] - [ISBA_hydro->doc246] --><br class='autobr' /> <!-- - [Programming with SURFEX->doc443] --><br class='autobr' /> <strong><br class='autobr' /> </strong><br class='autobr' /> </strong><br class='autobr' /> </strong><br class='autobr' /> </strong><br class='autobr' /> </strong><br class='autobr' /> </strong><br class='autobr' /> </strong><br class='autobr' /> </strong><br class='autobr' /> </strong><br class='autobr' /> </strong><br class='autobr' /> </strong><br class='autobr' /> </strong><br class='autobr' /> </strong><br class='autobr' /> </strong><br class='autobr' /> </strong><br class='autobr' /> </strong><br class='autobr' /> </strong></p> <hr class="spip" /></strong></div> Training course 2024 http://www.umr-cnrm.fr/surfex/spip.php?article382 http://www.umr-cnrm.fr/surfex/spip.php?article382 2024-01-19T09:03:56Z text/html en <p>CANCELED This course is organized by the Centre National de Recherches Meteorologiques and will take place at the Ecole Nationale de la Meteorologie. <br class='autobr' /> The objective of this training is to give an overview of the scientific content of SURFEX and its practical use in the case of offline runs (physiography, initial state, runs, manipulation of namelists and options, run of the main scientific models). Half of the course is dedicated to practical exercises on linux PCs. <br class='autobr' /> The supports and (...)</p> - <a href="http://www.umr-cnrm.fr/surfex/spip.php?rubrique142" rel="directory">Training courses</a> <div class='rss_texte'><p><!-- {{Deadline for inscriptions : 26 February 2020}} The next training course will be organized from 11 March 2020 to 13 March 2020. <span style='color:red'>CANCELED</span> This course is organized by the Centre National de Recherches Meteorologiques and will take place at the Ecole Nationale de la Meteorologie. The objective of this training is to give an overview of the scientific content of SURFEX and its practical use in the case of offline runs (physiography, initial state, runs, manipulation of namelists and options, run of the main scientific models). Half of the course is dedicated to practical exercises on linux PCs. The supports and documents are in English. The numerous exercises make it possible to complete the courses. An experience in Linux is necessary for practical exercises. -* {{[Program->img482]}} -* [{{registration forms }}->383] -* [{{practical aspects }}->384] -* [{{course material }}->423] --></p> <p><strong>Deadline for inscriptions : 23 February 2024</strong></p> <p>The next training course will be organized from <span style='color:brown'><strong>12<sup>th</sup> to 15<sup>th</sup> March 2024</strong></span>. This course is organized by the Centre National de Recherches Meteorologiques (CNRM).</p> <p>The objective of this training is to give an overview of the scientific content of SURFEX and its practical use in the case of offline runs (physiography, initial state, runs, manipulation of namelists and options, run of the main scientific models). Half of the course is dedicated to practical exercises.</p> <p>The supports and documents are in English. The numerous exercises make it possible to complete the courses. An experience in Linux is necessary for practical exercises.</p> <p>This year, the course will be an <span style='color:brown'><strong>online session</strong></span>. After registration, a virtual machine will be distributed to each participant. This machine will have to be installed beforehand by each participant on his computer. This is essential to ensure a uniform work environment and to be able to compile the code easily. So, please to verify with your IT support if you can install it on your computer.</p> <p>For information and registration, please contact <strong>surfex-support@meteo.fr</strong><br class='autobr' /> </br></p> <hr class="spip" /> <p><strong><a href='http://www.umr-cnrm.fr/surfex/IMG/png/planning-formation-surfex-2024.png' class='spip_in' type='image/png'>PROGRAM</a></strong></p> <hr class="spip" /></div> New developments in SURFEX V9 http://www.umr-cnrm.fr/surfex/spip.php?article450 http://www.umr-cnrm.fr/surfex/spip.php?article450 2022-09-05T13:51:36Z text/html en Minvielle <p>ALADIN Coupling SURFEX_V8 to ALARO-1 (D. Degrauwe) <br class='autobr' /> CEN Module SYTRON : snow transport by the wind in the geometry of the SAFRAN massifs Multi-physics version of Crocus (ESCROC) Scheme of prognostic impurities in the snow mantel and atmospheric simplified radiative scheme atmotartes Coupling between MEB and Crocus Expert model of estimation of the avalanche risk MEPRA Option Crocus-RESORT for the snow in the ski resorts (tamping, crop snow) Formation of a ice crust by freezing rain on (...)</p> - <a href="http://www.umr-cnrm.fr/surfex/spip.php?rubrique166" rel="directory">Surfex v9_0</a> <div class='rss_texte'><p><span style="padding: 8px 700px 8px 8px; background-color:#e3e5e6;float:left"><strong>ALADIN</strong></span><br class='autobr' /> </p> <ul class="spip"><li> Coupling SURFEX_V8 to ALARO-1 (D. Degrauwe) <div class='spip_document_406 spip_document spip_documents spip_document_file spip_documents_center spip_document_center spip_document_avec_legende' data-legende-len="31" data-legende-lenx="" > <figure class="spip_doc_inner"> <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/alaro-1-surfex_technical.pdf' class=" spip_doc_lien" title='PDF - 92.1 kb' type="application/pdf"><img src='http://www.umr-cnrm.fr/surfex/local/cache-vignettes/L64xH64/pdf-b8aed.svg?1688018373' width='64' height='64' alt='' /></a> <figcaption class='spip_doc_legende'> <div class='spip_doc_titre '><strong>Coupling SURFEX_V8 to ALARO-1 </strong></div> </figcaption></figure> </div></li></ul> <p></br><br class='autobr' /> <span style="padding: 8px 728px 8px 8px; background-color:#e3e5e6;float:left"><strong>CEN</strong></span><br class='autobr' /> </p> <ul class="spip"><li> Module SYTRON : snow transport by the wind in the geometry of the SAFRAN massifs</li><li> Multi-physics version of Crocus (ESCROC)</li><li> Scheme of prognostic impurities in the snow mantel and atmospheric simplified radiative scheme atmotartes</li><li> Coupling between MEB and Crocus</li><li> Expert model of estimation of the avalanche risk MEPRA</li><li> Option Crocus-RESORT for the snow in the ski resorts (tamping, crop snow)</li><li> Formation of a ice crust by freezing rain on snow mantel</li></ul> <p>Still two more technical contributions:</p> <ul class="spip"><li> Option LSLOPE for a better correction of the incoming radiation on sloping grounds</li><li> Option LWRITE_TOPO to add informations about the topography in the output files</li></ul> <p></br><br class='autobr' /> <span style="padding: 8px 714px 8px 8px; background-color:#e3e5e6;float:left"><strong>GMAP</strong></span><br class='autobr' /> </p> <ul class="spip"><li> ORORAD: computation of orographic parameters for surface radiation interaction (A. Mary) <div class='spip_document_439 spip_document spip_documents spip_document_file spip_documents_center spip_document_center spip_document_avec_legende' data-legende-len="25" data-legende-lenx="" > <figure class="spip_doc_inner"> <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/ororad_in_pgd_v2.pdf' class=" spip_doc_lien" title='PDF - 244.1 kb' type="application/pdf"><img src='http://www.umr-cnrm.fr/surfex/local/cache-vignettes/L64xH64/pdf-b8aed.svg?1688018373' width='64' height='64' alt='' /></a> <figcaption class='spip_doc_legende'> <div class='spip_doc_titre '><strong>ORORAD in PGD (A. Mary) </strong></div> </figcaption></figure> </div></li></ul> <p></br><br class='autobr' /> <span style="padding: 8px 715px 8px 8px; background-color:#e3e5e6;float:left"><strong>TOPD</strong></span><br class='autobr' /> </p> <ul class="spip"><li> Creation of the forcing files from ASCII LATLONVAL files, from GRIB files, from constant values in a dedicated driver with the possibility to perturbate the input rain (localisation and amplitude)</li><li> Perturbation of the initial conditions of a simulation and/or of the hydrodynamical parameters of the model</li><li> Decoupling of the catchment basins in sub-basins</li><li> Possible production of maps of severity of the floods</li><li> Variation of the speed in river functions of the discharge <div class='spip_document_473 spip_document spip_documents spip_document_file spip_documents_center spip_document_center spip_document_avec_legende' data-legende-len="21" data-legende-lenx="" > <figure class="spip_doc_inner"> <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/topodynoptionsurfexv81.pdf' class=" spip_doc_lien" title='PDF - 328.1 kb' type="application/pdf"><img src='http://www.umr-cnrm.fr/surfex/local/cache-vignettes/L64xH64/pdf-b8aed.svg?1688018373' width='64' height='64' alt='' /></a> <figcaption class='spip_doc_legende'> <div class='spip_doc_titre '><strong>TOPODYN surfex V8_1 </strong></div> </figcaption></figure> </div></li></ul> <p></br><br class='autobr' /> <span style="padding: 8px 640px 8px 8px; background-color:#e3e5e6;float:left"><strong>VEGEO (A. Druel)</strong></span><br class='autobr' /> <br class='autobr' /> The irrigation with ECOCLIMAP Second Generation in SURFEX (A. Druel)</p> <div class='spip_document_477 spip_document spip_documents spip_document_file spip_documents_center spip_document_center spip_document_avec_legende' data-legende-len="36" data-legende-lenx="x" > <figure class="spip_doc_inner"> <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/doc-irrigation-surfex-v9.pdf' class=" spip_doc_lien" title='PDF - 508.8 kb' type="application/pdf"><img src='http://www.umr-cnrm.fr/surfex/local/cache-vignettes/L64xH64/pdf-b8aed.svg?1688018373' width='64' height='64' alt='' /></a> <figcaption class='spip_doc_legende'> <div class='spip_doc_titre '><strong>Irrigation in SURFEX_V9 (A. Druel) </strong></div> </figcaption></figure> </div> <p></br><br class='autobr' /> <span style="padding: 8px 707px 8px 8px; background-color:#e3e5e6;float:left"><strong>OCEAN</strong></span><br class='autobr' /> </p> <ul class="spip"><li> coupling with a wave model via OASIS3-MCT</li><li> sea surface fluxes parameterization : ECUME6 is the new default, minor changes in COARE3 (z0), addition of the WASP option</li><li> reading of wave parameters in prep_seaflux</li></ul> <p></br><br class='autobr' /> <span style="padding: 8px 725px 8px 8px; background-color:#e3e5e6;float:left"><strong>MNH</strong></span><br class='autobr' /> </p> <ul class="spip"><li> Blowing snow Méso-NH-Crocus (by Vincent Vionnet, CEN) : code couple with Méso-NH. <br class='autobr' /> Not yet possible to run in offline mode. User can test and develop its own offline version by switching NSCAL=5 in OFFLIN/ol_alloc_atm.F90</li><li> Biogenic emission scheme MEGAN (P. Tulet) : code coupled with Méso-NH. To activate MEGAN, new key in NAM_CH_EMISSIONS (CCH_BIOEMIS = 'MEGA'). Not yet possible to run in offline mode. <br class='autobr' /> New compilation key MNH_MEGAN=1 with new library package in LIB/megan.tar.gz</li><li> Coupling with GFS grib flies + reading of GRIB2 ARPEGE/AROME files (J. Pergaud and Q. Rodier)</li><li> Introduction of an external length of record variable LEN_HREC</li><li> Sea salt scheme upgrade (S. Bielli): The significant sea wave height now influences salt emission.The sea salt is either set to a default value of 2meters or read in IFS GRIB file (if the variable exists). Now 5 modes are available (3 before) and the order in output is changed. Reading of the significant sea wave height in IFS GRIB file.</li><li> Minor corrections / developpements:<br class='autobr' /> <font size='2'> <ul class="spip"><li> <i>correct support of 64bit integers (MNH_INT=8)</i></li><li> <i>correction in the drag formula and application to building in addition to tree</i></li><li> <i>initialization of minimum values possible for aerosols moments</i></li><li> <i>missing zero-size allocations</i></li><li> <i>wrong time variable in call coupling_tsz0 (PTIMEC —> PTIME)</i></li><li> <i>integrate bypass for albedo pb > 1.0 from Florian Pantillon</i></li><li> <i>GELATO : use standard FLUSH statement instead of non standard intrinsics</i></li><li> <i>corrections of non use initialized values (ZSTRESS, ZLAND)</i></li><li> <i>corrections for ifort compiler v16.0.1</i></li><li> <i>rename gamma -> gamma_surf to prevent problems with similar functions in MesoNH</i><br class='autobr' /> </font></li></ul></li></ul> <p></br><br class='autobr' /> <span style="padding: 8px 725px 8px 8px; background-color:#e3e5e6;float:left"><strong>TEB</strong></span><br class='autobr' /> </p> <ul class="spip"><li> Human thermal comfort indicator UTCI in rural areas (R. Schoetter)</li><li> Separation of input for internal mass and ground floor (R. Schoetter)</li><li> Dynamical calculation of infiltration (R. Schoetter)</li><li> MapUCE architectural and behavioural archetypes (R. Schoetter, N. Tornay)</li><li> New description of human behaviour related to building energy consumption (R. Schoetter)</li><li> Modelling of CO2 fluxes in urban areas (M. Goret)</li><li> Time averaged output of near surface and canopy variables (R. Schoetter)</li><li> New road description (C. De Munck, A. Lemonsu, V. Masson)</li><li> Urban soil and hydrology processes (C. De Munck, E. Bernard, K. Chancibault)</li><li> TEB option for high vegetation : street trees or green walls (A. Lemonsu, V. Masson, E. Redon)</li><li> New interpolation of forcing short-wave radiation (R. Schoetter, B. Leroy)</li><li> Key to switch for the urban mixing length computation (R. Schoetter)</li><li> Option to replace urban areas by selected COVER (R. Schoetter)</li><li> Multi level coupling (R. Schoetter)</li><li> Add diagnostics for sensible and latent anthropogenic heat flux (R. Schoetter)</li><li> Inclusion of option for explicit calculation of longwave radiative exchanges (R. Schoetter)</li><li> Inclusion of radiative exhange calculations using SPARTACUS-Surface (R. Schoetter)</li><li> Coherence check's</li></ul><div class='spip_document_502 spip_document spip_documents spip_document_file spip_documents_center spip_document_center spip_document_avec_legende' data-legende-len="61" data-legende-lenx="x" > <figure class="spip_doc_inner"> <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/scientific_docu_teb_surfex_v9_schoetter_goret_masson.pdf' class=" spip_doc_lien" title='PDF - 312.7 kb' type="application/pdf"><img src='http://www.umr-cnrm.fr/surfex/local/cache-vignettes/L64xH64/pdf-b8aed.svg?1688018373' width='64' height='64' alt='' /></a> <figcaption class='spip_doc_legende'> <div class='spip_doc_titre '><strong>TEB developments for V9 (R. Schoetter, M. Goret, V. Masson) </strong></div> </figcaption></figure> </div> <p><span style="padding: 8px 714px 8px 8px; background-color:#e3e5e6;float:left"><strong>GMGEC</strong></span><br class='autobr' /> </p> <ul class="spip"><li> New forcing interpolation (optional): <ul class="spip"><li> Gaussian PDF allowing to disaggregate precipitation in time over the forcing interval</li><li> Flux average values conservation over the forcing interval</li><li> Need fluxes at t+2 (so NETCDF forcing files need 2 additional timesteps instead of 1)</li></ul></li><li> Modification of ISBA-DIF soil grid: adaptative grid (by patch) is removed because not physical. To refine vertical grid, this grid can be used in namelist with NGROUND_LAYER=19: XSOILGRID = 0.01, 0.04, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.25, 1.5, 1.75, 2.0, 2.5, 3.0, 4.0, 5.0, 8.0, 12.0</li><li> Changes in photosynthesis for CPHOTO='NCB' option <ul class="spip"><li> Adaptation of soil stress and some parameters for tropical trees</li><li> Parametrization of light-use efficiency for C assimilation by plant with increasing atmospheric CO2 (Arora et al. 2009)</li></ul></li><li> Introduction of very simple biomass fire scheme</li><li> Soil Carbon lixiviation in ISBA & DOC routing in CTRIP</li><li> Improvement of land use land cover change (LULCC) code : water and carbon closure budgets, anthropogenic carbon stocks, harvesting crops</li><li> Multi-layer soil carbon dynamic: <ul class="spip"><li> Discretization of soil carbon (as water and temperature)</li><li> Soil carbon profile via accumulation (advection) of dead material</li><li> Soil carbon mixing via bioturbation & cryoturbation in permafrost</li></ul></li><li> Multi-layer soil gas scheme (prototype!!!) <ul class="spip"><li> O2, CO2 & CH4 soil profiles (as water and temperature)</li><li> CO2 & CH4 production/consumption</li><li> Gas transport by diffusion, by plants, and by ebullition</li></ul></li><li> Sea / Sea-ice flux tilling for Ocean / Gelato coupling</li><li> Daily nudging for soil moisture and snow mass</li><li> Adaptation of SURFEX for MIP type diags especially relevant with XIOS</li></ul></br></div> Changes in namelists http://www.umr-cnrm.fr/surfex/spip.php?article451 http://www.umr-cnrm.fr/surfex/spip.php?article451 2022-09-05T13:51:20Z text/html en Minvielle <p>Changes are detailed by contribution. - New keys are in black - Keys removed in red - Keys modified (new options, options removed, changes of default values, name changed, change of namelist) in orange - New namelist in green <br class='autobr' /> ALADIN no changes <br class='autobr' /> CEN NAM_ISBA_SNOWn : LSNOWDRIFT is removed CSNOWDRIFT: key to activate the snowdrift scheme, with 4 possible values ('NONE','DFLT','VI13','GA01') CSNOWRAD : key for radiative transfer scheme in snow in CROCUS. Options 'TAR', 'TA1' and 'TA2' are (...)</p> - <a href="http://www.umr-cnrm.fr/surfex/spip.php?rubrique166" rel="directory">Surfex v9_0</a> <div class='rss_texte'><p> <br class='autobr' /> Changes are detailed by contribution. <br class='autobr' /> - New keys are in <strong>black</strong><br class='autobr' /> - Keys removed in <span style='color:red'><strong>red</strong></span><br class='autobr' /> - Keys modified (new options, options removed, changes of default values, name changed, change of namelist) in <span style='color:orange'><strong>orange</strong></span> <br class='autobr' /> - New namelist in <span style='color:green'><strong>green</strong></span></p> <p><!-- summary style="padding: 8px 480px 8px 8px; background-color:#e3e5e6;float:left; color:#4a6896" --></p> <p><details><summary style="padding: 8px 480px 8px 8px; background-color:#e3e5e6;float:left; color:#4a6896"><strong>ALADIN</strong></span></summary><br class='autobr' /> </br><br class='autobr' /> no changes<br class='autobr' /> </details><br class='autobr' /> </br></p> <p><details><summary style="padding: 8px 505px 8px 8px; background-color:#e3e5e6;float:left; color:#4a6896"><strong>CEN</strong></span></summary><br class='autobr' /> </br></p> <ul class="spip"><li> <strong>NAM_ISBA_SNOWn</strong> : <ul class="spip"><li> <span style='color:red'>LSNOWDRIFT</span> is removed</li><li> CSNOWDRIFT: key to activate the snowdrift scheme, with 4 possible values ('NONE','DFLT','VI13','GA01')</li><li> <span style='color:orange'>CSNOWRAD</span> : key for radiative transfer scheme in snow in CROCUS. Options 'TAR', 'TA1' and 'TA2' are removed. New value possible 'T17'.</li><li> LSNOWSYTRON: to activate the blowing snow module SYTRON (Vionnet et al, 2018)</li><li> <span style='color:orange'>CSNOWMETAMO</span>: scheme of snow metamorphism (Crocus). 2 new options 's-C' and 'S-F'</li><li> CSNOWFALL: parameterization of falling snow density</li><li> CSNOWCOMP: parameterization of snow compaction</li><li> CSNOWCOND: parameterization of snow thermal conductivity from snow density</li><li> CSNOWHOLD: parameterization of maximum liquid water holding capacity in the bucket parameterization</li><li> LSNOWCOMPACT_BOOL: Activate grooming if True.</li><li> LSNOWTILLER: Switch for the activation of the tiller effect</li><li> LSNOWMAK_BOOL: Activate snowmaking if True.</li><li> LSNOWMAK_PROP: Activate machine made snow physical properties.</li><li> LSELF_PROD: Activate machine made snow physical properties.</li><li> CSNOWZREF: Reference heights for temperature and wind can be modified depending on snow depth when CSNOWZREF=='VAR'.</li></ul></li></ul><ul class="spip"><li> <strong>NAM_ISBAn</strong> <ul class="spip"><li> CSNOWRES: type of turbulent exchanges over snow.</li><li> XCVHEATF: Modify Cv to compensate biases in ground temperature.</li></ul></li></ul><ul class="spip"><li> <strong>NAM_SURF_ATM</strong> <ul class="spip"><li> LSLOPE: If True, correct parameterization of incoming radiations for homogeneous explicit slopes.</li></ul></li></ul><ul class="spip"><li> <strong>NAM_SURF_SNOW_CSTS</strong> <ul class="spip"><li> XPSR_SNOWMAK: Machine-made snow precipitation rate</li><li> XRHO_SNOWMAK: Machine-made snow density</li><li> XPTA_SEUIL: temperature threshold for machine-made snow production</li><li> XPROD_SCHEME: Snow production by machines in Crocus-RESORT</li><li> XSM_END: Month and day to stop grooming in Crocus-RESORT</li><li> XFREQ_GRO: Grooming frequency</li><li> XIMPUR_INIT(1): initial amount of black carbon present in the falling snow</li><li> XIMPUR_INIT(2): initial amount of dust present in the falling snow</li><li> XIMPUR_COEFF(1): dry deposition coefficient of black carbon over snow</li><li> XIMPUR_COEFF(2): dry deposition coefficient of dust over snow surface</li></ul></li></ul><ul class="spip"><li> <strong>NAM_PREP_ISBA_SNOW</strong> <ul class="spip"><li> NIMPUR : number of impurity</li></ul></li></ul><ul class="spip"><li> <strong>NAM_DIAG_ISBAn</strong> <ul class="spip"><li> LPROBANDS: Enable the spectral resolution of Crocus diagnostics</li></ul></li></ul><ul class="spip"><li> <strong>NAM_IO_OFFLINE</strong> <ul class="spip"><li> LWRITE_TOPO: If true, write metadata ZS, aspect, slope in the output file</li><li> CSPECSNOW: Enable spectral computation inside SURFEX/Crocus, necessary to run TARTES model.</li><li> LFORCIMP: If True, impurities are prescribed in the forcing file in variables IMPWET1, IMPDRY1, IMPWET2, IMPDRY2, etc.</li><li> NIMPUROF: Initialize the number of impurities in the OFFLINE module</li><li> LFORCATMOTARTES: to autorize forcing of total aerosol optical depth and ozone column<br class='autobr' /> </details><br class='autobr' /> </br></li></ul></li></ul> <p><details><summary style="padding: 8px 493px 8px 8px; background-color:#e3e5e6;float:left; color:#4a6896"><strong>GMAP</strong></summary><br class='autobr' /> </br></p> <ul class="spip"><li> <strong>NAM_SURF_ATM</strong> <ul class="spip"><li> LARP_PN: if True, to activate ARPEGE PN values for Cv and TAU_ICE</li></ul></li></ul><ul class="spip"><li> <strong>NAM_ZS</strong> <ul class="spip"><li> LORORAD: flag to activate orographic radiation parameters in PGD step (ORORAD)</li><li> NSECTORS: number of aspect sectors in ORORAD</li><li> XRFSSO: reduction factor for computing NFSSO</li><li> NFSSOMAX: max for NFSSO (limit for memory reasons)</li><li> XHALORADIUS: radius of the halo in which the horizon is computed (m)</li><li> CSVF: formula for SVF computation</li><li> LFSSOVF: compute SVF (sky view factor) on fractional slopes if possible</li></ul></li></ul><ul class="spip"><li> <strong>NAM_SSOn</strong> <ul class="spip"><li> LDSV: orographic shadowing, sky view factor (only if LORORAD = TRUE in PGD field)</li><li> LDSH:orographic shadowing, shadow factor (only if LORORAD = TRUE in PGD field)</li><li> LDSL:orographic shadowing, slope factor (only if LORORAD = TRUE in PGD field)</li></ul></li></ul><ul class="spip"><li> <strong>NAM_IO_OFFLINE</strong> <ul class="spip"><li> LFAGMAP: if TRUE, activate output files in GMAP FA format</li></ul></li></ul><ul class="spip"><li> <strong>NAM_ZS_FILTER</strong> <ul class="spip"><li> NOPTFILTER: Filtering option. If NOPTFILTER=1, new orographic filtering. If NOPTFILTER=0 (and RCOFILTER=1.0), orographic filtering is identical to before SURFEX V9.</li><li> RCOFILTER: Filter efficiency coefficient</li><li> RTHFILTER: Filtering threshold<br class='autobr' /> </details><br class='autobr' /> </br></li></ul></li></ul> <p><details><br class='autobr' /> <summary style="padding: 8px 497px 8px 8px; background-color:#e3e5e6;float:left; color:#4a6896"><strong>TOPD</strong></summary><br class='autobr' /> </br></p> <ul class="spip"><li> <strong>NAM_PGD_TOPD</strong> <ul class="spip"><li> LSUBCAT: If T, sub-catchments are defined (if LDUMMY_SUBCAT=F, they are defined automaticaly)</li><li> LDUMMY_SUBCAT: if T, sub-catchements are defined by the user.</li><li> NSUBCAT: Only if LDUMMY_SUBCAT=T, number of sub-catchments for the main catchment bv.</li><li> XLX: Only if LDUMMY_SUBCAT=T, X-coordinate (lambx for instance) of the outlet of the sub-catchement sbv of the main catchment bv. sbv is between 1 and NSUBCAT(bv)</li><li> XLY: Only if LDUMMY_SUBCAT=T, Y-coordinate (lamby for instance) of the outlet of the sub-catchement sbv of the main catchment bv. sbv is between 1 and NSUBCAT(bv)</li><li> CFILE_SUBCAT: File with information about the sub-catchments of the main catchment bv.</li><li> CSUBCAT: Name of the sub-catchments sbv of the main catchment bv.</li><li> LWRITE_SEVERITY_MAPS: If T, to produce some « severity maps »</li></ul></li></ul><ul class="spip"><li> <strong>NAM_TOPD</strong> <ul class="spip"><li> NFREQ_MAPS_RUNOFF: Frequency of writting saturated areas in files at specific format (.map)</li><li> XSPEEDH: Speed of water in the river for the catchment bv.</li><li> LSPEEDR_VAR: if T, the speed of water in the river is defined following the discharge value</li><li> XQINIT: Initial discharge for the catchment bv (in m³/s).</li><li> LPERT_PARAM: if T, the hydrodynamical parameters will be perturbed following the method of Edouard et al. 2016.</li><li> LPERT_INIT: If T, the initial conditions will be perturbed following the method of Edouard et al. 2016.<br class='autobr' /> </details><br class='autobr' /> </br></li></ul></li></ul> <p><details><br class='autobr' /> <summary style="padding: 8px 413px 8px 8px; background-color:#e3e5e6;float:left; color:#4a6896"><strong>VEGEO - Irrigation</strong></summary><br class='autobr' /> </br></p> <ul class="spip"><li> <strong>NAM_AGRI</strong> <ul class="spip"><li> LIRRIGMODE: flag to activate irrigation</li><li> NVEG_IRR: number of patch irrigated or/and with agricultural practices</li><li> NPATCH_TREE: tree patch distribution without irrigation/agricultural practices</li><li> XTHRESHOLD: successive threshold values to trigger the irrigation</li><li> NIRR_STOP_BTR:Number of days corresponding to the time when the irrigation stops before reaping.</li></ul></li></ul><ul class="spip"><li> <strong>NAM_DATA_ISBA</strong><br class='autobr' /> <i>Naming convention : XUNIF_*_C to give a constant value, identical for all vegetation types irrigated. XUNIF_*, to give a constant value, by vegetation types irrigated. XUNIF_*_CTIME, to give different values by decades (36 different for one year). CFNAME_* and CFTYP_* to indicate respectively the file name and the type of file. </i></br> <ul class="spip"><li> NUNIF_VEG_IRR_USE: vegetation types irrigated or/and with agricultural practices</li><li> XUNIF_IRRIGTYPE_C, XUNIF_IRRIGTYPE, CFNAM_IRRIGTYPE, CFTYP_IRRIGTYPE: irrigation type (0 for none, 1 for sprinkling, 2 for dripping and 3 for flooding)</li><li> XUNIF_IRRIGFRAC_C, XUNIF_IRRIGFRAC, CFNAM_IRRIGFRAC, CFTYP_IRRIGFRAC: irrigation fraction [0-1] for each vegetation type</li><li> XUNIF_IRRIGFREQ_CTYPE: minimum time (in s) between two irrigation triggers or the 3 types of irrigation (sprinkling, dripping and flooding)</li><li> XUNIF_IRRIGFREQ_C, XUNIF_IRRIGFREQ, CFNAM_IRRIGFREQ, CFTYP_IRRIGFREQ: minimum time (in s) between two irrigation triggers</li><li> XUNIF_IRRIGTIME_C, XUNIF_IRRIGTIME, CFNAM_IRRIGTIME, CFTYP_IRRIGTIME: duration of irrigation (in s)</li><li> XUNIF_WATSUP_C, XUNIF_WATSUP_CTIME, XUNIF_WATSUP, CFNAM_WATSUP, CFTYP_WATSUP: irrigation amount (mm)</li><li> XUNIF_F2THRESHOLD_C, XUNIF_F2THRESHOLD_CTIME, XUNIF_F2THRESHOLD, CFNAM_F2THRESHOLD, CFTYP_F2THRESHOLD:threshold for irrigation triggering</li><li> XUNIF_SEED_M_C, XUNIF_SEED_M, CFNAM_SEED_M, CFTYP_SEED_M: seeding month and/or month of the beginning of irrigation</li><li> XUNIF_SEED_D_C, XUNIF_SEED_D, CFNAM_SEED_D, CFTYP_SEED_D: seeding day and/or day of the beginning of irrigation</li><li> XUNIF_REAP_M_C, XUNIF_REAP_M, CFNAM_REAP_M, CFTYP_REAP_M: reaping month and/or month corresponding to 2 weeks after the end of irrigation</li><li> XUNIF_REAP_D_C, XUNIF_REAP_D, CFNAM_REAP_D, CFTYP_REAP_D: reaping day and/or day corresponding to 2 weeks after the end of irrigation.</li><li> XUNIF_SEED_S2_M_C, XUNIF_SEED_S2_M, CFNAM_SEED_S2_M, CFTYP_SEED_S2_M, XUNIF_SEED_S2_D_C, XUNIF_SEED_S2_D, CFNAM_SEED_S2_D, CFTYP_SEED_S2_D, XUNIF_REAP_S2_M_C, XUNIF_REAP_S2_M, CFNAM_REAP_S2_M, CFTYP_REAP_S2_M, XUNIF_REAP_S2_D_C, XUNIF_REAP_S2_D, CFNAM_REAP_S2_D, CFTYP_REAP_S2_D, XUNIF_SEED_S3_M_C, XUNIF_SEED_S3_M, CFNAM_SEED_S3_M, CFTYP_SEED_S3_M, XUNIF_SEED_S3_D_C, XUNIF_SEED_S3_D, CFNAM_SEED_S3_D, CFTYP_SEED_S3_D, XUNIF_REAP_S3_M_C, XUNIF_REAP_S3_M, CFNAM_REAP_S3_M, CFTYP_REAP_S3_M, XUNIF_REAP_S3_D_C, XUNIF_REAP_S3_D, CFNAM_REAP_S3_D, CFTYP_REAP_S3_D: In a similar way to the previous keys, it is possible to define the dates for a second or third agricultural season. The nomenclature is identical, with “_S2” or “_S3” added.</li><li> XUNIF_SEED_D_DELTA: to change the seeding date by adding a delta value around the previously defined date.</li><li> XUNIF_REAP_D_DELTA: to change the reaping date by adding a delta value around the previously defined date.</li></ul></li></ul> <p></details><br class='autobr' /> </br></p> <p><details><br class='autobr' /> <summary style="padding: 8px 487px 8px 8px; background-color:#e3e5e6;float:left; color:#4a6896"><strong>OCEAN</strong></summary><br class='autobr' /> </br></p> <ul class="spip"><li> <strong>NAM_PREP_SEAFLUX</strong> <ul class="spip"><li> CFILEWAVE_SEAFLX: name of the file used to define the significant wave height (Hs) and the peak period (Tp)</li><li> CTYPEWAVE: type of the CFILEWAVE_SEAFLX file if the latter is provided.</li></ul></li></ul><ul class="spip"><li> <strong>NAM_SEAFLUXn</strong> <ul class="spip"><li> LWAVEWIND: T for wave parameters computed from wind (default), put to F to take Hs or Tp values if initialized in PREP or if coupled.</li><li> <span style='color:red'>NTIME_COUPLING</span>: useless variable, the coupling time frequency between the surface and the 1D oceanic model is equal to the 1D oceanic model timestep, i.e. XOCEAN_TSTEP</li><li> <span style='color:orange'>CSEA_FLUX</span>: new option ‘WASPV1' and change in the default value, ‘ECUME' => ‘ECUME6'</li></ul></li></ul><ul class="spip"><li> <strong>NAM_SFX_LAKE_CPL</strong> <ul class="spip"><li> CLAKE_WATF: net freshwater flux</li></ul></li></ul><ul class="spip"><li> <strong>NAM_SFX_SEA_CPL</strong> <ul class="spip"><li> CSEA_PRES: surface pressure over sea</li></ul></li></ul><ul class="spip"><li> <span style='color:green'><strong>NAM_SFX_WAVE_CPL</strong></span> <ul class="spip"><li> XTSTEP_CPL_WAVE: Coupling time step for waves</li><li> CWAVE_U10: zonal component of the wind at 10 meters</li><li> CWAVE_V10: meridian component of the wind at 10 meters</li><li> CWAVE_CHA: Charnock coefficient</li><li> CWAVE_UCU: zonal surface current (from wave model)</li><li> CWAVE_VCU: meridian surface current (from wave model)</li><li> CWAVE_HS: significant height</li><li> CWAVE_TP: peak period<br class='autobr' /> </details><br class='autobr' /> </br></li></ul></li></ul> <p><details><summary style="padding: 8px 505px 8px 8px; background-color:#e3e5e6;float:left; color:#4a6896"><strong>MNH</strong></span></summary><br class='autobr' /> </br><br class='autobr' /> no changes<br class='autobr' /> </details><br class='autobr' /> </br></p> <p><details><summary style="padding: 8px 510px 8px 8px; background-color:#e3e5e6;float:left; color:#4a6896"><strong>TEB</strong></span></summary><br class='autobr' /> </br></p> <ul class="spip"><li> <span style='color:green'><strong>NAM_DATA_TEB_HYDRO</strong></span> (New namelist if LURBHYDRO=T) <ul class="spip"><li> XUNIF_DENS_WASTE : waste water sewer depth</li><li> CFNAM_DENS_WASTE</li><li> CFTYP_DENS_WASTE</li><li> XUNIF_DENS_STORM</li><li> CFNAM_DENS_STORM</li><li> CFTYP_DENS_STORM</li><li> XUNIF_DSEWER</li><li> CFNAM_DSEWER</li><li> CFTYP_DSEWER</li><li> XIP_SEWER : parameter for parasite infiltrations into sewer</li><li> XCONNEX : impervious surfaces connexion rate to the sewer</li><li> XINFIL_ROAD : water infiltration through roads (kg/m2/s)</li><li> XWS_ROOF_MAX : max. capacity of surface roof water storage (mm)</li><li> XWS_ROAD_MAX : max. capacity of surface road water storage (mm)</li><li> XURBDRAIN : limitation of urban deep drainage</li></ul></li></ul><ul class="spip"><li> <span style='color:green'><strong>NAM_TEB_PANELn</strong></span> (New namelist if LSOLAR_PANEL=T) <ul class="spip"><li> CSOLAR_PANEL : solar panel option</li></ul></li></ul><ul class="spip"><li> <span style='color:green'><strong>NAM_SPARTACUS</strong></span> (New namelist if LSPARTACUS=T) <ul class="spip"><li> LDO_SW : Compute shortwave fluxes if activated</li><li> LDO_LW : Compute longwave fluxes if activated</li><li> LDO_VEGETATION : vegetation will be represented if activated</li><li> LDO_URBAN : urban areas will be represented if activated</li><li> LUSE_SW_DIRECT_ALBEDO : Specify ground and roof albedos separately for direct solar radiation</li><li> XMIN_VEGETATION_FRACTION : Minimum area fraction below which a vegetation region is removed completely</li><li> XMIN_BUILDING_FRACTION : Minimum area fraction below which a building region is removed completely</li><li> N_VEGETATION_REGION_URBAN : Number of regions used to describe urban vegetation (2 needed for heterogeneity)</li><li> N_STREAM_SW_URBAN : Number of streams per hemisphere to describe diffuse<br class='autobr' /> shortwave radiation, urban areas</li><li> N_STREAM_LW_URBAN : Number of streams per hemisphere to describe<br class='autobr' /> longwave radiation, urban areas</li><li> LUSE_SYMMETRIC_VEGETATION_SCALE_URBAN : If TRUE, tree crowns touch<br class='autobr' /> each other; Eq. 20 of Hogan et al. (2018). If FALSE, tree crowns separate (shyness); Eq. 19 of Hogan et al. (2018)</li><li> XVEGETATION_ISOLATION_FACTOR_URBAN : 0.0 = Dense vegetation region is embedded within sparse region and 1.0 = Dense vegetation is in physically isolated regions</li></ul></li></ul><ul class="spip"><li> <strong>NAM_TEB</strong> <ul class="spip"><li> CROAD_GRID : type of vertical grid for soil and roads</li><li> CURBTREE : TEB option for the high vegetation, street trees or green walls</li><li> NMASS_LAYER : Number of floor layers</li><li> NBEMCOMP : Number of compartments in BEM</li><li> NTIME_CHANGE : Number of time shifts during simulation (e.g. between winter time and daylight savings time)</li><li> LEXPLW : Key for explicit calculation of longwave radiation</li><li> LSPARTACUS : Key for SPARTACUS-Surface activation</li><li> <span style='color:orange'>LURBHYDRO</span> : urban subsoil and hydrology processes (before LHYDRO)</li><li> <span style='color:red'>LHYDRO</span> : replaced by LURBHYDRO</li><li> <span style='color:red'>NROAD_LAYER</span> : replaced by CROAD_GRID</li><li> LCHECK_TEB : If True, verification of energy budget for TEB</li><li> XEPS_BDGT_GLOB : Difference allowed in energy budget for TEB for global processes.</li><li> XEPS_BDGT_FAC : Difference allowed in energy budget for TEB for facade processes.</li></ul></li></ul><ul class="spip"><li> <strong>NAM_DATA_TEB_GARDEN</strong> <ul class="spip"><li> CSHAPE_GARDEN_HVEG : shape of crown for urban trees</li><li> XUNIF_HTRUNK_HVEG : uniform value for height of TRUNK of trees (m)</li><li> CFNAM_HTRUNK_HVEG : file name for height of TRUNK of trees (m)</li><li> CFTYP_HTRUNK_HVEG : file type for height of TRUNK of trees (m)</li><li> XUNIF_WCROWN_HVEG : uniform value for width of crown of trees (m)</li><li> CFNAM_WCROWN_HVEG : file name for width of crown of trees (m)</li><li> CFTYP_WCROWN_HVEG : file type for width of crown of trees (m)</li><li> XUNIF_RE25 : uniform value for ecosystem respiration parameter (kg/m²/s)</li><li> CFNAM_RE25 : file name for ecosystem respiration parameter (kg/m²/s)</li><li> CFTYP_RE25 : file type for ecosystem respiration parameter (kg/m²/s)</li><li> <span style='color:orange'>XUNIF_FRAC_HVEG</span> : is moved from NAM_DATA_TEB_GARDEN to <strong>NAM_DATA_TEB</strong>.</li><li> <span style='color:orange'>XUNIF_FRAC_LVEG</span> : is moved from NAM_DATA_TEB_GARDEN to <strong>NAM_DATA_TEB</strong>.</li><li> <span style='color:orange'>XUNIF_FRAC_NVEG</span> : is moved from NAM_DATA_TEB_GARDEN to <strong>NAM_DATA_TEB</strong>.</li><li> <span style='color:orange'>CFNAM_HVEG</span> : is moved from NAM_DATA_TEB_GARDEN to <strong>NAM_DATA_TEB</strong>.</li><li> <span style='color:orange'>CFNAM_LVEG</span> : is moved from NAM_DATA_TEB_GARDEN to <strong>NAM_DATA_TEB</strong>.</li><li> <span style='color:orange'>CFNAM_NVEG</span> : is moved from NAM_DATA_TEB_GARDEN to <strong>NAM_DATA_TEB</strong>.</li><li> <span style='color:orange'>CFTYP_HVEG</span> : is moved from NAM_DATA_TEB_GARDEN to <strong>NAM_DATA_TEB</strong>.</li><li> <span style='color:orange'>CFTYP_LVEG</span> : is moved from NAM_DATA_TEB_GARDEN to <strong>NAM_DATA_TEB</strong>.</li><li> <span style='color:orange'>CFTYP_NVEG</span> : is moved from NAM_DATA_TEB_GARDEN to <strong>NAM_DATA_TEB</strong>.</li></ul></li></ul><ul class="spip"><li> <strong>NAM_DATA_TEB</strong><br class='autobr' /> <i>Naming convention : XUNIF_* is to give a constant value for a parameter. CFNAME_* and CFTYP_* to indicate respectively the file name and the type of file for this parameter.</i></br> <ul class="spip"><li> XUNIF_ROAD: vegetation types irrigated or/and with agricultural practices</li><li> CCSVFILEARCHI: CSV-file containing information on architectural characteristics of building archetypes.</li><li> CCSVFILECOMPO: CSV-file containing information on human behaviours as a function of building use.</li><li> NUNIF_BLDTYPE, CFNAM_BLDTYPE, CFTYP_BLDTYPE: Identifier for building type (see documentation for identifier of building type)</li><li> NUNIF_IND_BLD_AGE, CFNAM_IND_BLD_AGE, CFTYP_IND_BLD_AGE: building's age (individual housing). See documentation for identifier of building construction period.</li><li> NUNIF_COL_BLD_AGE, CFNAM_COL_BLD_AGE, CFTYP_COL_BLD_AGE: building's age (collective housing). See documentation for identifier of building construction period.</li><li> NUNIF_USETYPE, CFNAM_USETYPE, CFTYP_USETYPE: Identifier for building use. See documentation.</li><li> NUNIF_P1TERRITORY, CFNAM_P1TERRITORY, CFTYP_P1TERRITORY: historical building material territory (before 1948). See documentation for identifier of construction material regions.</li><li> NUNIF_PXTERRITORY, CFNAM_PXTERRITORY, CFTYP_PXTERRITORY: recent building material territory (before 1948). See documentation for identifier of construction material regions.</li><li> XUNIF_FRACIHS, CFNAM_FRACIHS, CFTYP_FRACIHS: individual housing fraction</li><li> XUNIF_FRACCHS, CFNAM_FRACCHS, CFTYP_FRACCHS: collective housing fraction</li><li> XUNIF_FRACCOM, CFNAM_FRACCOM, CFTYP_FRACCOM: commercial fraction</li><li> XUNIF_FRACTER, CFNAM_FRACTER, CFTYP_FRACTER: tertiary fraction</li><li> XUNIF_FRACIND, CFNAM_FRACIND, CFTYP_FRACIND: industrial fraction</li><li> XUNIF_FRACNHE, CFNAM_FRACNHE, CFTYP_FRACNHE: non or poor heated uses</li><li> XUNIF_FRACPAV, CFNAM_FRACPAV, CFTYP_FRACPAV: pavillionary building fraction</li><li> XUNIF_FRACMRI, CFNAM_FRACMRI, CFTYP_FRACMRI: mid-rise building fraction</li><li> XUNIF_FRACHRI, CFNAM_FRACHRI, CFTYP_FRACHRI: high-rise building fraction</li><li> XUNIF_FRACATB, CFNAM_FRACATB, CFTYP_FRACATB: activity building fraction</li><li> XUNIF_FOEQI_MAIS, CFNAM_FOEQI_MAIS, CFTYP_FOEQI_MAIS: fraction of strong equipment and use in individual housing.</li><li> XUNIF_FOEQI_APPT, CFNAM_FOEQI_APPT, CFTYP_FOEQI_APPT: fraction of strong equipment and use in collective housing.</li><li> XUNIF_FAEQI_MAIS, CFNAM_FAEQI_MAIS, CFTYP_FAEQI_MAIS: fraction of weak equipment and use in individual housing.</li><li> XUNIF_FAEQI_APPT, CFNAM_FAEQI_APPT, CFTYP_FAEQI_APPT: fraction of weak equipment and use in collective housing.</li><li> XUNIF_CRE_MAIS, CFNAM_CRE_MAIS, CFTYP_CRE_MAIS: fraction of high regulation in individual housing</li><li> XUNIF_CRE_APPT, CFNAM_CRE_APPT, CFTYP_CRE_APPT: fraction of high regulation in collective housing</li><li> XUNIF_HC_COATING_ROAD, CFNAM_HC_COATING_ROAD, CFTYP_HC_COATING_ROAD: road coating heat capacity (J/K/m3)</li><li> XUNIF_TC_COATING_ROAD, CFNAM_TC_COATING_ROAD, CFTYP_TC_COATING_ROAD: road coating thermal conductivity (W/K/m)</li><li> XUNIF_D_COATING_ROAD, CFNAM_D_COATING_ROAD, CFTYP_D_COATING_ROAD: depth of road coating (m).</li><li> XUNIF_HC_BASEMENT_ROAD, CFNAM_HC_BASEMENT_ROAD, CFTYP_HC_BASEMENT_ROAD: road basement heat capacity (J/K/m3)</li><li> XUNIF_TC_BASEMENT_ROAD, CFNAM_TC_COATING_ROAD, CFTYP_TC_BASEMENT_ROAD: road basement thermal conductivity (W/K/m)</li><li> <span style='color:orange'>XUNIF_FRAC_HVEG, CFNAM_FRAC_HVEG, CFTYP_FRAC_HVEG </span>: fraction of high vegetation (before in NAM_DATA_TEB_GARDEN)</li><li> <span style='color:orange'>XUNIF_FRAC_LVEG, CFNAM_FRAC_LVEG, CFTYP_FRAC_LVEG </span>: fraction of low vegetation (before in NAM_DATA_TEB_GARDEN)</li><li> <span style='color:orange'>XUNIF_FRAC_NVEG, CFNAM_FRAC_NVEG, CFTYP_FRAC_NVEG</span>: fraction of bare soil (before in NAM_DATA_TEB_GARDEN)</li><li> XUNIF_NB_POP, CFNAM_NB_POP, CFTYP_NB_POP: uniform value for population per square kilometer</li><li> XUNIF_SFCO2_RD, CFNAM_SFCO2_RD, CFTYP_SFCO2_RD: uniform value for CO2 flux link to traffic roads (kg/m2 of town/s)</li><li> XUNIF_DELTA_LEGAL_TIME, CFNAM_DELTA_LEGAL_TIME, CFTYP_DELTA_LEGAL_TIME :difference between UTC and legal time (in hour)</li><li> XUNIF_TIME_OF_CHANGE: time of time change of the legal hour.</li><li> XPAR_TRAF_MONTHLY: monthly cycle of traffic</li><li> XPAR_TRAF_DAILY: daily cycle of traffic from monday to sunday</li><li> XPAR_TRAF_HOURLY: hourly cycle of traffic from 00h to 23h.</li><li> XPAR_POP_MONTHLY: monthly cycle of inhabitants density</li><li> XPAR_POP_DAILY: daily cycle of inhabitants density from monday to sunday</li><li> XPAR_POP_HOURLY: hourly cycle of inhabitants density from 00h to 23h</li><li> <span style='color:red'>NPAR_ROAD_LAYER</span> : removed</li><li> <span style='color:red'>NUNIF_BLD_AGE,CFNAM_BLD_AGE, CFTYP_BLD_AGE </span> : removed</li><li> <span style='color:red'>CCSVDATAFILE</span> : removed</li><li> <span style='color:red'>XUNIF_GARDEN, CFNAM_GARDEN, CFTYP_GARDEN</span> : removed</li><li> <span style='color:red'> XUNIF_HC_ROAD, CFNAM_HC_ROAD, CFTYP_HC_ROAD</span> : splitted into XUNIF_TC_COATING_ROAD & XUNIF_TC_BASEMENT_ROAD</li><li> <span style='color:red'> XUNIF_TC_ROAD,CFNAM_TC_ROAD, CFTYP_TC_ROAD</span> : splitted into XUNIF_HC_COATING_ROAD & XUNIF_HC_BASEMENT_ROAD</li><li> <span style='color:red'> XUNIF_D_ROAD, CFNAM_D_ROAD, CFTYP_D_ROAD</span> : replaced by XUNIF_D_COATING, CFNAM_D_COATING, CFTYP_D_COATING</li><li> <span style='color:red'>XUNIF_RESIDENTIAL, CFNAM_RESIDENTIAL, CFTYP_RESIDENTIAL </span>: removed (moved in NAM_DATA_BEM)</li></ul></li></ul><ul class="spip"><li> <strong>NAM_DIAG_ISBAn</strong> <ul class="spip"><li> LUTCI : flag to compute UTCI quantities in rural areas</li></ul></li></ul><ul class="spip"><li> <strong>NAM_PREP_TEB</strong> <ul class="spip"><li> LATM_CANOPY : flag to replace canopy prognostic variables by atmospheric models prognostic variables</li><li> <span style='color:orange'>XTDEEP_TEB</span> : deep temperature for TEB soil (K) (called XTI_ROAD before V9)</li><li> XTS_BLD : soil below buildings uniform temperature (K)</li><li> <span style='color:red'>XTI_ROAD</span> : removed and replace by XTDEEP_TEB</li></ul></li></ul><ul class="spip"><li> <strong>NAM_IO_OFFLINE</strong> <ul class="spip"><li> CINTERP_SW : method to temporal interpolation of SW forcing. The following options are currently available : <ul class="spip"><li> ‘ZEN' : interpolation using theorical zenithal angle dependancy</li><li> ‘LIN' : linear temporal interpolation of SW forcing (method used before when LINTERP_SW=FALSE)</li><li> ‘OLD' : interpolation using simple zenithal angle dependancy (method used before when LINTERP_SW=TRUE)</li></ul></li><li> <span style='color:red'>LINTERP_SW</span> : replaced by CINTERP_SW</li></ul></li></ul><ul class="spip"><li> <strong>NAM_DATA_BEM</strong><br class='autobr' /> <i>XUNIF_* : uniform value for…</i><br class='autobr' /> <i>CFNAM_*: file name for…</i><br class='autobr' /> <i>CFTYP_*: file type for…</i> <ul class="spip"><li> NPAR_MASS_LAYER : Number of layers (up to 9) for the internal mass in input data. This does NOT refer to the computational grid. The mass properties are interpolated from the input grid to the computational grid.</li><li> XPAR_CF_CO2_ELEC : Emission factor CO2/electricity [KgCO2.J-1]</li><li> XPAR_CF_CO2_GAS : Emission factor CO2/gas [KgCO2.J-1]</li><li> XPAR_CF_CO2_FUEL : Emission factor CO2/fuel [KgCO2.J-1]</li><li> XPAR_CF_CO2_OTHER : Emission factor CO2/other source [KgCO2.J-1]. The defaults emission factor assumes wood.</li><li> XUNIF_HC_MASS / CFNAM_HC_MASS / CFTYP_HC_MASS : heat capacity of up to 9 mass layers [J/K/m3]</li><li> XUNIF_TC_MASS / CFNAM_TC_MASS / CFTYP_TC_MASS : thermal conductivity of up to 9 mass layers [W/m/K]</li><li> XUNIF_D_MASS / CFNAM_D_MASS / CFTYP_D_MASS : depth of up to 9 mass layers [m]</li><li> <span style='color:red'>XUNIF_TCOOL_TARGET / CFNAM_TCOOL_TARGET / CFTYP_TCOOL_TARGET</span> : removed and replaced by the more detailed design temperature</li><li> <span style='color:red'>XUNIF_THEAT_TARGET / CFNAM_THEAT_TARGET / CFTYP_THEAT_TARGET</span> : removed and replaced by the more detailed design temperature</li><li> <span style='color:red'>XUNIF_EFF_HEAT / CFNAM_EFF_HEAT/ CFTYP_EFF_HEAT</span> : removed, now the efficiency per type of heating combustible is specified in modd_bem_optionn.</li><li> XUNIF_DCS_AREA / CFNAM_DCS_AREA / CFTYP_DCS_AREA : presence of district cooling system</li><li> XUNIF_MODQIN_VCD / CFNAM_MODQIN_VCD / CFTYP_MODQIN_VCD : Modulation factor for internal heat release when the building is vacant for short duration</li><li> XUNIF_MODQIN_VLD / CFNAM_MODQIN_VLD / CFTYP_MODQIN_VLD : Modulation factor for internal heat release when the building is vacant for long duration (e.g. holiday home)</li><li> XUNIF_MODQIN_NIG / CFNAM_MODQIN_NIG / CFTYP_MODQIN_NIG : Modulation factor for internal heat release during the night</li><li> XUNIF_N50 / CFNAM_N50 / CFTYP_N50 : Airtightness of the building [vol.h-1 at 5O Pa] This parameter is used to calculate the infiltration rate.</li><li> XUNIF_COP_DCS / CFNAM_COP_DCS / CFTYP_COP_DCS : Rated COP of the district cooling system</li><li> <span style='color:red'>XUNIF_INF / CFNAM_INF / CFTYP_INF</span> : removed</li><li> <span style='color:red'>XUNIF_V_VENT / CFNAM_V_VENT / CFTYP_V_VENT</span> : removed</li><li> XUNIF_ISMECH / CFNAM_ISMECH / CFTYP_ISMECH : control variable for presence of mechanical ventilation (1=YES, 0=NO)</li><li> XUNIF_MECHRATE / CFNAM_MECHRATE / CFTYP_MECHRATE : air exchange due to mechanical ventilation [vol./h]. Replace the old keys XUNIF_V_VENT, CFNAM_V_VENT, CFTYPE_V_VENT.</li><li> XUNIF_SHADEARCHI / CFNAM_SHADEARCHI / CFTYP_SHADEARCHI : presence of shading devices (0= no shading devices, 1=adjustable shading devices, 2=permanent shading devices) Replace the old keys XUNIF_SHADE, CFNAM_SHADE, CFTYP_SHADE.</li><li> <span style='color:red'>XUNIF_SHADE / CFNAM_SHADE / CFTYP_SHADE</span> : removed and replaced by XUNIF_SHADEARCHI</li><li> XUNIF_FRACOMP / CFNAM_FRACOMP / CFTYP_FRACOMP : fractions of up to 9 tiles of building use/human behaviour. The sum of the fractions must equal 1.</li><li> <span style='color:orange'>XUNIF_NATVENT / CFNAM_NATVENT / CFTYP_NATVENT </span> : change of dimension. Now NBEMCOMP (NBEMCOMP=1 by default)</li><li> <span style='color:orange'>XUNIF_RESIDENTIAL / CFNAM_RESIDENTIAL / CFTYP_RESIDENTIAL </span>:residential fractions (only used for solar panel). Before in NAM_DATA_TEB</li><li> XUNIF_TDESV / CFNAM_TDESV / CFTYP_TDESV : indoor air temperature, people or automatic ventilation try to achieve by opening/closing of windows [K]</li><li> XUNIF_WIN_SW_MAX / CFNAM_WIN_SW_MAX / CFTYP_WIN_SW_MAX : threshold for shortwave radiation received by walls used for shading calculations [W/m²]</li><li> XUNIF_FOPEN / CFNAM_FOPEN / CFTYP_FOPEN : maximum fraction of windows opened in cas ventilation is made.</li><li> XUNIF_FVSUM / CFNAM_FVSUM / CFTYP_FVSUM : fraction of households using natural ventilation when the building during summer (warm conditions).</li><li> XUNIF_FVVAC / CFNAM_FVVAC / CFTYP_FVVAC : fraction of households using natural ventilation when the building is vacant.</li><li> XUNIF_FVNIG / CFNAM_FVNIG / CFTYP_FVNIG : fraction of households using natural ventilation during the night</li><li> XUNIF_FSSUM / CFNAM_FSSUM / CFTYP_FSSUM : fraction of households closing shading elements during summer (warm conditions)</li><li> XUNIF_FSVAC / CFNAM_FSVAC / CFTYP_FSVAC : fraction of households closing shading elements when the building is vacant.</li><li> XUNIF_FSNIG / CFNAM_FSNIG / CFTYP_FSNIG : fraction of households closing shading elements during the night.</li><li> XUNIF_DAYWBEG_SCHED / CFNAM_DAYWBEG_SCHED / CFTYP_DAYWBEG_SCHED : Day of the week for schedules on human behaviour. [1=Monday ; 7 = Saturday].</li><li> XUNIF_HOURBEG_SCHED / CFNAM_HOURBEG_SCHED / CFTYP_HOURBEG_SCHED : Hour of the day [solar time] for schedules of human behaviour</li><li> XUNIF_PROBOCC / CFNAM_PROBOCC / CFTYP_PROBOCC : Probability that the building is occupied for the schedules defined by DAYWBEG_SCHED and HOURBEG_SCHED</li><li> XUNIF_BEG_HOLIDAY / CFNAM_BEG_HOLIDAY / CFTYP_BEG_HOLIDAY : Julian day of year of the beginning of holiday period.</li><li> XUNIF_END_HOLIDAY / CFNAM_END_HOLIDAY / CFTYP_END_HOLIDAY :Julian day of year of the end of holiday period.</li><li> XUNIF_MOD_HOLIDAY / CFNAM_MOD_HOLIDAY / CFTYP_MOD_HOLIDAY : Modulation factor for internal heat release during holiday period</li><li> XUNIF_TCOOL_OCCD / CFNAM_TCOOL_OCCD / CFTYP_TCOOL_OCCD : Design temperature for air conditioning when the building is occupied (OCC) during the day (D) [K].</li><li> XUNIF_TCOOL_OCCN / CFNAM_TCOOL_OCCN / CFTYP_TCOOL_OCCN : Design temperature for air conditioning when the building is occupied (OCC) during the night (N) [K].</li><li> XUNIF_TCOOL_VCDD / CFNAM_TCOOL_VCDD / CFTYP_TCOOL_VCDD : Design temperature for air conditioning when the building is vacant (VC) During the Day (DD) [K].</li><li> XUNIF_TCOOL_VCDN / CFNAM_TCOOL_VCDN / CFTYP_TCOOL_VCDN : Design temperature for air conditioning when the building is vacant (VC) During the Night (DN) [K].</li><li> XUNIF_TCOOL_VCLD / CFNAM_TCOOL_VCLD / CFTYP_TCOOL_VCLD : Design temperature for air conditioning when the building is vacant (VC) for Long Duration (LD) [K].</li><li> XUNIF_THEAT_OCCD / CFNAM_THEAT_OCCD / CFTYP_THEAT_OCCD : Design temperature for heating when the building is occupied (OCC) during the day (D) [K].</li><li> XUNIF_THEAT_OCCN / CFNAM_THEAT_OCCN / CFTYP_THEAT_OCCN : Design temperature for heating when the building is occupied (OCC) during the night (N)</li><li> XUNIF_THEAT_VCDD / CFNAM_THEAT_VCDD / CFTYP_THEAT_VCDD : Design temperature for heating when the building is vacant (VC) During the Day (DD) [K].</li><li> XUNIF_THEAT_VCDN / CFNAM_THEAT_VCDN / CFTYP_THEAT_VCDN :Design temperature for heating when the building is vacant (VC) During the Night (DN) [K].</li><li> XUNIF_THEAT_VCLD / CFNAM_THEAT_VCLD / CFTYP_THEAT_VCLD : Design temperature for heating when the building is vacant (VC) for Long Duration (LD) [K].</li><li> XUNIF_QIN / CFNAM_QIN / CFTYP_QIN : Internal heat release [W/m²(floor)].</li><li> XUNIF_QIN_FRAD / CFNAM_QIN_FRAD / CFTYP_QIN_FRAD : Radiant fraction of internal heat gains</li><li> XUNIF_QIN_FLAT / CFNAM_QIN_FLAT / CFTYP_QIN_FLAT : Latent frantion of internal heat gains</li><li> XUNIF_FRAC_HEAT_ELEC / CFNAM_FRAC_HEAT_ELEC / CFTYP_FRAC_HEAT_ELEC : Fraction of households with electricity as heating combustible</li><li> XUNIF_FRAC_HEAT_GAS / CFNAM_FRAC_HEAT_GAS / CFTYP_FRAC_HEAT_GAS : Fraction of households with gas as heating combustible</li><li> XUNIF_FRAC_HEAT_FUEL / CFNAM_FRAC_HEAT_FUEL / CFTYP_FRAC_HEAT_FUEL :Fraction of households with fuel as heating combustible</li><li> XUNIF_FRAC_HEAT_OTHER / CFNAM_FRAC_HEAT_OTHER / CFTYP_FRAC_HEAT_OTHER : Fraction of households with other heating combustibles (e.g. wood)</li><li> XUNIF_HOTWAT / CFNAM_HOTWAT / CFTYP_HOTWAT :Energy consumption for domestic warm water [W/m²(floor)]. It can be specified for up to 9 tiles of building use and human behaviour.</li><li> XUNIF_F_HW_GAS / CFNAM_F_HW_GAS / CFTYP_F_HW_GAS : Fraction of domestic warm water heated with gas [1]. The remainder is assumed to be heated with electricity.</li></ul></li></ul><ul class="spip"><li> <strong>NAM_PGD_ARRANGE_COVER</strong> <ul class="spip"><li> LTOWN_TO_COVER : Option to replace (if TRUE) urban landuse by the ecoclimap cover ICOVER</li><li> NREPLACE_COVER: cover number to replace urban by this cover. If LTOWN_TO_COVER=TRUE and NREPLACE=ICOVER, the urban landuse is replaced by the ECOCLIMAP cover number ICOVER (ICOVER must be present in the domain)</li></ul></li></ul><ul class="spip"><li> <strong>NAM_TEBn</strong> <ul class="spip"><li> CURB_LM : option to compute urban mixing length</li><li> CZ0EFF_GD: TEB option for effective roughness length for low urban vegetation</li><li> <span style='color:red'>XDT_RES</span></li><li><span style='color:red'> XDT_OFF</span></li></ul></li></ul> <p></details><br class='autobr' /> </br></p> <p><details><summary style="padding: 8px 486px 8px 8px; background-color:#e3e5e6;float:left; color:#4a6896"><strong>GMGEC</strong></span></summary><br class='autobr' /> </br></p> <ul class="spip"><li> <strong>NAM_IO_OFFLINE</strong> <ul class="spip"><li> <span style='color:red'>LLAND_USE</span> is removed. Simplification of land use procedure, see new LLULCC key.</li><li> LGRID_MODE: To declare fields for xios with a grid rather than a domain</li><li> LNEW_TIME_INTERP_ATM: new forcing interpolation procedure</li><li> CTIME_INTERP_PRCP:if the new LNEW_TIME_INTERP_ATM is true, user can choose between 3 options to interpolate precipitation forcing</li></ul></li></ul><ul class="spip"><li> <strong>NAM_ISBA</strong> <ul class="spip"><li> LLULCC: land-use land cover change scheme activation key</li></ul></li></ul><ul class="spip"><li> <strong>NAM_SURF_ATM</strong> <ul class="spip"><li> LCO2FOS: To add fossil fuel emissions to natural CO2 emissions from ISBA</li></ul></li></ul><ul class="spip"><li> <strong>NAM_SURF_ATMn</strong> <ul class="spip"><li> LDIAG_MIP: flag to perform intercomparison of land surface model diagnostics as required by several MIP</li></ul></li></ul><ul class="spip"><li> <strong>NAM_SEAFLUXn</strong> <ul class="spip"><li> <span style='color:orange'>CINTERPOL_SST</span>: new option <span style='color:orange'>'READAY'</span> to impose directly daily SST</li><li> <span style='color:orange'>CINTERPOL_SSS</span>: new option <span style='color:orange'>'READAY'</span> to impose directly daily SSS</li><li> CSEA_SFCO2: Empirical CO2 emission from sea surface ('NONE' = no emission / 'WIND' = Wanninkhof medium hypothesis using only wind speed as CO2 emission proxy (very empirical)</li></ul></li></ul><ul class="spip"><li> <strong>NAM_SEAICEn</strong> <ul class="spip"><li> <span style='color:orange'>CINTERPOL_SIC</span>: new option <span style='color:green'>'READAY'</span> to impose directly daily SIC</li><li> <span style='color:orange'>CINTERPOL_SIT</span>: new option <span style='color:green'>'READAY'</span> to impose directly daily SIT</li></ul></li></ul><ul class="spip"><li> <strong>NAM_ISBA_AGSn</strong> <ul class="spip"><li> LDOWNREGU: downregulation parameterization of CO2 assimilation for CPHOTO='NCB' option.</li><li> XCNLIM: carbon nitrogen limitation parameter used in both the LNITRO_DILU and the LDOWNREGU options.</li></ul></li></ul><ul class="spip"><li> <strong>NAM_PREP_ISBA_CARBON</strong> <ul class="spip"><li> <span style='color:orange'>CRESPSL</span>: Soil respiration option. Options modified and one new option: <span style='color:orange'>'DEF'</span> = no soil respiration / <span style='color:orange'>'N92'</span> = old 'DEF' option Norman et al. 1992 / <span style='color:green'>'DIF'</span>activation of the carbon soil dynamics (discretization of soil carbon) from Morel et al. 2019 (JAMES)</li><li> LSOILGAS:activation of the soil gas diffusion module to simulate O2, CO2 and CH4 soil dynamics from Morel et al. 2019 (JAMES). <span style='color:red'><i>!!! this scheme is actually a prototype !!!</i></span></li></ul></li></ul><ul class="spip"><li> <strong>NAM_DIAG_ISBAn</strong> <ul class="spip"><li> LLUTILES_BUDGET: flag to bring together diag from the ISBA patches into 4 surface covers type required for land-use-land-cover purpose (not implemented for ECOCLIMAP-SG)</li></ul></li></ul><ul class="spip"><li> <span style='color:red'><strong>NAM_SPINUP_CARBn</strong></span> is removed and replaced by the new namelist NAM_ISBA_CCn</li></ul><ul class="spip"><li> <span style='color:green'><strong>NAM_ISBA_CCn</strong></span> : new namelist to control ISBA-CC scheme as published in Delire et al. 2020 (JAMES) <ul class="spip"><li> LSPINUPCARBS: to activate soil carbon spinup</li><li> XSPINMAXS: To define the spinup time step as the increase of the physical time step by a factor equal to XSPINMAXS</li><li> NNBYEARSPINS:number of years needed to reach soil equilibrium</li><li> XMISSFCO2:Missing carbon flux (cf. anthropic) required for ESM coupling in emission mode</li><li> LFIRE:flag to activate simple biomass fire module</li><li> LCLEACH:flag to activate soil carbon leaching that produce dissolved organic carbon that can be routed by CTRIP</li><li> LADVECT_SOC:flag to activate vertical advection scheme for soil dynamics carbon module, only if CRESPSL = DIF</li><li> LCRYOTURB:flag to activate vertical cryoturbation scheme if CRESPSL = DIF</li><li> LBIOTURB:flag to activate vertical bioturbation scheme if CRESPSL = DIF</li></ul></li></ul><ul class="spip"><li> <span style='color:green'><strong>NAM_ISBA_NUDGINGn</strong></span> : new namelist to control ISBA snow and soil moisture nudging. <ul class="spip"><li> LNUDG_SWE: to activate the snow's nudging</li><li> LNUDG_SWE_MASK:to restric the snow nudging to a given region, that is the nudging can be only regional</li><li> XTRELAX_SWE:relaxation time for the snow's nudging</li><li> CNUDG_WG:key to activate the soil water's nudging (options are 'DEF = no nudging / 'DAY' = daily nudging / 'MTH' = monthly nudging)</li><li> LNUDG_WG_MASK:to restric the soil water's nudging to a given region, that is the nudging can be only regional</li><li> XTRELAX_WG: relaxation time for the soil water's nudging</li><li> XNUDG_Z_WG:vertical profile for the soil water's nudging</li></ul></li></ul><ul class="spip"><li> <strong>NAM_SFW_LAND_CPL</strong> <ul class="spip"><li> CDOCFLUX:coupling DOC flux when LCLEACH = True</li><li> CTWS:coupling variable that allow to compute the Terrestrial Water Storage (TWS)</li></ul></li></ul><ul class="spip"><li> <strong>NAM_SFW_SEA_CPL</strong> <ul class="spip"><li> LSEAICE_2FLX:to activate a tile scheme to compute fluxes over sea and sea-ice separately</li><li> CSEA_CO2:coupling variable that allow to send cumulated atmospheric CO2 in ppm.s to ocean model</li><li> CSEA_FCO2: coupling variable that allow to get CO2 fluxes produces by the oceanic biogeochemistry scheme</li></ul></li></ul></div> LAKE2019 http://www.umr-cnrm.fr/surfex/spip.php?article449 http://www.umr-cnrm.fr/surfex/spip.php?article449 2019-10-26T18:53:01Z text/html en Patrick LE MOIGNE <p>6th workshop on parameterization of lakes in Numerical Weather Prediction and climate modelling <br class='autobr' /> The 2019 Toulouse workshop continues the lake-parameterization workshop series held in Zelenogorsk (Russia, 2008), Norrkoping (Sweden, 2010), Helsinki (Finland, 2012), Evora (Portugal, 2015), and Berlin (Germany, 2017). Workshop website List of participants Report of Margarita Choulga Summary of the discussions Group picture (HR) <br class='autobr' /> Thanks for your active participation! <br class='autobr' /> Modelling 1. Opening (...)</p> - <a href="http://www.umr-cnrm.fr/surfex/spip.php?rubrique164" rel="directory">LAKE Workshop</a> <div class='rss_texte'><p><strong>6th workshop on parameterization of lakes in Numerical Weather Prediction and climate modelling</strong></p> <p>The 2019 Toulouse workshop continues the lake-parameterization workshop series held in Zelenogorsk (Russia, 2008), Norrkoping (Sweden, 2010), Helsinki (Finland, 2012), Evora (Portugal, 2015), and Berlin (Germany, 2017).</p> <ul class="spip"><li><a href="http://www.meteo.fr/cic/meetings/2019/LAKE2019/index.html" class='spip_out' rel='external'>Workshop website</a></li><li><a href="https://drive.google.com/file/d/1hggs9mGXFCzre3nKTr0RIaYLB6hzTr1a/view?usp=sharing" class='spip_out' rel='external'>List of participants</a></li><li> <a href="https://drive.google.com/open?id=1nv8l5Ciz8odSeTACg96jgtSc3NWYKCoN" class='spip_out' rel='external'>Report of Margarita Choulga</a></li><li> <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/discussions_lake2019.pdf' class='spip_in' type='application/pdf'>Summary of the discussions</a></li><li> <a href='http://www.umr-cnrm.fr/surfex/IMG/jpg/ppc_1251_2_.jpg' class='spip_in' type='image/jpeg'>Group picture (HR)</a></li></ul><div class='spip_document_475 spip_document spip_documents spip_document_image spip_documents_center spip_document_center'> <figure class="spip_doc_inner"> <a href='http://www.umr-cnrm.fr/surfex/IMG/jpg/ppc_1251_2_.jpg' class="spip_doc_lien mediabox" type="image/jpeg"> <img src='http://www.umr-cnrm.fr/surfex/IMG/jpg/ppc_1251_2_.jpg?1572532763' width='500' height='216' alt='' /></a> </figure> </div> <p>Thanks for your active participation!</p> <p><strong>Modelling</strong><br class='autobr' /> 1. <a href="https://www.umr-cnrm.fr/surfex/data/LAKE2019/Day1-S1-Modelling/LeMoigne_LAKE2019_intro.pdf" class='spip_out' rel='external'>Opening</a> <i>Patrick Le Moigne</i><br class='autobr' /> 2. <a href="https://www.umr-cnrm.fr/surfex/data/LAKE2019/Day1-S1-Modelling/Kirillin/lake2019kirillinNew.pptx" class='spip_out' rel='external'>Application of FLake to stratification modeling: problems and solutions</a> <i>Georgiy Kirillin</i><br class='autobr' /> 3. <a href="https://www.umr-cnrm.fr/surfex/data/LAKE2019/Day1-S1-Modelling/MacKay_CSLM-Toulouse.pptx" class='spip_out' rel='external'>Surface Stress and Mixing in Small, Sheltered Boreal Lakes</a> <i>Murray MacKay</i><br class='autobr' /> 4. <a href="https://www.umr-cnrm.fr/surfex/data/LAKE2019/Day1-S1-Modelling/Chu1_Lake2019_NOAA_CHU_3Dcoupling.pptx" class='spip_out' rel='external'>Two-way Atmosphere-Lake-Ice Coupled Regional Climate Simulation over the Great Lakes Region</a> <i>Philip Chu</i><br class='autobr' /> 5. <a href="https://www.umr-cnrm.fr/surfex/data/LAKE2019/Day1-S1-Modelling/Guinaldo_lake_workshop.pptx" class='spip_out' rel='external'>Improvement of lake water dynamics in land surface model</a> <i>Thibault Guinaldo </i><br class='autobr' /> 6. <a href="https://www.umr-cnrm.fr/surfex/data/LAKE2019/Day1-S1-Modelling/Chu2_LAKE2019_LakeEffectSnow_Chu.pptx" class='spip_out' rel='external'>Improve Lake Effect Snow Predictions Through a loosely-Coupled NWP-Lake-Ice Modeling Approach</a> <i>Philip Chu</i><br class='autobr' /> 7. <a href="https://www.umr-cnrm.fr/surfex/data/LAKE2019/Day1-S1-Modelling/Kurzeneva_GLDB_increase.pdf" class='spip_out' rel='external'>Global lake database: towards increased resolution</a> <i>Ekaterina Kurzeneva</i><br class='autobr' /> 8. <a href="https://www.umr-cnrm.fr/surfex/data/LAKE2019/Day1-S1-Modelling/Bernus_Presentation_Sensitivity_Analysis_22_Octobre_2019.pdf" class='spip_out' rel='external'>Sensitivity analysis of FLake lake model for global land surface modeling</a> <i>Anthony Bernus</i></p> <p><strong>Climate Impact</strong><br class='autobr' /> 10. <a href="https://www.umr-cnrm.fr/surfex/data/LAKE2019/Day1-S2-ClimateImpact/Thiery_LakeWorkshop_2019_presentation_Thiery_etal.pptx" class='spip_out' rel='external'>Easy lakes? Rationale and latest news from the ISIMIP lake sector</a> <i>Wim Thiery</i><br class='autobr' /> 11. <a href="https://www.umr-cnrm.fr/surfex/data/LAKE2019/Day1-S2-ClimateImpact/RaamanVinnaa_LAKE2019_LRV.pptx" class='spip_out' rel='external'>Local factors affecting climate related warming of lakes</a> <i>Carl Love Mikael Raaman Vinnaa</i><br class='autobr' /> 12. <a href="https://www.umr-cnrm.fr/surfex/data/LAKE2019/Day1-S2-ClimateImpact/LerouxDJ_LakeWorkshop.pptx" class='spip_out' rel='external'>Climate change impact on lake surface energy budget in the 20th century</a> <i>Delphine Leroux</i><br class='autobr' /> 13. <a href="https://www.umr-cnrm.fr/surfex/data/LAKE2019/Day1-S2-ClimateImpact/Salgado_et_al_LAKE2019.pdf" class='spip_out' rel='external'>Assessment of the climate impact of a large artificial reservoir using a mesoscale simulations over a Typical Meteorological Year</a> <i>Rui Salgado</i><br class='autobr' /> 14. <a href="https://www.umr-cnrm.fr/surfex/data/LAKE2019/Day1-S2-ClimateImpact/Shatwell_lakes_shatwell_2019.pptx" class='spip_out' rel='external'>Effect of climate warming on the mixed layer depth in lakes</a> <i>Tom Shatwell</i><br class='autobr' /> 15. <a href="https://www.umr-cnrm.fr/surfex/data/LAKE2019/Day1-S2-ClimateImpact/Mi_Presentation_of_Chenxi_Mi.ppt" class='spip_out' rel='external'>Effect of future climate change and selective withdrawal on the thermal structure of Germany's largest drinking water reservoir</a> <i>Chenxi Mi</i></p> <p><strong>Model Validation and Applications</strong><br class='autobr' /> 16. <a href="https://www.umr-cnrm.fr/surfex/data/LAKE2019/Day2-S3-ModelValApplication/Choulga_LakeWorkshop2019_Choulga.pptx" class='spip_out' rel='external'>Verification of lake surface water temperature and ice on/off dates</a> <i>Margarita Choulga</i><br class='autobr' /> 17. <a href="https://www.umr-cnrm.fr/surfex/data/LAKE2019/Day2-S3-ModelValApplication/Amadori_etal_LAKE2019.pptx" class='spip_out' rel='external'>Multi-scale validation of a 3D one-way coupled atmospheric and lake hydrodynamic model</a> <i>Marina Amadori</i><br class='autobr' /> 18. <a href="https://www.umr-cnrm.fr/surfex/data/LAKE2019/Day2-S3-ModelValApplication/Rontu_Lake19.pdf" class='spip_out' rel='external'>Snow and ice in wintertime FLake within the FMI operational HIRLAM</a> <i>Laura Rontu</i><br class='autobr' /> 19. <a href="https://www.umr-cnrm.fr/surfex/data/LAKE2019/Day2-S3-ModelValApplication/Mammarella_Toulouse_2019.pptx" class='spip_out' rel='external'>Some features of wintertime surface energy balance in a small dimictic lake in Finland: implications to carbon cycle related processes</a> <i>Ivan Mammarella</i></p> <p><strong>Reservoirs</strong><br class='autobr' /> 20. <a href="https://www.umr-cnrm.fr/surfex/data/LAKE2019/Day3-S4-Reservoirs/miakunin_presentation_LAKE2019.pdf" class='spip_out' rel='external'>LAKE2.0 and FLake simulation results of the Alqueva artificial reservoir dynamics.</a> <i>Maxim Iakunin</i><br class='autobr' /> 21. <a href="https://www.umr-cnrm.fr/surfex/data/LAKE2019/Day3-S4-Reservoirs/marti_martLake2019_CMarti.pptx" class='spip_out' rel='external'>Effects of reservoir operations on aquatic habitat in a montane reservoir</a> <i>Clelia Luisa Marti</i><br class='autobr' /> 22. <a href="https://www.umr-cnrm.fr/surfex/data/LAKE2019/Day3-S4-Reservoirs/vanderkelen_2019-10-24_LAKES19_presentation2.pptx" class='spip_out' rel='external'>Implementing reservoirs in CTSM: accounting for reservoir construction in the 20th century.</a> <i>Inne Vanderkelen</i><br class='autobr' /> 23. <a href="https://www.umr-cnrm.fr/surfex/data/LAKE2019/Day3-S4-Reservoirs/potes_MPotes_LAKE2019.pptx" class='spip_out' rel='external'>Effect of Autumn reservoir overturn on turbulent fluxes over Alqueva</a> <i>Miguel Potes</i><br class='autobr' /> 24. <a href="https://www.umr-cnrm.fr/surfex/data/LAKE2019/Day3-S4-Reservoirs/CIllero_Toulouse.pptx" class='spip_out' rel='external'>Parameterization of empirical models for chl-a retrieval in reservoirs with two different sources of data applying different atmospheric corrections. (I) Calibration.</a> <i>Carmen Cillero Castro</i></p> <p><strong>Data Assimilation</strong><br class='autobr' /> 25. <a href="https://www.umr-cnrm.fr/surfex/data/LAKE2019/Day3-S5-DataAssimilation/Benjamin-lake-model-HRRR-FINAL.pptx" class='spip_out' rel='external'>Cycled data assimilation for lakes via atmosphere-surface exchange to initialize lake conditions in US weather models</a> <i>Stan Benjamin</i><br class='autobr' /> 26. <a href="https://www.umr-cnrm.fr/surfex/data/LAKE2019/Day3-S5-DataAssimilation/Bouffard_Toulouse2019_public.pptx" class='spip_out' rel='external'>Meteolakes.ch, an operational 3D hydrodynamic platform for lakes</a> <i>Damien Bouffard</i></p> <p><strong>Remote Sensing</strong><br class='autobr' /> 26. <a href="https://www.umr-cnrm.fr/surfex/data/LAKE2019/Day3-S6-RemoteSensing/Simis_et_al_LakesCCI_update_20191024.pptx" class='spip_out' rel='external'>Delivering the Lake Essential Climate Variables - an update from ESA lakes CCI</a> <i>Stefan Simis</i><br class='autobr' /> 27. <a href="https://www.umr-cnrm.fr/surfex/data/LAKE2019/Day3-S6-RemoteSensing/Tyler_GloboLakes_TOULOUSE_vs1.pptx" class='spip_out' rel='external'>A global observatory of inland waters responses to environmental change (GloboLakes)</a> <i>Andrew Tyler</i><br class='autobr' /> 28. <a href="https://www.umr-cnrm.fr/surfex/data/LAKE2019/Day3-S6-RemoteSensing/Duguay_LakeWorkshop_20191024.pptx" class='spip_out' rel='external'>Evolution of satellite-derived lake ice products for climate studies</a> <i>Claude Duguay</i><br class='autobr' /> 29. <a href="https://www.umr-cnrm.fr/surfex/data/LAKE2019/Day3-S6-RemoteSensing/KheyrollahPour_Lake2019_Toulouse.pdf" class='spip_out' rel='external'>Effects of Winter Conditions on Water Quality of Lakes-Using Remote Sensing and Machine Learning</a> <i>Homa Kheyrollah Pour</i><br class='autobr' /> 30. <a href="https://www.umr-cnrm.fr/surfex/data/LAKE2019/Day3-S6-RemoteSensing/Bresciani_etal_Tolouse.pptx" class='spip_out' rel='external'>Assessment of the influence of climate change on the trophic status of Italian subalpine lakes using time series of chlorophyll-a derived from satellite products</a> <i>Mariano Bresciani</i><br class='autobr' /> 31. <a href="https://www.umr-cnrm.fr/surfex/data/LAKE2019/Day3-S6-RemoteSensing/Ogashawara_Toulouse_Workshop.pptx" class='spip_out' rel='external'>Bio-optical modeling of lakes in cascade in Germany – preliminary results</a> <i>Igor Ogashawara</i></p></div> 6.8.8. NAM_TRIP_PREP http://www.umr-cnrm.fr/surfex/spip.php?article448 http://www.umr-cnrm.fr/surfex/spip.php?article448 2019-06-25T18:23:34Z text/html en Minvielle <p>Fortran name Fortran type values default value XTAUG_UNIF real 30.0 XTAUG_UP real 5.0 XTAUG_DOWN real 30.0 LGWEQ logical .FALSE. LREAD_FLOOD logical .FALSE. XTAUG_UNIF : Constant transfert time value (for CGROUNDW='CST' in NAM_TRIP) XTAUG_UP : Upstream transfert time value ( for Groundwater diffusive scheme) XTAUG_DOWN : Downstream transfert time value ( for Groundwater diffusive scheme) LGWEQ : Comput equilibrium water (...)</p> - <a href="http://www.umr-cnrm.fr/surfex/spip.php?rubrique109" rel="directory">6.8. Coupling with TRIP model</a> <div class='rss_texte'></br> <div align='center'> <TABLE CELLPADDING=3 BORDER="1"> <TR><TD ALIGN="LEFT"><FONT SIZE="-1"> Fortran name </FONT></TD> <TD ALIGN="LEFT"><FONT SIZE="-1"> Fortran type </FONT></TD> <TD ALIGN="LEFT"><FONT SIZE="-1"> values </FONT></TD> <TD ALIGN="LEFT"><FONT SIZE="-1"> default value </FONT></TD> </TR> <TR><TD ALIGN="LEFT"><FONT SIZE="-1"> XTAUG_UNIF </FONT></TD> <TD ALIGN="LEFT"><FONT SIZE="-1"> real </FONT></TD> <TD ALIGN="LEFT"><FONT SIZE="-1"> </FONT></TD> <TD ALIGN="LEFT"><FONT SIZE="-1"> 30.0 </FONT></TD> </TR> <TR><TD ALIGN="LEFT"><FONT SIZE="-1"> XTAUG_UP </FONT></TD> <TD ALIGN="LEFT"><FONT SIZE="-1"> real </FONT></TD> <TD ALIGN="LEFT"><FONT SIZE="-1"> </FONT></TD> <TD ALIGN="LEFT"><FONT SIZE="-1"> 5.0 </FONT></TD> </TR> <TR><TD ALIGN="LEFT"><FONT SIZE="-1"> XTAUG_DOWN </FONT></TD> <TD ALIGN="LEFT"><FONT SIZE="-1"> real </FONT></TD> <TD ALIGN="LEFT"><FONT SIZE="-1"> </FONT></TD> <TD ALIGN="LEFT"><FONT SIZE="-1"> 30.0 </FONT></TD> </TR> <TR><TD ALIGN="LEFT"><FONT SIZE="-1"> LGWEQ </FONT></TD> <TD ALIGN="LEFT"><FONT SIZE="-1"> logical </FONT></TD> <TD ALIGN="LEFT"><FONT SIZE="-1"> </FONT></TD> <TD ALIGN="LEFT"><FONT SIZE="-1"> .FALSE. </FONT></TD> </TR> <TR><TD ALIGN="LEFT"><FONT SIZE="-1"> LREAD_FLOOD </FONT></TD> <TD ALIGN="LEFT"><FONT SIZE="-1"> logical </FONT></TD> <TD ALIGN="LEFT"><FONT SIZE="-1"> </FONT></TD> <TD ALIGN="LEFT"><FONT SIZE="-1"> .FALSE. </FONT></TD> </TR> </TABLE> <br/></div><ul class="spip"><li> XTAUG_UNIF : Constant transfert time value (for CGROUNDW='CST' in NAM_TRIP)</li><li> XTAUG_UP : Upstream transfert time value ( for Groundwater diffusive scheme)</li><li> XTAUG_DOWN : Downstream transfert time value ( for Groundwater diffusive scheme)</li><li> LGWEQ : Comput equilibrium water table depth</li><li> LREAD_FLOOD : Read restart flood</li></ul></div> SUW2019 http://www.umr-cnrm.fr/surfex/spip.php?article441 http://www.umr-cnrm.fr/surfex/spip.php?article441 2019-03-26T11:34:03Z text/html en Patrick LE MOIGNE <p>SURFEX Users Workshop : <br class='autobr' /> The second SURFEX Users Workshop organized by Meteo-France took place in Toulouse, France, at the Meteopole Centre International de Conferences (CIC) from Monday 18th March 2019 9pm to Tuesday 19th March 1pm. <br class='autobr' /> The main objective of the SUW2019 workshop was to give the users the opportunity to present their activities related to SURFEX, and to facilitate communication and set up the groundwork for future collaborative efforts. <br class='autobr' /> Presentations: 1. Progress and plans (...)</p> - <a href="http://www.umr-cnrm.fr/surfex/spip.php?rubrique158" rel="directory">SURFEX Users Workshops</a> <div class='rss_texte'><p><strong>SURFEX Users Workshop :</strong></p> <p>The second SURFEX Users Workshop organized by Meteo-France took place in Toulouse, France, at the Meteopole Centre International de Conferences (CIC) from Monday 18th March 2019 9pm to Tuesday 19th March 1pm.</p> <p>The main objective of the SUW2019 workshop was to give the users the opportunity to present their activities related to SURFEX, and to facilitate communication and set up the groundwork for future collaborative efforts.</p> <p>Presentations:<br class='autobr' /> 1. <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/patrick_s_toulouse_190318.pdf' class='spip_in' type='application/pdf'>Progress and plans with SURFEX physics (DIF, 3-L, MEB) and data assimilation (EKF) for NWP in HIRLAM</a>. Patrick Samuelsson<br class='autobr' /> 2. <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/surface_assimilation_in_harmonie.pdf' class='spip_in' type='application/pdf'>Offline SURFEX Data Assimilation in the NWP model HARMONIE-AROME</a>. Trygve Aspelien<br class='autobr' /> 3. <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/birman_suw2019.pdf' class='spip_in' type='application/pdf'>Snow analysis for NWP at Meteo France and recent developments for land surface analysis</a>. Camille Birman<br class='autobr' /> 4. <a href='http://www.umr-cnrm.fr/surfex/data/Albergel_Global_032019.pdf'>Monitoring and Forecasting the Impact of the 2018 Summer Heatwave on Vegetation</a>. Clement Albergel<br class='autobr' /> 5. <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/20190318_suw_crocus.pdf' class='spip_in' type='application/pdf'>Last scientific evolutions in the Crocus snowpack model</a>. Matthieu Lafaysse<br class='autobr' /> 6. <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/suw2019_presentationarso.pdf' class='spip_in' type='application/pdf'>Snowpack modelling using the Crocus snowpack model at the Slovenian Environment Agency (ARSO)</a>. Matjaz Licar<br class='autobr' /> 7. <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/batrak_sice_suw_2019.pdf' class='spip_in' type='application/pdf'>SICE in SURFEX 8.1: details of implementation and recent developments</a>. Yurii Batrak<br class='autobr' /> 8. <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/arome_gelato_na.pdf' class='spip_in' type='application/pdf'>Impact of the GELATO 1D scheme in the AROME model over the Barents Sea</a>. Niramson Azouz<br class='autobr' /> 9. <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/surfex_wksp19_small.pdf' class='spip_in' type='application/pdf'>Improvements in the carbon cycle between the CMIP5 and CMIP6 versions of ISBA</a>. Christine Delire<br class='autobr' /> 10. <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/martin18.pdf' class='spip_in' type='application/pdf'>Big-root approximation of site-scale vegetation water uptake</a>. Martin Bouda<br class='autobr' /> 11. <a href='http://www.umr-cnrm.fr/surfex/data/20190318_SUW_Masson_v1.pdf'>New Fine-scale Urban Data and their application</a>. Valery Masson<br class='autobr' /> 12 <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/suw2019_bulgarie.pdf' class='spip_in' type='application/pdf'>Uses of SURFEX in NIMH, Bulgaria</a>. Eram Artinyan<br class='autobr' /> 13 <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/workshop_surfex_2019_fbesson.pdf' class='spip_in' type='application/pdf'>Hydrological forecast systems using SURFEX</a>. Francois Besson<br class='autobr' /> 14 <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/leroux_aquifr_seasonalforecasts.pdf' class='spip_in' type='application/pdf'>Groundwater seasonal forecast using the French Aqui-FR platform</a>. Delphine Leroux<br class='autobr' /> 15 <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/isba_ctrip_global.pdf' class='spip_in' type='application/pdf'>Recent changes in the ISBA-CTRIP land surface system for use in the CNRM-CM6 climate model and in global off-line hydrological applications</a>. Bertrand Decharme<br class='autobr' /> 16 <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/20190319_munier_suw_ctrip12d.pdf' class='spip_in' type='application/pdf'>Increasing the spatial resolution of the CTRIP routing model: hydrological impacts over France</a>. Simon Munier<br class='autobr' /> 17 <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/hamdi_suw2019.pdf' class='spip_in' type='application/pdf'>Numerical study of the interaction between oasis and urban areas within an arid mountains-desert system in Xinjiang, China using ALARO-SURFEX</a>. Rafiq Hamdi<br class='autobr' /> 18 <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/2019-03-19-workshop_surfex_druelarsene.pdf' class='spip_in' type='application/pdf'>The irrigation with ECOCLIMAP Second Generation in SURFEX</a>. Arsene Druel<br class='autobr' /> 19 <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/7metmed.pdf' class='spip_in' type='application/pdf'>Impact of irrigation in the Ebro basin using Meso-NH mesoscale model</a>. Patrick Le Moigne</p></div> C3S User Workshop on Regional Reanalysis http://www.umr-cnrm.fr/surfex/spip.php?article440 http://www.umr-cnrm.fr/surfex/spip.php?article440 2018-11-29T14:29:00Z text/html en Patrick LE MOIGNE <p>Content <br class='autobr' /> User workshop devoted to regional reanalysis in the Copernicus Climate Change Service framework. Presentation of the C3S service and user feedback. <br class='autobr' /> Presentations <br class='autobr' /> 1. Introduction to the service, Semjon Schimanke - SMHI <br class='autobr' /> 2. Principles of reanalysis, Per Unden - SMHI <br class='autobr' /> 3. Availability of UERRA-HARMONIE data, Semjon Schimanke - SMHI <br class='autobr' /> 4. Availability of SURFEX-MESCAN data, Patrick Le Moigne - MF <br class='autobr' /> 5. Data access, Ludvig Isaksson - SMHI <br class='autobr' /> 6. Regional reanalyses applications at Meteo-France and (...)</p> - <a href="http://www.umr-cnrm.fr/surfex/spip.php?rubrique161" rel="directory">Seminars</a> <div class='rss_texte'><p><strong>Content</strong></p> <p>User workshop devoted to regional reanalysis in the Copernicus Climate Change Service framework. Presentation of the C3S service and user feedback.</p> <p><strong>Presentations</strong></p> <p>1. <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/user_workshop_intro_to_service.pdf' class='spip_in' type='application/pdf'>Introduction to the service, Semjon Schimanke - SMHI</a><br class='autobr' /> 2. <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/principles_ra_unden_sh.pdf' class='spip_in' type='application/pdf'>Principles of reanalysis, Per Unden - SMHI</a><br class='autobr' /> 3. <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/user_workshop_available_data_harmonie.pdf' class='spip_in' type='application/pdf'>Availability of UERRA-HARMONIE data, Semjon Schimanke - SMHI</a><br class='autobr' /> 4. <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/uw_surfex_mescan.pdf' class='spip_in' type='application/pdf'>Availability of SURFEX-MESCAN data, Patrick Le Moigne - MF</a><br class='autobr' /> 5. <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/ws_data_access-2.pdf' class='spip_in' type='application/pdf'>Data access, Ludvig Isaksson - SMHI</a><br class='autobr' /> 6. <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/mf_c3srra_20181120_v2.pdf' class='spip_in' type='application/pdf'>Regional reanalyses applications at Meteo-France and further needs, Matthieu Sorel - MF</a><br class='autobr' /> 7. <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/20180416_c3s_european_tourism_mountain_reanalysis_workshop.pdf' class='spip_in' type='application/pdf'>TheMountain component of the C3S-SIS European Tourism: towards pan-European analysis and projections of natural and managed snow conditions, Marc Pons - Snow and Mountain Research Center of Andorra</a><br class='autobr' /> 8. <a href='http://www.umr-cnrm.fr/surfex/data/ERA5_CDS.pdf'>ERA5global reanalysis, and introduction to the CDS, Cornel Soci - ECMWF</a><br class='autobr' /> 9. <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/uerra_eval_fkaspar_20181120-2.pdf' class='spip_in' type='application/pdf'>Intercomparison of European regional reanalyses, Frank Kaspar - DWD</a><br class='autobr' /> 10. <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/workshop_reg_reanalysis_seasonal_forecast.pdf' class='spip_in' type='application/pdf'>Use of UERRA reanalysis for seasonal hydrological forecasts, Francois Besson - MF</a></p></div> IRSTEA working day - Wednesday 24th October 2018 http://www.umr-cnrm.fr/surfex/spip.php?article439 http://www.umr-cnrm.fr/surfex/spip.php?article439 2018-10-24T15:11:15Z text/html en Patrick LE MOIGNE <p>Content <br class='autobr' /> This working day was devoted to scientific exchanges between IRSTEA Lyon and Meteo-France (CNRM, DCSC and DSM). For that purpose, Jean-Philippe Vidal, Alexandre Devers (PhD) and Claire Lauvernet visited CNRM to discuss reanalysis and data assimilation for hyfrological purposes. For this occasion several talks were given and used as supports for discussions. <br class='autobr' /> Presentations <br class='autobr' /> 1. Assimilation de donnees pour reanalyse hydrometeorologique depuis 1870, Alexandre Devers (IRSTEA) <br class='autobr' /> 2. (...)</p> - <a href="http://www.umr-cnrm.fr/surfex/spip.php?rubrique161" rel="directory">Seminars</a> <div class='rss_texte'><p><strong>Content</strong></p> <p>This working day was devoted to scientific exchanges between IRSTEA Lyon and Meteo-France (CNRM, DCSC and DSM). For that purpose, Jean-Philippe Vidal, Alexandre Devers (PhD) and Claire Lauvernet visited CNRM to discuss reanalysis and data assimilation for hyfrological purposes. For this occasion several talks were given and used as supports for discussions.</p> <p><strong>Presentations</strong></p> <p>1. <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/mf_24_10_2018.pdf' class='spip_in' type='application/pdf'>Assimilation de donnees pour reanalyse hydrometeorologique depuis 1870, Alexandre Devers (IRSTEA)</a><br class='autobr' /> 2. <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/mf_sim_dcsc.pdf' class='spip_in' type='application/pdf'>Reanalyses operationnelles SIM depuis 1958, Francois Besson (DCSC)</a><br class='autobr' /> 3. <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/20181024_munier_aquifr.pdf' class='spip_in' type='application/pdf'>Systeme Aqui-FR, Simon Munier et Delphine Leroux (CNRM)</a><br class='autobr' /> 4. <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/albergel_ldasmonde_inbulk_2018.pdf' class='spip_in' type='application/pdf'>Systeme d'assimilation LDAS, Clement Albergel (CNRM)</a><br class='autobr' /> 5. <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/reunion_irstea_mescan_24102018.pdf' class='spip_in' type='application/pdf'>Systeme d'analyse MESCAN et application a la montagne, Antoine Verrelle et Eric Bazile (CNRM)</a><br class='autobr' /> 6. <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/reunion_irstea_uerra_24102018.pdf' class='spip_in' type='application/pdf'>Reanalyse UERRA, C3S et hydrologie, Eric Bazile-</a> et <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/2018_le_moigne_ems_budapest2.pdf' class='spip_in' type='application/pdf'>Patrick Le Moigne (CNRM)</a><br class='autobr' /> 7. <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/reusemsim.pdf' class='spip_in' type='application/pdf'>Nouveau systeme de reanalyses meteorologiques a haute resolution, Stephane Van Hyfte (CNRM)</a><br class='autobr' /> 8. <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/dsm_scenarios_cc_surfex-trip.pdf' class='spip_in' type='application/pdf'>Utilisation de SURFEX-CTRIP pour le projet RTE, Ludovic Bouilloud (DSM)</a><br class='autobr' /> 9. <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/mf_medscope_dcsc.pdf' class='spip_in' type='application/pdf'>Utilisation de SURFEX-CTRIP pour le projet MEDSCOPE, Francois Besson (DCSC)</a></p></div> 1.4. How to install and run Surfex in parallel mode on Ubuntu http://www.umr-cnrm.fr/surfex/spip.php?article438 http://www.umr-cnrm.fr/surfex/spip.php?article438 2018-09-05T11:43:16Z text/html en Minvielle - <a href="http://www.umr-cnrm.fr/surfex/spip.php?rubrique17" rel="directory">1. How to install the software</a> <div class='rss_texte'><div class='spip_document_417 spip_document spip_documents spip_document_file spip_documents_center spip_document_center spip_document_avec_legende' data-legende-len="70" data-legende-lenx="xx" > <figure class="spip_doc_inner"> <a href='http://www.umr-cnrm.fr/surfex/IMG/pdf/howtoinstallandrunsurfexinparallelmodeonubuntu.pdf' class=" spip_doc_lien" title='PDF - 4.3 kb' type="application/pdf"><img src='http://www.umr-cnrm.fr/surfex/local/cache-vignettes/L64xH64/pdf-b8aed.svg?1688018373' width='64' height='64' alt='' /></a> <figcaption class='spip_doc_legende'> <div class='spip_doc_titre '><strong>How to install and run surfex in parallel mode on ubuntu (G. Pigeon) </strong></div> </figcaption></figure> </div></div>