LIBRARY ARCHITECTURE IN ARPEGE/ALADIN (CY36T2).

K. YESSAD
METEO-FRANCE/CNRM/GMAP/ALGO
One code, but several models shared between different European (and also some non-European countries):

- **ARPEGE**: spectral global model for METEO-FRANCE applications.
- **IFS**: spectral global model for ECMWF applications.
- **ALADIN**: spectral limited area model (mesh-size often between 5 km and 10 km).
- **ALARO**: cf. ALADIN but for some ALADIN partners, (mesh-size around 5-7 km).
- **AROME**: non-hydrostatic spectral limited area model for METEO-FRANCE applications (mesh-size 2.5 km); in operations since 2008.
- Around 13000 routines spread among sub-projects.
One code, but several models shared between different European (and also some non-European countries):

- **ARPEGE**: spectral global model for METEO-FRANCE applications.
- **IFS**: spectral global model for ECMWF applications.
- **ALADIN**: spectral limited area model (mesh-size often between 5 km and 10 km).
- **ALARO**: cf. ALADIN but for some ALADIN partners, (mesh-size around 5-7 km).
- **AROME**: non-hydrostatic spectral limited area model for METEO-FRANCE applications (mesh-size 2.5 km); in operations since 2008.

- Around 13000 routines spread among sub-projects.
One code, but several models shared between different European (and also some non-European countries):

- **ARPEGE**: spectral global model for METEO-FRANCE applications.
- **IFS**: spectral global model for ECMWF applications.
- **ALADIN**: spectral limited area model (mesh-size often between 5 km and 10 km).
- **ALARO**: cf. ALADIN but for some ALADIN partners, (mesh-size around 5-7 km).
- **AROME**: non-hydrostatic spectral limited area model for METEO-FRANCE applications (mesh-size 2.5 km); in operations since 2008.
- Around 13000 routines spread among sub-projects.
ENTERING THE ARPEGE LIBRARY.

On “merou”, under CLEARCASE: cc_getview -u public -r CY36T2
Available views ... : select arp_public_CY36T2_bf
Root: merou:/home/marp001/dev: several directories (ald, arp, ...) containing the “projects”.

K. YESSAD (METEO-FRANCE/CNRM/GM).LIBRARY ARCHITECTURE IN ARPEGE/AL
17 août 2010 3 / 24
ENTERING THE ARPEGE LIBRARY.

- On “merou”, under CLEARCASE: `cc_getview -u public -r CY36T2`
- Available views ... : select `arp_public_CY36T2_bf`
- Root: `merou:/home/marp001/dev`: several directories (ald, arp, ...) containing the “projects”.

K. YESSAD (METEO-FRANCE/CNRM/GM.LIBRARY ARCHITECTURE IN ARPEGE/AL)

17 août 2010
ENTERING THE ARPEGE LIBRARY.

- On “merou”, under CLEARCASE: `cc_getview -u public -r CY36T2`
- Available views ...: select `arp_public_CY36T2_bf`
- Root: `merou /home/marp001/dev`: several directories (ald, arp, ...) containing the “projects”.
ENTERING THE ARPEGE LIBRARY.

- On “merou”, under CLEARCASE: `cc_getview -u public -r CY36T2`
- Available views ... : select `arp_public_CY36T2_bf`
- Root: `merou:/home/marp001/dev`: several directories (ald, arp, ...) containing the “projects”.
AVAILABLE PROJECTS.

- **ARP**: ARPEGE or common ARPEGE-ALADIN routines.
- **ALD**: specific LAM routines (LAM, not used at ECMWF).
- **TFL**: spectral transforms for spherical geometry.
- **TAL**: spectral transforms for plane geometry.
- **XRD**: some application routines (IO on files, DM environment).
- **XLA**: linear algebra, minimizers other than CONGRAD.
- **SUR**: ECMWF surface scheme.
- **BIP**: Bi-periodicisation package (LAM models).
- **MPA**: upper air MESO-NH/AROME physics (now also used in ARPEGE and ALADIN).
- **MSE**: surface processes in MESO-NH/AROME (interface for SURFEX).
- **SURFEX**: surface processes in MESO-NH/AROME.
AVAILABLE PROJECTS.

Used in forecasts:

- ARP: ARPEGE or common ARPEGE-ALADIN routines.
- ALD: specific LAM routines (LAM, not used at ECMWF).
- TFL: spectral transforms for spherical geometry.
- TAL: spectral transforms for plane geometry.
- XRD: some application routines (IO on files, DM environment).
- XLA: linear algebra, minimizers other than CONGRAD.
- SUR: ECMWF surface scheme.
- BIP: Bi-periodicisation package (LAM models).
- MPA: upper air MESO-NH/AROME physics (now also used in ARPEGE and ALADIN).
- MSE: surface processes in MESO-NH/AROME (interface for SURFEX).
- SURFEX: surface processes in MESO-NH/AROME.
AVAILABLE PROJECTS (CONT’D).

Used in assimilation:
- AEO: package for pre-processing satellite lidar wind data.
- BLA: package for blacklisting.
- OBT: statistics of observation feedback data (only used at ECMWF).
- ODB: ODB (Observational DataBase software).
- SAT: satellite data handling package.
- SCT: QUICKSCAT scatteromètre handling.

Miscellaneous utilities:
- UTI: utilitary package, containing for ex. PROGRID (not used at ECMWF).
- SCR: scripts used at ECMWF.
AVAILABLE PROJECTS (CONT’D).

Used in assimilation:
- **AEO**: package for pre-processing satellite lidar wind data.
- **BLA**: package for blacklisting.
- **OBT**: statistics of observation feedback data (only used at ECMWF).
- **ODB**: ODB (Observational DataBase software).
- **SAT**: satellite data handling package.
- **SCT**: QUICKSCAT scatterometre handling.

Miscellaneous utilitaries:
- **UTI**: utilitary package, containing for ex. PROGRID (not used at ECMWF).
- **SCR**: scripts used at ECMWF.
AVAILABLE PROJECTS (CONT’D).

Used in assimilation:

- **AEO**: package for pre-processing satellite lidar wind data.
- **BLA**: package for blacklisting.
- **OBT**: statistics of observation feedback data (only used at ECMWF).
- **ODB**: ODB (Observational DataBase software).
- **SAT**: satellite data handling package.
- **SCT**: QUICKSCAT scatterometre handling.

Miscellaneous utilities:

- **UTI**: utilitary package, containing for ex. PROGRID (not used at ECMWF).
- **SCR**: scripts used at ECMWF.
ARPEGE or common ARPEGE-ALADIN routines.

A subset of these directories are also in ALD.

- adiab: adiabatic dynamics, adiabatic diagnostics, SI scheme, horizontal diffusion.
- c9xx: specific configurations 901 to 999 routines.
- canari: routines used in the CANARI optimal interpolation.
- climate: some specific ARPEGE-CLIMAT routines.
- control: control routines, like CNT4 or STEPO.
- dfi: routines used in the DFI.
- dia: diagnostics other than FULL-POS.
- fullpos: FULL-POS software.
- function: functions (in includes).
- kalman: Kalman filter.
- module: all the types of modules.
ARPEGE or common ARPEGE-ALADIN routines.

A subset of these directories are also in ALD.

- adiab: adiabatic dynamics, adiabatic diagnostics, SI scheme, horizontal diffusion.
- c9xx: specific configurations 901 to 999 routines.
- canari: routines used in the CANARI optimal interpolation.
- climate: some specific ARPEGE-CLIMAT routines.
- control: control routines, like CNT4 or STEPO.
- dfi: routines used in the DFI.
- dia: diagnostics other than FULL-POS.
- fullpos: FULL-POS software.
- function: functions (in includes).
- kalman: Kalman filter.
- module: all the types of modules.
A subset of these directories are also in ALD.

- **mwave**: micro-wave observations (SSM/I) treatment.
- **namelist**: all namelists.
- **nmi**: routines used in the NMI.
- **obs_error**: treatment of the observation errors in the assim.
- **obs_preproc**: observation pre-processing.
- **ocean**: oceanic coupling, for climatic applications.
- **onedvar**: 1D-VAR assimilation scheme used at ECMWF.
- **op_obs**: observation horizontal and vertical interpolator.
- **parallel**: parallel environment, communications between processors.
- **phys_dmn**: physics parameterizations used at METEO-FRANCE.
- **phys_ec**: ECMWF physics.
- **phys_radi**: some ECMWF radiation physics routines.
A subset of these directories are also in ALD.

- **mwave**: micro-wave observations (SSM/I) treatment.
- **namelist**: all namelists.
- **nmi**: routines used in the NMI.
- **obs_error**: treatment of the observation errors in the assim.
- **obs_preproc**: observation pre-processing.
- **ocean**: oceanic coupling, for climatic applications.
- **onedvar**: 1D-VAR assimilation scheme used at ECMWF.
- **op_obs**: observation horizontal and vertical interpolator.
- **parallel**: parallel environment, communications between processors.
- **phys_dmn**: physics parameterizations used at METEO-FRANCE.
- **phys_ec**: ECMWF physics.
- **phys_radi**: some ECMWF radiation physics routines.
A subset of these directories are also in ALD.

- pp_obs: vertical interpolator (FULL-POS, obs interpolator).
- prism: OASIS coupler (for climate applications).
- programs: main programs.
- sekf: simplified extended Kalman filter.
- setup: setup routines not linked with a very specific domain.
- sinvect: singular vectors calculation (configuration 601).
- transform: hat routines for spectral transforms.
- utility: miscellaneous utilities (lin. algebra, dealloc).
- var: routines involved in the 3DVAR and 4DVAR assimilation.
A subset of these directories are also in ALD.

- **pp_obs**: vertical interpolator (FULL-POS, obs interpolator).
- **prism**: OASIS coupler (for climate applications).
- **programs**: main programs.
- **sekf**: simplified extended Kalman filter.
- **setup**: setup routines not linked with a very specific domain.
- **sinvect**: singular vectors calculation (configuration 601).
- **transform**: hat routines for spectral transforms.
- **utility**: miscellaneous utilities (lin. algebra, dealloc).
- **var**: routines involved in the 3DVAR and 4DVAR assimilation.
Spectral transforms.

- build (in TFL): contains procedures.
- external: routines which can be called from another project.
- interface: not automatically generated interfaces.
- module: all the types of modules.
- programs: specific entries which can be used for TFL/TAL code validation.
Spectral transforms.

- build (in TFL): contains procedures.
- external: routines which can be called from another project.
- interface: not automatically generated interfaces.
- module: all the types of modules.
- programs: specific entries which can be used for TFL/TAL code validation.
Linear algebra.

- **external**: routines which can be called from another project.
- **interface**: not automatically generated interfaces.
- **external**: routines which can be called only by another XLA routine.
- **module**: all the types of modules.
- **inside the previous directories we find**:
 - **fourier**: Fourier transforms routines.
 - **lanczos**: Lanczos algorithms routines.
 - **linalg**: linear algebra routines.
 - **minim**: minimizers.
Linear algebra.

- **external**: routines which can be called from another project.
- **interface**: not automatically generated interfaces.
- **external**: routines which can be called only by another XLA routine.
- **module**: all the types of modules.

Inside the previous directories we find:
- **fourier**: Fourier transforms routines.
- **lanczos**: Lanczos algorithm routines.
- **linalg**: linear algebra routines.
- **minim**: minimizers.
Linear algebra.

- **external**: routines which can be called from another project.
- **interface**: not automatically generated interfaces.
- **external**: routines which can be called only by another XLA routine.
- **module**: all the types of modules.
- **inside the previous directories we find:**
 - **fourier**: Fourier transforms routines.
 - **lanczos**: Lanczos algorithm routines.
 - **linalg**: linear algebra routines.
 - **minim**: minimizers.
Auxiliary library.

- **bufr_io**: BUFR format files reading and writing.
- **cma**: CMA format files reading and writing.
- **ddh**: DDH diagnostics.
- **eclite**: routines coming from an old ECLIB package.
- **fa**: ARPEGE (FA) files reading and writing.
- **grib_io**: ECMWF GRIB format files reading and writing.
- **grib_mf**: METEO-FRANCE GRIB format files reading and writing.
- **include**: not automatically generated interfaces.
- **lfi**: LFI format files reading and writing.
- **misc**: miscellaneous decks.
- **module**: all the types of modules; mpl...F90 modules for parallel environment.
- **parallel**: parallel environment.
- **programs**: main programs.
- **support**: miscellaneous routines.
- **svipc**: contains only svipc.c.
- **utilities**: miscellaneous utilitaries.
PROJECT XRD/IFSAUX.

Auxiliary library.

- `bufr_io`: BUFR format files reading and writing.
- `cma`: CMA format files reading and writing.
- `ddh`: DDH diagnostics.
- `eclite`: routines coming from an old ECLIB package.
- `fa`: ARPEGE (FA) files reading and writing.
- `grib_io`: ECMWF GRIB format files reading and writing.
- `grib_mf`: METEO-FRANCE GRIB format files reading and writing.
- `include`: not automatically generated interfaces.
- `lfii`: LFI format files reading and writing.
- `misc`: miscellaneous decks.
- `module`: all the types of modules; mpl...F90 modules for parallel environment.
- `parallel`: parallel environment.
- `programs`: main programs.
- `support`: miscellaneous routines.
- `svipc`: contains only svipc.c.
- `utilities`: miscellaneous utilitaries.
PROJECT BIP.

Bi-periodicisation software.

- build: contains procedures.
- external: routines which can be called from another project.
- interface: not automatically generated interfaces.
- module: all the types of modules.
- programs: main programs.
Bi-periodicisation software.

- build: contains procedures.
- external: routines which can be called from another project.
- interface: not automatically generated interfaces.
- module: all the types of modules.
- programs: main programs.
ECMWF surface scheme.

- **build**: contains procedures.
- **external**: routines which can be called from another project.
- **function**: specific functions.
- **interface**: not automatically generated interfaces.
- **module**: all the types of modules.
- **offline**: specific entries which can be used for SUR code validation.
ECMWF surface scheme.

- **build**: contains procedures.
- **external**: routines which can be called from another project.
- **function**: specific functions.
- **interface**: not automatically generated interfaces.
- **module**: all the types of modules.
- **offline**: specific entries which can be used for SUR code validation.
Upper air MESO-NH/AROME physics.

Code imported from MESO-NH (MESO-NH DOCTOR norm).

- programs: main programs.
- first layer of directories: chem (chemistry), conv (convection), micro (microphysics), turb (turbulence).
- externals: routines which can be called from another project.
- include: all the “include” decks.
- interface: not automatically generated interfaces.
- internals: other non-module routines.
- module: all the types of modules.
Upper air MESO-NH/AROME physics.

Code imported from MESO-NH (MESO-NH DOCTOR norm).

- programs : main programs.
- first layer of directories : chem (chemistry), conv (convection), micro (microphysics), turb (turbulence).
- externals : routines which can be called from another project.
- include : all the “include” decks.
- interface : not automatically generated interfaces.
- internals : other non-module routines.
- module : all the types of modules.
Surface processes in MESO-NH/AROME (interface for SURFEX).

Code imported from MESO-NH (MESO-NH DOCTOR norm).

- externals: routines which can be called from another project.
- interface: not automatically generated interfaces.
- internals: other non-module routines.
- module: all the types of module.
- programs: main programs.
Surface processes in MESO-NH/AROME (interface for SURFEX).

Code imported from MESO-NH (MESO-NH DOCTOR norm).

- externals: routines which can be called from another project.
- interface: not automatically generated interfaces.
- internals: other non-module routines.
- module: all the types of module.
- programs: main programs.
PROJECT SURFEX.

Surface processes in MESO-NH/AROME.

Code imported from MESO-NH (MESO-NH DOCTOR norm).

- aux : auxiliary actions (mostly file I/O).
- canopy : surface boundary layer prognostic scheme.
- dummy : empty versions of some routines.
- flake : lake model.
- ideal : idealised configuration.
- include : all the “include” decks.
- isba : ISBA vegetation model.
- prep : initial surface file preparation.
- sea : ocean and sea model.
- surf_atm : coupling between surface and atmosphere.
- teb : town model.
- trip : rivers and floodings model.
- water : simple parameterisation of fluxes above lakes and rivers.
Surface processes in MESO-NH/AROME.

Code imported from MESO-NH (MESO-NH DOCTOR norm).

- aux : auxiliary actions (mostly file I/O).
- canopy : surface boundary layer prognostic scheme.
- dummy : empty versions of some routines.
- flake : lake model.
- ideal : idealised configuration.
- include : all the “include” decks.
- isba : ISBA vegetation model.
- prep : initial surface file preparation.
- sea : ocean and sea model.
- surf_atm : coupling between surface and atmosphere.
- teb : town model.
- trip : rivers and floodings model.
- water : simple parameterisation of fluxes above lakes and rivers.
Package for blacklisting.
- compiler.
- include: not automatically generated interfaces, functions, and some other includes.
- library: the only containing .F90 decks.
- old2new.
- scripts.
PROJECT BLA.

Package for blacklisting.

- compiler.
- include: not automatically generated interfaces, functions, and some other includes.
- library: the only containing .F90 decks.
- old2new.
- scripts.
Statistics of observation feedback data.

- bias_sat.
- data.
- doc.
- examples.
- module.
- satmon.
- src.
Statistics of observation feedback data.

- bias_sat.
- data.
- doc.
- examples.
- module.
- satmon.
- src.
Satellite data handling package.

- bias.
- emiss.
- interface.
- module.
- mwave.
- onedvar.
- pre_screen.
- programs : main programs.
- rtlimb.
- rttov.
- satim.
Satellite data handling package.

- bias.
- emiss.
- interface.
- module.
- mwave.
- onedvar.
- pre_screen.
- programs : main programs.
- rtlimb.
- rttov.
- satim.
Utilitary package.

- `add_cloud_fields` : program to add 4 cloud variables in ARPEGE files.
- `addozoaer` : program to add ozone and aerosols constants in ARPEGE files.
- `addsurf` : programs to add fields in ARPEGE files.
- `combi` : combination of perturbations in an ensemble forecast (PEARP).
- `ctpini` : routines for CTPINI applications (inversion of potential vorticity fields).
- `gobptout` : PROGRIB.
- `pinuts` : PINUTS applications, for example to create ALADIN domains.
- `pregpssol` : surface GPS processing.
- `progrid` : PROGRID.
- `progrid_cadre` : cf. progrid?
- `rdc` : former configuration 911 (makes dilatation/contraction matrices).
- `sst_nesdis` : program to read the SST on the BDAP.
Utilitary package.

- **add_cloud_fields**: program to add 4 cloud variables in ARPEGE files.
- **addozoaer**: program to add ozone and aerosols constants in ARPEGE files.
- **addsurf**: programs to add fields in ARPEGE files.
- **combi**: combination of perturbations in an ensemble forecast (PEARP).
- **ctpini**: routines for CTPINI applications (inversion of potential vorticity fields).
- **gobptout**: PROGRIB.
- **pinuts**: PINUTS applications, for example to create ALADIN domains.
- **pregpssol**: surface GPS processing.
- **progrid**: PROGRID.
- **progrid_cadre**: cf. progrid?
- **rdc**: former configuration 911 (makes dilatation/contraction matrices).
- **sst_nesdis**: program to read the SST on the BDAP.
We should be able to make executables with only the following subsets of projects (=> restrictions about the interdependencies):

- ARP+TFL+XRD+XLA+MPA+MSE+SURFEX : for ARPEGE forecasts with METEO-FRANCE physics.
- ARP+ALD+TFL+TAL+XRD+XLA+BIP+MPA+MSE+SURFEX : for ALADIN or AROME forecasts.
- ARP+TFL+XRD+XLA+SUR : for IFS forecasts with ECMWF physics.
- ARP+TFL+XRD+XLA+MPA+MSE+SURFEX+BLA+ODB+SAT : for ARPEGE assimilations with METEO-FRANCE physics.
- ARP+ALD+TFL+TAL+XRD+XLA+BIP+MPA+MSE+SURFEX +BLA+ODB+SAT : for ALADIN or AROME assimilations.
- ARP+TFL+XRD+XLA+SUR+BLA+ODB+SAT+OBT+SCR+AEO : for IFS assimilations with ECMWF physics.
We should be able to make executables with only the following subsets of projects (=> restrictions about the interdependencies):

- **ARP+TFL+XRD+XLA+MPA+MSE+SURFEX**: for ARPEGE forecasts with METEO-FRANCE physics.
- **ARP+ALD+TFL+TAL+XRD+XLA+BIP+MPA+MSE+SURFEX**: for ALADIN or AROME forecasts.
- **ARP+TFL+XRD+XLA+SUR**: for IFS forecasts with ECMWF physics.
- **ARP+TFL+XRD+XLA+MPA+MSE+SURFEX+BLA+ODB+SAT**: for ARPEGE assimilations with METEO-FRANCE physics.
- **ARP+ALD+TFL+TAL+XRD+XLA+BIP+MPA+MSE+SURFEX+BLA+ODB+SAT**: for ALADIN or AROME assimilations.
- **ARP+TFL+XRD+XLA+SUR+BLA+ODB+SAT+OBT+SCR+AEO**: for IFS assimilations with ECMWF physics.
We should be able to make executables with only the following subsets of projects (⇒ restrictions about the interdependencies):

- $\text{ARP+TFL+XRD+XLA+MPA+MSE+SURFEX}$: for ARPEGE forecasts with METEO-FRANCE physics.
- $\text{ARP+ALD+TFL+TAL+XRD+XLA+BIP+MPA+MSE+SURFEX}$: for ALADIN or AROME forecasts.
- $\text{ARP+TFL+XRD+XLA+SUR}$: for IFS forecasts with ECMWF physics.
- $\text{ARP+TFL+XRD+XLA+MPA+MSE+SURFEX+BLA+ODB+SAT}$: for ARPEGE assimilations with METEO-FRANCE physics.
- $\text{ARP+ALD+TFL+TAL+XRD+XLA+BIP+MPA+MSE+SURFEX+BLA+ODB+SAT}$: for ALADIN or AROME assimilations.
- $\text{ARP+TFL+XRD+XLA+SUR+BLA+ODB+SAT+OBT+SCR+AEO}$: for IFS assimilations with ECMWF physics.
ALLOWED/FORBIDDEN INTERDEPENDENCIES.

- Tricky to list extensively; mentioned in some documentation.
- There is a sort of hierarchy, saying that some projects can or cannot call routines of other projects, or saying that modules of other projects can or cannot be used.
- For example routines of project ARP should not directly call a TAL routine.
- For example routines of project TFL should not call a ARP routine or use a ARP module.
Tricky to list extensively; mentioned in some documentation.

There is a sort of hierarchy, saying that some projects can or cannot call routines of other projects, or saying that modules of other projects can or cannot be used.

For example routines of project ARP should not directly call a TAL routine.

For example routines of project TFL should not call a ARP routine or use a ARP module.
ALLOWED/FORBIDDEN INTERDEPENDENCIES.

- Tricky to list extensively; mentioned in some documentation.
- There is a sort of hierarchy, saying that some projects can or cannot call routines of other projects, or saying that modules of other projects can or cannot be used.
- For example routines of project ARP should not directly call a TAL routine.
- For example routines of project TFL should not call a ARP routine or use a ARP module.
Where to find it ?.

- Yessad, K., 2009 : Library architecture and history of the technical aspects in ARPEGE/IFS, ALADIN and AROME in the cycle 36 of ARPEGE/IFS.
Where to find it?

- Yessad, K., 2009: Library architecture and history of the technical aspects in ARPEGE/IFS, ALADIN and AROME in the cycle 36 of ARPEGE/IFS.
THANK YOU / MERCI.