SURFEX
The Carbon Options

Jean-Christophe Calvet,
Anne-Laure Gibelin, Patrick Le Moigne

14 October 2009
The Carbon Options

What?

- Carbon fluxes
 - Photosynthesis; Ecosystem respiration; Net ecosystem exchange

- Vegetation characteristics
 - LAI
 - Above-ground biomass; Below-ground biomass

- Carbon storage
 - Soil organic matter; Litter; Wood
The Carbon Options

Why?

- New applications
 - Kyoto protocol; Climate modelling; Environmental monitoring

- Need to account for
 - CO₂ effect; diverse responses to drought
 - C3 vs. C4 plants; herbaceous vs. woody vegetation

- LAI fully consistent with
 - Water and carbon fluxes; soil moisture

- More variables to validate/control the model
 - Assimilation of satellite data
The Carbon Options

Where?

- ISBA-A-gs
 - « AGS »: basic drought response, no interactive LAI, no a-g biomass
 - « LAI »: basic drought response, **interactive LAI**, no a-g biomass
 - « AST »: **drought-avoiding/tolerant**, no interactive LAI, no a-g biomass
 - « LST »: **drought-avoiding/tolerant, interactive LAI**, no a-g biomass
 - « NIT »: **drought-avoiding/tolerant, interactive LAI, a-g biomass**

- ISBA-CC
 - **Below-ground biomass, wood, heterotrophic respiration**
 - Prototype SURFEX version
 - To be issued soon
The Carbon Options

How?

- The ISBA-A-gs model
 - Photosynthesis (Jacobs et al. 1996)
 - Plant growth (Calvet et al. 1998, Calvet and Soussana 2001, Gibelin et al. 2006)
- The ISBA-CC model
 - Heterotrophic respiration and carbon storage (Gibelin et al. 2008)
- Implementation/Verification
 - Regional scale (Brut et al. 2009)
 - Global scale (Gibelin et al. 2006)
The Carbon Options

How?

- **The ISBA-A-gs model**
 - Photosynthesis (Jacobs et al. 1996)
 - Plant growth (Calvet et al. 1998, Calvet and Soussana 2001, Gibelin et al. 2006)

- **The ISBA-CC model**
 - Heterotrophic respiration and carbon storage (Gibel in et al. 2008)

- **Implementation/Verification**
 - Regional scale (Brut et al. 2009)
 - Global scale (Gibelin et al. 2006)
FIG. 1 – ISBA-A-gs vs. ISBA

Met. forcing → LAI → ISBA → LE, H, Rn, W, Ts...

Met. forcing → LAI → ISBA-A-gs → Active Biomass, CO₂ Flux → [CO₂]ₘₐₜ → LE, H, Rn, W, Ts...
The Carbon Options

How?

- The ISBA-A-gs model
 - Photosynthesis (Jacobs et al. 1996)
 - Plant growth (Calvet et al. 1998, Calvet and Soussana 2001, Gibelin et al. 2006)

- The ISBA-CC model
 - Heterotrophic respiration and carbon storage (Gibelin et al. 2008)

- Implementation/Verification
 - Regional scale (Brut et al. 2009)
 - Global scale (Gibelin et al. 2006)
FIG. 2 – Photosynthesis and stomatal control are linked

Stomatal opening \((g_s) \) depends on:
- Light
- Temperature
- Air humidity
- Soil moisture
- Atmospheric \([\text{CO}_2]\)

Photosynthesis

Transpiration

Respiration

Water extraction

Stomatal opening \((g_s) \) depends on:
- Light
- Temperature
- Air humidity
- Soil moisture
- Atmospheric \([\text{CO}_2]\)

Photosynthesis

Transpiration

Respiration

Water extraction

Stomatal opening \((g_s) \) depends on:
- Light
- Temperature
- Air humidity
- Soil moisture
- Atmospheric \([\text{CO}_2]\)

Photosynthesis

Transpiration

Respiration

Water extraction

Stomatal opening \((g_s) \) depends on:
- Light
- Temperature
- Air humidity
- Soil moisture
- Atmospheric \([\text{CO}_2]\)

Photosynthesis

Transpiration

Respiration

Water extraction

Stomatal opening \((g_s) \) depends on:
- Light
- Temperature
- Air humidity
- Soil moisture
- Atmospheric \([\text{CO}_2]\)
Photosynthesis

FIG. 3a – Modelling approach

• SVAT approach (time step = minutes)

• Biochemical approach (explicit simulation of photosynthesis): *Jacobs et al. 1996*

• Big-leaf but radiative transfer within the canopy for photosynthesis and stomatal conductance
Photosynthesis

FIG. 3b – Modelling approach

Other global models using a biochemical approach:

- SiB2 (Sellers et al. 1996)
- IBIS (Foley et al. 1996)
- BATS (Dickinson et al. 1998)
- MOSES (Cox et al. 1998-2001)
- BETHY (Knorr 2000)
- ORCHIDEE (Krinner et al. 2005)
Photosynthesis

Definitions

- Photosynthesis is a process that converts CO$_2$ into organic compounds, especially sugars, using the energy from sunlight
 - C3 mechanism: Calvin cycle (Rubisco enzyme)
 - C4 mechanism: Calvin cycle (Rubisco enzyme) + Hatch & Slack cycle (PEP-carboxylase enzyme)

- Environmental factors acting on photosynthesis and/or g_s
 - Solar radiation (PAR: 400-700 nm)
 - External CO$_2$ concentration (C$_s$)
 - Leaf temperature (T$_s$)
 - Leaf-to-air saturation deficit (D$_s$ = $q_{sat}(T_s) - q_a$)
 - Drought (soil water deficit)
Photosynthesis

- **C4 plants**
 - ~20% of terrestrial CO$_2$-fixation on Earth
 - "Tropical grasses"
 - Tropical grasslands
 - Crops: maize, sugar cane, millet, …
 - Better use of high light intensities, especially at high temperatures
 - CO$_2$ concentration mechanism within the vascular bundle sheath
 - PEP-carboxylase enzyme
 - Enhances the photosynthesis yield (Rubisco)
 - Most « costly » in terms of energy than C3 mechanism
FIG. 4 – C3 vs. C4 photosynthesis

Ghannoum 2009
The CO$_2$ effect

- [CO$_2$] is increasing
 - 320 ppm in the 60’s
 - 371 ppm in 2000
 - 550 ppm in 2050 ?
 - 700 ppm in 2100 ?

- [CO$_2$] has a huge impact on photosynthesis and stomatal conductance
 - Favours photosynthesis (« Fertilisation »)
 - Reduces plant transpiration (« Antitranspirant effect »)
 - → Enhances the water use efficiency

- Effect on ecosystems/crops still controversial
Photosynthesis

FIG. 5a – CO₂ effect: stomatal conductance

CO₂

550 ppm

ΔT = 1.4°C

507x178 ppm 700 ppm

350 ppm 380 ppm

(Long et al. 2006, Science)

(Morison & Gifford, 1983)
Photosynthesis

FIG. 5b – CO$_2$ effect: photosynthesis

Net C assimilation

A_n

350 ppm 700 ppm

CO$_2$ E
Photosynthesis

FIG. 6 – CO$_2$ effect: simulated by ISBA-A-gs
Photosynthesis

Parameters of the Jacobs model (leaf level)

- Permanent and/or variable leaf properties
 - Leaf photosynthetic capacity (\(A_{m,max} \), mg\(\text{CO}_2 \) m\(^{-2}\) s\(^{-1}\)) at 25°C
 - Maximum quantum use efficiency (\(\varepsilon_0 \), mg\(\text{CO}_2 \) J\(^{-1}\) PAR)
 - CO\(_2\) compensation concentration (\(I_c \), µmol mol\(^{-1}\)) at 25°C
 - Optimal scaled internal CO\(_2\) concentration (\(C_i \)) at \(D_s=0 \) in well-watered conditions
 \(f_0^* = (C_i - I)/(C_s - I) \)
 - Maximum \(D_s \) in well-watered conditions (\(D_{max}^* \), g kg\(^{-1}\))
 - Mesophyll conductance in well-watered conditions (\(g_m^* \), mm s\(^{-1}\)) at 25°C
 - Temperature parameters (\(T_1, T_2 \))
 - Cuticular conductance (\(g_c \), mm s\(^{-1}\))

- Hypothesis
 - \(g_m^*, f_0^*, D_{max}^* \): depend on both plant species and growing conditions (soil moisture, climatic conditions, soil compaction, etc.)
Photosynthesis

- Parameters of the Jacobs model (leaf level)
 - Interpretation of the key parameters g_m^*, f_0^*, D_{max}^*:
 - Maximum gross photosynthesis rate (at $D_s=0$):
 \[
 A_m = A_{m,\text{max}} \left[1 - \exp \left\{ \frac{g_m^* f_0^* (C_s - \Gamma)}{A_{m,\text{max}}} \right\} \right]
 \]
 - Water use efficiency (ratio of net photosynthesis rate / transpiration)
 \[
 W_{UE} = \frac{C_s - \Gamma}{1.6 \rho_a} \left[\frac{f_0^*}{D_{\text{max}}^*} + \frac{1 - f_0^*}{D_s} \right]
 \]
FIG. 7a – Parameter grouping

\[g_s - D_s \text{ relationships at leaf and canopy scales (meta-analysis)} \]

\[ISBA-A-gs \]

\[g_m \quad D_{\text{max}} \text{ or } f_0 \]

Inter- & Intra-specific
\[g_m - D_{\text{max}} \text{ (herbaceous)} \]
or
\[g_m - f_0 \text{ (woody)} \]
relationships
Photosynthesis

Parameter grouping

- Herbaceous plants (meta-analysis)

\[\ln (g_m^*) = a_h - b_h \ln (D_{\text{max}}^*), \quad f_0^* = \text{constant} \]

- Woody plants (meta-analysis)

\[\ln (g_m^*) = a_w - b_w f_0^*, \quad D_{\text{max}} = D_{\text{max}}^x - c_w \ln (g_m^*) \]

- C3 vs. C4 plants: contrasting values of
 - Leaf photosynthetic capacity (\(A_{m,\text{max}} \) at 25°C)
 - Maximum quantum use efficiency (\(\varepsilon_0 \))
 - CO₂ compensation concentration (\(\Gamma \) at 25°C)
 - For herbaceous plants: \(a_h \) and \(b_h \)
Photosynthesis

FIG. 7b – Parameter grouping

Crops, Grasslands

Trees, Shrubs

\[\ln(g_m^*) \]

\[\ln(D_{max}^*) \]

\[\ln(g_m^*) \]

\[f_0^* \]

Well-watered
The Carbon Options

How?

• The ISBA-A-gs model
 • Photosynthesis (Jacobs et al. 1996)
 • **Meta-analysis of the response to drought** *(Calvet 2000, Calvet et al. 2004)*
 • Plant growth (Calvet et al. 1998, Calvet and Soussana 2001, Gibelin et al. 2006)
• The ISBA-CC model
 • Heterotrophic respiration and carbon storage (Gibelin et al. 2008)
• Implementation/Verification
 • Regional scale (Brut et al. 2009)
 • Global scale (Gibelin et al. 2006)
Response to drought

FIG. 7c – Parameter grouping

Crops, Grasslands

Well-watered

Trees, Shrubs
Response to drought

FIG. 7d – Tolerant or avoiding ? A meta-analysis

Crops, Grasslands

\[\ln(g_m) \]

\[\ln(D_{\text{max}}) \]

Trees, Shrubs

\[\ln(g_m) \]

\[f_0 \]

\[A_m \uparrow \quad \text{WUE} \uparrow \]

Drought-avoiding
Response to drought

FIG. 7e – Tolerant or avoiding ? A meta-analysis

Crops, Grasslands

Trees, Shrubs

\[
\ln(g_m) \quad \ln(D_{\text{max}})
\]

\[
\ln(g_m) \quad \ln(A_m) \quad \ln(WUE) \quad f_0
\]
Response to drought

FIG. 8a – Tolerant or avoiding? Trees

Maritime pine

Sessile oak

Drought-avoiding

Drought-tolerant
Response to drought

FIG. 8b – Tolerant or avoiding? Trees

Maritime pine

Sessile oak

Drought-avoiding

Drought-tolerant
Response to drought

FIG. 8c – Tolerant or avoiding? Deciduous broadleaf forest

LAI

![LAI graph showing LAI values over time from 2001 to 2004, with labels for drought-avoiding and drought-tolerant stages.]

Soil moisture

![Soil moisture graph showing soil moisture levels over time from 2001 to 2004.]

CNRM/GMME/VEGEO - October 2009
Response to drought

FIG. 8d – Tolerant or avoiding ? C3 crops
Enhanced representation of drought: summary

- Key parameters of the photosynthesis model are affected by drought: the well-watered value are adjusted by using the Soil Wetness Index (SWI)
- Two possible strategies: drought-avoiding / drought-tolerant
- Important parameter: θ_c critical extractable soil moisture content, below which severe soil moisture stress is observed

\[\ln(g_m^*) - \ln(D_{\text{max}}^*) \]

Crops, Grasslands

Trees, Shrubs

SWI = 1 (unstressed)

SWI = θ_c

Calvet 2000, Calvet et al. 2004
The Carbon Options

How?

- The ISBA-A-gs model
 - Photosynthesis (Jacobs et al. 1996)
 - Plant growth
 (Calvet et al. 1998, Calvet and Soussana 2001, Gibelin et al. 2006)
- The ISBA-CC model
 - Heterotrophic respiration and carbon storage (Gibelin et al. 2008)
- Implementation/Verification
 - Regional scale (Brut et al. 2009)
 - Global scale (Gibelin et al. 2006)
FIG. 9 – Active and structural biomass

Allocation

• The **active biomass** (= leaves) is a reservoir fed by the net CO$_2$ uptake by leaves (i.e. $A_n = \text{Photosynthesis} - \text{Leaf respiration}$).
 It looses carbon following an exponential law whose e-folding time depends on the daily maximum A_n (*parameter* $= \text{max leaf span time } \tau_m$).

• The **above-ground biomass** (non-woody) is derived from the active biomass:
 - Growing period: a logarithmic nitrogen dilution equation is used
 - Senescence: respiration losses and exponential decline
Plant growth

FIG. 10a – LAI simulations

(No)-Phenology ?

• LAI is linearly related to the active biomass (parameters = SLA, derived from leaf nitrogen concentration and 2 plasticity parameters)
• A minimum value of LAI, LAI_{min}, is prescribed (e.g. 0.3 for annual vegetation), permitting a self restart of the vegetation when photosynthesis becomes active
• Possibility to cut the vegetation or to maintain LAI at its minimum value, for agricultural applications
Plant growth

FIG. 10b – LAI simulations

(No)-Phenology ?

Merits of this methodology

- Simple
- Leaf onset and offset dates don’t have to be prescribed (permitting to simulate the interannual variability and climate change effects)
- No use of empirical degree-day sums (all the factors are accounted for, not only temperature)
- Crop regrowth (autumn) is simulated

Other models using this approach

AVIM (Ji 1995, Dan et al. 2005)
STEP (Mougin et al. 1995)
Plant growth

FIG. 10c – LAI simulations: parameter grouping

\[\text{SLA} = e \times N_L + f \]
FIG. 11 – Key parameters of the « NIT » option

<table>
<thead>
<tr>
<th>Vegetation type</th>
<th>(g_m) ((\text{mm s}^{-1}))</th>
<th>(g_c) ((\text{mm s}^{-1}))</th>
<th>(f_0) ((-))</th>
<th>(D_{\text{max}}) ((\text{g kg}^{-1}))</th>
<th>Drought response</th>
<th>(\theta_c) ((-))</th>
<th>(\tau_m) ((\text{d}))</th>
<th>LAI_{\text{min}} ((\text{m}^2\text{kg}^{-1}))</th>
<th>(e) ((\text{m}^2\text{kg}^{-1} \text{%}^{-1}))</th>
<th>(f) ((\text{m}^2\text{kg}^{-1}))</th>
<th>(N_L) ((%))</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3 Crops</td>
<td>1</td>
<td>0.25</td>
<td>0.95</td>
<td>50</td>
<td>Avoiding</td>
<td>0.3</td>
<td>150</td>
<td>0.3</td>
<td>3.79</td>
<td>9.84</td>
<td>1.3</td>
</tr>
<tr>
<td>C4 crops</td>
<td>9</td>
<td>0.15</td>
<td>0.60</td>
<td>33</td>
<td>Tolerant</td>
<td>0.3</td>
<td>150</td>
<td>0.3</td>
<td>7.68</td>
<td>-4.33</td>
<td>1.9</td>
</tr>
<tr>
<td>C3 grasslands</td>
<td>1</td>
<td>0.25</td>
<td>0.95</td>
<td>50</td>
<td>Tolerant</td>
<td>0.3</td>
<td>150</td>
<td>0.3</td>
<td>5.56</td>
<td>6.73</td>
<td>1.3</td>
</tr>
<tr>
<td>C4 grasslands</td>
<td>6</td>
<td>0.15</td>
<td>0.60</td>
<td>33</td>
<td>Tolerant</td>
<td>0.3</td>
<td>150</td>
<td>0.3</td>
<td>7.68</td>
<td>-4.33</td>
<td>1.3</td>
</tr>
<tr>
<td>Coniferous forests</td>
<td>2</td>
<td>0</td>
<td>0.57</td>
<td>124</td>
<td>Avoiding</td>
<td>0.3</td>
<td>365</td>
<td>1</td>
<td>4.85</td>
<td>-0.24</td>
<td>2.8</td>
</tr>
<tr>
<td>Evergreen forests</td>
<td>2</td>
<td>0.15</td>
<td>0.57</td>
<td>124</td>
<td>Tolerant</td>
<td>0.3</td>
<td>365</td>
<td>1</td>
<td>4.83</td>
<td>2.53</td>
<td>2.5</td>
</tr>
<tr>
<td>Deciduous forests</td>
<td>3</td>
<td>0.15</td>
<td>0.51</td>
<td>109</td>
<td>Tolerant</td>
<td>0.3</td>
<td>230</td>
<td>0.3</td>
<td>4.83</td>
<td>2.53</td>
<td>2</td>
</tr>
</tbody>
</table>

- **Mesophyll conductance**
- **Cuticular conductance**
- **Max leaf span time**
- **Critical SWI**
- **N Plasticity parameters**
- **Leaf N**

Gibelin et al. 2006
FIG. 12 – Summary of the « NIT » option

A-gs model: Jacobs (1996)

Surface Variables:
⇒ $[CO_2]_{\text{surface}}$, R_G, T_s, D_s …
Parameters of the model:
⇒ g_m, D_{max}, f_0

LEAF SCALE

1- CO$_2$ Net Assimilation

2- Stomatal Conductance

ISBA Water & Energy Budget

GROWTH & MORTALITY

Growth = $\sum A_n$
Senescence = exponential law
Biomass = $\sum (\text{Growth-Senescence})$

LAI = Biomass \times SLA

Soil moisture Stress
$0 \leq \theta \leq 1$

Nitrogen Dilution
SLA = $e \times N_L + f$

CANOPY SCALE

Radiative transfer in the canopy
Net assimilation
Stomatal conductance

$\int A_n \& g_s$
The Carbon Options

How?

- The ISBA-A-gs model
 - Photosynthesis (Jacobs et al. 1996)
 - Plant growth (Calvet et al. 1998, Calvet and Soussana 2001, Gibelin et al. 2006)
- The ISBA-CC model
 - Heterotrophic respiration and carbon storage (Gibelin et al. 2008)
- Implementation/Verification
 - Regional scale (Brut et al. 2009)
 - Global scale (Gibelin et al. 2006)
FIG. 13a – Different respiration terms

- Photosynthesis (GPP)
- Autotrophic Respiration (Rauto)
- Heterotrophic Respiration (Rhetero)

NPP = GPP – Rauto
Reco = Rauto + Rhetero
NEE = GPP – Rauto – Rhetero
FIG. 13b – Different respiration terms

Respiration in ISBA-A-gs

- Ecosystem respiration is calculated by using a simple Q_{10} function depending on soil temperature (and soil moisture)
 this is enough to calculate a net CO$_2$ flux but NPP cannot be simulated

- Autotrophic respiration is calculated for the above-ground biomass only
- Heterotrophic respiration is not explicitly calculated in ISBA-A-gs

Gifford 2003
FIG. 14a – Upgrade of ISBA-A-gs: ISBA-CC

ISBA-A-gs

(Calvet et Soussana, 2001)
FIG. 14b – Upgrade of ISBA-A-gs: ISBA-CC

(ISBA-A-gs) and (ISBA-CC) (Calvet et Soussana, 2001)
FIG. 14c – Upgrade of ISBA-A-gs: ISBA-CC

(ISBA-A-gs) (Calvet et Soussana, 2001)

(ISBA-CC)

Rauto

Mortality

Rauto
FIG. 15 – Heterotrophic respiration

Parton et al., 1987
Krinner et al., 2005
The Carbon Options

How?

- The ISBA-A-gs model
 - Photosynthesis (Jacobs et al. 1996)
 - Plant growth (Calvet et al. 1998, Calvet and Soussana 2001, Gibelin et al. 2006)
- The ISBA-CC model
 - Heterotrophic respiration and carbon storage (Gibelin et al. 2008)
- Implementation/Verification
 - Regional scale (Brut et al. 2009)
 - Global scale (Gibelin et al. 2006)
2D implementation: usefulness of satellite data

- Integrate geographic information in SURFEX
 - Representing the spatial heterogeneity
 - Vegetation classes
 - Land cover: fractions of cover types (coniferous/deciduous/mixt forests, C3/C4-winter/summer crops, grasslands, irrigation...), bare soil fraction

- Constrain the model: Assimilation
 - LAI
 - Surface soil moisture

- Verification
 - Spatial distribution of biomass
 - LAI max
 - Leaf onset, senescence
Implementation

FIG. 16 – Representation of heterogeneity: the patches

ECOCLIMAP class

PATCHES

ECOCLIMAP class

SURFEX

Simulations

ISBA

W/H fluxes

ISBA-A-gs

C & W/H fluxes, LAI

C & W/H fluxes, LAI
Implementation

FIG. 17a – Representation of heterogeneity: example in SW France

Patch fractions over southwestern France
[Brut et al. 2009]
Implementation

FIG. 17b – Representation of heterogeneity: example in SW France

Patch fractions over southwestern France
[Brut et al. 2009]
Implementation

FIG. 18 – Representation of irrigation: maize (SW France)

Optimal Irrigation: 120mm 60mm 270mm 240mm
Verification

FIG. 19 – Yearly LAI$_{\text{max}}$ ($m^2 m^{-2}$)

ISBA-A-gs
ISLSCP-II
MODIS
ECOCLIMAP

Gibelin et al., 2006
FIG. 20 – Leaf onset: global scale

Yearly LAI cycle (m² m⁻²) – ISLSCP-II

Yearly LAI cycle (m² m⁻²) – ISBA-A-gs

Leaf onset: ISBA-A-gs – ISLSCP-II

Gibelin et al., 2006
Verification

FIG. 21 – Leaf onset: regional scale (SW France)

Difference with CYCLOPES

Difference with MODIS (reprocessed)

Brut et al., 2009
Verification

FIG. 22 – Fluxes: local scale (Gunnarsholt, Island, Deciduous broadleaf forest)

Mean annual cycle

Mean diurnal cycle (JJA)

Observations

ISBA-CC

Gibelin et al., 2007
Conclusions

- « AST » option of SURFEX
 - Detailed photosynthesis model
 - Prescribed LAI
- « NIT » option of SURFEX
 - Interactive LAI (climatic simulations)
 - Used by ECMWF (CTESSEL)
- Forthcoming ISBA-CC option
- Representation of heterogeneity
 - Patches are compulsory
- Prospects
 - Improved parameterisations
 - radiative transfer within the vegetation canopy (link to double-source developments)
 - temperature responses
 - agricultural practices
 - Land data assimilation systems
 - Dynamic vegetation?
THANK YOU FOR YOUR ATTENTION