SEMI-LAGRANGIAN COMPUTATIONS IN THE CYCLE 42
OF ARPEGE/IFS.

YESSAD K. (METEO-FRANCE/CNRM/GMAP/ALGO)

July 7, 2015

Abstract:
The general purpose of this documentation is to describe the set of equations used, and also the way to integrate
the dynamics of the model with the semi-Lagrangian method currently implemented in ARPEGE/IFS. The
following points will be described: semi-Lagrangian formulation and discretisation for different sets of equations,
semi-Lagrangian trajectory research, horizontal and vertical interpolations done in the semi-Lagrangian scheme,
specific geometric problems met in this type of discretisation. An organigramme is provided. An introduction to
tangent linear and adjoint code is provided. An example of namelist is provided.

Résumé:
Le but général de cette documentation est de décrire le jeu d’équations utilisé, et également la façon de discrétiser
ces équations avec un schéma d’advection semi-Lagrangien tel qu’il est utilisé dans ARPEGE/IFS. On décrit les
points suivants: formulation lagrangienne des équations, leur discrétisation avec un schéma semi-lagrangien,
recherche de trajectoire, interpolations horizontales et verticales faites dans le schéma semi-lagrangien, problèmes
de géométrie spécifiques. On fournit un organigramme et un exemple de namelist. Une introduction au code
tangent linéaire et adjoint est également proposée.
Contents

1 Introduction. 6
 1.1 General purpose of this documentation. 6
 1.2 Distributed memory code. 6
 1.3 Modifications since cycle 4L 6

2 Definition of Eulerian and semi-Lagrangian schemes. 7
 2.1 Eulerian scheme. 7
 2.2 Semi-Lagrangian scheme. 7

3 The 2D equations. 8
 3.1 Denotations for the 2D equations. 8
 3.2 The 2D shallow-water system of equations in spherical geometry. 8
 3.2.1 Momentum equation. 8
 3.2.2 Continuity equation. 8

4 The 3D equations in spherical geometry (ARPEGE/IFS). 9
 4.1 Denotations for the 3D equations. 9
 4.2 The thin layer 3D primitive equation model: Lagrangian formulation. 10
 4.2.1 Momentum equation. 10
 4.2.2 Thermodynamic equation. 10
 4.2.3 Continuity equation. 10
 4.2.4 Advectable GFL variables. 11
 4.2.5 Non advectable pseudo-historic GFL variables. 11
 4.3 The deep layer 3D primitive equation model according to White and Bromley, 1995: Lagrangian formulation. 11
 4.3.1 Deep layer equations: basics and new features. 11
 4.3.2 Thermodynamic equation. 12
 4.3.3 Continuity equation. 12
 4.3.4 Advectable GFL variables. 12
 4.3.5 Non advectable pseudo-historic GFL variables. 12
 4.4 The thin layer 3D NH-PDVD non-hydrostatic model: Lagrangian formulation. 12
 4.4.1 Basics about NH equations. 12
 4.4.2 Momentum equation. 12
 4.4.3 Thermodynamic equation. 12
 4.4.4 Continuity equation. 13
 4.4.5 Advectable GFL variables and pseudo-historic non-advectable GFL variables equations. 13
 4.4.6 Pressure departure variable Q equation. 13
 4.4.7 Vertical velocity w and vertical divergence d equations. 13
 4.5 The deep layer NH-PDVD non-hydrostatic model according to Wood and Staniforth, 2003: Lagrangian formulation. 14
 4.5.1 Basics deep layer equations. 14
 4.5.2 Momentum equation. 14
 4.5.3 Thermodynamic equation. 15
 4.5.4 Continuity equation. 15
 4.5.5 Advectable GFL variables and pseudo-historic non-advectable GFL variables equations. 15
 4.5.6 Pressure departure variable Q equation. 15
 4.5.7 Vertical velocity w and vertical divergence d equations. 15
 4.6 The thin layer NH-GEOGW non-hydrostatic model: Lagrangian formulation. 15

5 Discretisation of the equations: general aspects. 16
 5.1 Denotations. 16
 5.2 Discretisation for a 3D variable in a 3D model: general case where the RHS has non-zero linear and non-linear terms (GMV variables). 16
 5.2.1 List of equations. 16
 5.2.2 Generic notations. 16
 5.2.3 Other points. 17
 5.2.4 3TL vertical interpolating SL scheme. 18
 5.2.5 2TL vertical interpolating SL scheme: conventional extrapolation and first-order uncentering. 18
 5.2.6 2TL vertical interpolating SL scheme: conventional extrapolation and pseudo-second order uncentering. 18
 5.2.7 2TL vertical interpolating SL scheme: stable extrapolation and first-order uncentering. 19
 5.2.8 2TL vertical interpolating SL scheme: stable extrapolation and pseudo-second order uncentering. 19
 5.2.9 Specific treatment for some options in the vertical divergence equation. 20
 5.3 Discretisation for a 3D variable in a 3D model: particular case where the RHS has zero linear and non-linear terms (advectable GFL variables). 21
 5.3.1 List of equations. 21
 5.3.2 Generic notations. 21
 5.3.3 Other points. 21
 5.3.4 3TL vertical interpolating SL scheme. 22
9.3.1 Momentum equation, temperature equation, continuity equation, GFL equations. 43
9.3.2 Vertical velocity equation. 43
9.3.3 Geopotential equation. 43

10 \mathcal{K} operator. 44
10.1 No tilting. 44
10.2 Tilting. 44
10.3 Plane geometry (LAM models). 44

11 Computation of longitudes and latitudes on the computational sphere. 45

12 Interpolations and weights computations. 46
12.1 Interpolation grid and weights (subroutine LASCAW). 46
12.1.1 Horizontal interpolation grid and weights for bi-linear interpolations. 46
12.1.2 Vertical interpolation grid and weights for vertical linear interpolations. 46
12.1.3 Horizontal interpolation grid and weights for 12 points cubic interpolations. 46
12.1.4 Vertical interpolation grid and weights for vertical cubic 4 points interpolations. 48
12.1.5 Vertical interpolation grid and weights for vertical cubic Hermite interpolations. 48
12.1.6 Vertical interpolation grid and weights for vertical cubic spline interpolations. 50
12.1.7 Interpolation grid and weights for tri-linear interpolations. 50
12.1.8 Interpolation grid and weights for 32 points interpolations. 50
12.1.9 Horizontal interpolation grid and weights for 16 points linear least-square fit interpolations. 51
12.1.10 Horizontal interpolation grid and weights for 32 points linear least-square fit interpolations. 51
12.1.11 Modified weights for COMAD interpolations. 51
12.1.12 Plane geometry (LAM models). 51
12.2 Interpolations. 52
12.2.1 Bilinear interpolation (subroutine LAIDLI). 52
12.2.2 Tri-linear interpolation (subroutine LAITLI). 52
12.2.3 Horizontal 12 points interpolation (subroutine LAIDDI). 52
12.2.4 Cubic 4 points vertical interpolation. 52
12.2.5 Cubic Hermite vertical interpolation. 52
12.2.6 Spline cubic 4 points vertical interpolation. 53
12.2.7 32 points 3D interpolation with vertical cubic 4 points interpolation (subroutine LAITRI). 53
12.2.8 32 points 3D interpolation with vertical cubic Hermite interpolation (subroutine LAIHVT). 53
12.2.9 48 points 3D interpolation with vertical cubic spline interpolation (subroutine LAITVSPCQM). 53
12.2.10 Horizontal 16 points linear least-square fit interpolation. 53
12.2.11 32 points 3D interpolation with linear least-square fit horizontal interpolations and vertical linear interpolations (subroutine LAISMOO). 54
12.3 Code structures to store weights. 54

13 Computation of η at full levels. 59

14 Lateral boundary conditions. 60
14.1 Extra longitudes. 60
14.2 Extra latitudes. 60
14.3 Vertical boundary conditions in the 3D model. 60

15 2D shallow water and 3D models organigrammes. 61
15.1 Interpolation and weight calculation routines. 61
15.2 Routines common to 3D and 2D organigrammes. 61
15.3 Routines specific to 2D organigramme. 61
15.4 Routines specific to 3D organigramme. 62
15.5 Set-up routines. 63
15.6 Main features of organigramme for setup. 63
15.7 Organigramme for 2D model. 63
15.8 Organigramme for 3D model. 64
1 Introduction.

1.1 General purpose of this documentation.

The general purpose of this documentation is to describe the set of equations used, and also the way to integrate the dynamics of the model with the semi-Lagrangian method currently implemented in ARPEGE/IFS. Equations will be written without horizontal diffusion scheme (which is treated in spectral computations), and without Rayleigh friction (which is done in grid-point space) in order to give a clearer presentation of the discretised equations. For additional information about horizontal diffusion scheme, report to documentation (IDDH). Extensions to limited area models (LAM) are not described in detail, but differences are briefly mentioned.

The following sets of equations will be described in this documentation:
- The 2D shallow-water equations model (configuration 201).
- The primitive equations hydrostatic model (configuration 1): thin layer and deep layer (according to White and Bromley, 1995) formulations.
- The NH-PDVD non-hydrostatic equations model (configuration 1): uses \hat{Q} and d (or d_4) as NH prognostic variables; thin layer and deep layer (according to Wood and Staniforth, 2003) formulations.
- The NH-GEOGW non-hydrostatic equations model (configuration 1): uses Φ and gw as NH prognostic variables.

1.2 Distributed memory code.

Some distributed code has been introduced for the semi-Lagrangian scheme, for some convenience expressions such “DM-local” or “DM-global” will be used to describe some distributed memory features.

- Expression “DM-local” for a quantity means “local to the couple of processors (proca,procb)” : each processor has its own value for the quantity. Expression “DM-local computations” means that the computations are done independently in each processor on “DM-local” quantities, leading to results internal to each processor, which can be different from a processor to another one.

- Expression “DM-global” for a quantity means that it has a unique value available in all the processors. Expression “DM-global computations” means that the computations are either done in one processor, then the results are dispatched in all the processors, or the same computations are done in all the processors, leading to the same results in all the processors.

- In a routine description the mention “For distributed memory computations are DM-local” means that all calculations done by this routine are DM-local; the mention “For distributed memory computations are DM-global” means that all calculations done by this routine are DM-global; when no information is provided it means that a part of calculations is DM-local and the other part is DM-global.

1.3 Modifications since cycle 41.

- Minor modifications in call tree.
- Some optimisations.
- New option LSETTLSVF.
- New options for SLHD (LSLHDVER, LSLHDHEAT).
- New preservative interpolations for some GFL variables.
- Some variables have been encapsulated.
- Some variables have been moved, sometimes renamed.
2 Definition of Eulerian and semi-Lagrangian schemes.

2.1 Eulerian scheme.

In Eulerian form of equations, the time dependency equation of a variable X writes:

$$\frac{\partial X}{\partial t} = -U \nabla_3 X + \dot{X}$$

(1)

where U is the 3D wind, ∇_3 is the 3D gradient operator, \dot{X} is the sum of the dynamical and physical contributions. $X(t + \Delta t)$ is computed knowing $X(t - \Delta t)$ at the same grid-point. Eulerian technique obliges to use a time-step that matches the CFL (Courant Friedrich Levy) condition everywhere.

- For global variable-mesh spectral global models, the horizontal CFL condition writes:

$$M \frac{|V|}{r} \frac{Dt}{2} \sqrt{N(N + 1)} < 1$$

(2)

where M is the mapping factor, Dt is the time-step at the first integration step and twice the time-step otherwise (leap-frog scheme), $|V|$ is the horizontal wind modulus, N is the truncation, r is the distance between the point and the centre of the Earth.

- For spectral limited area models (LAM), the horizontal CFL condition writes:

$$M \frac{|V|}{r} \frac{Dt}{2} \sqrt{\frac{1}{a^2 N_m^2} + \frac{L^2}{a^2 N_n^2}} < 1$$

(3)

See above for denotations M, Dt, $|V|$, a, r, N_m is the zonal truncation, N_n is the meridian truncation, L_x (resp. L_y) is the zonal (resp. meridian) length of the LAM domain taken on a surface iso $r = a$.

The vertical CFL condition writes:

$$|\dot{\eta}| \frac{Dt}{2} \Delta \eta < 1$$

(4)

2.2 Semi-Lagrangian scheme.

In semi-Lagrangian form of equations, the time dependency equation of a variable X writes:

$$\frac{dX}{dt} = \dot{X}$$

(5)

In a three-time level semi-Lagrangian scheme $X(t + \Delta t)$ is computed at a grid-point F knowing $X(t - \Delta t)$ at the point O (not necessary a grid-point) where the same particle is at the instant $t - \Delta t$. In a two-time level semi-Lagrangian scheme $X(t + \Delta t)$ is computed at a grid-point F knowing $X(t)$ at the point O (not necessary a grid-point) where the same particle is at the instant t. The semi-Lagrangian technique is more expensive for one time-step than the Eulerian technique because it is necessary to compute the positions of the origin point O and the medium point M along the trajectory and to interpolate some quantities at these points (roughly 1.5 times the cost of the Eulerian scheme for current operational models at METEO-FRANCE). But it allows to use larger time-steps: the stability condition is now the Lipschitz criterion (trajectories do not cross each other) and is less severe than the CFL condition.

D is the divergence of the horizontal wind on the η-coordinates, $\dot{\eta} = \frac{du}{dt}$. Lipschitz criterion writes for a three-time level semi-Lagrangian scheme:

$$|D + \frac{\partial \dot{h}}{\partial \eta}| \frac{Dt}{2} < 1$$

(6)

Lipschitz criterion writes for a two-time level semi-Lagrangian scheme:

$$|D + \frac{\partial \dot{h}}{\partial \eta}| \frac{\Delta t}{2} < 1$$

(7)

Expressions “semi-Lagrangian scheme”, “three-time level semi-Lagrangian scheme” and “two-time level semi-Lagrangian scheme” will be from now on abbreviated into “SL scheme”, “3TL SL scheme” and “2TL SL scheme”.

7
3 The 2D equations.

3.1 Denotations for the 2D equations.

- V is the horizontal wind. Zonal and meridian components on computational grid are respectively denoted by U and V.
- D is the horizontal wind divergence.
- ζ is the horizontal wind vorticity.
- Φ is the equivalent height. Φ_s is the surface geopotential height (i.e. the orography). Φ^* is a reference equivalent height which is only used in the semi-implicit scheme and the linear model.
- Ω is the Earth rotation angular velocity.
- ∇ is the first order horizontal gradient on η-surfaces.
- a is the Earth radius.
- $(\lambda_{\text{true}}, \theta_{\text{true}})$ are the longitude-latitude coordinates on a tilted and not stretched geometry, the tilting being the same as the one of the computational sphere.
- k is the unit vertical vector. One can write:

$$k = \frac{r}{|r|} = \frac{r}{a}$$

3.2 The 2D shallow-water system of equations in spherical geometry.

3.2.1 Momentum equation.

Coriolis force can be treated explicitly ($\delta V=0$) or implicitly ($\delta V=1$) in the Lagrangian equation.

$$\frac{d(V + \delta V(2\Omega \wedge r))}{dt} = -2(1 - \delta V)(\Omega \wedge V) - \nabla \Phi$$ \hspace{1cm} (8)

3.2.2 Continuity equation.

- Conventional formulation.

$$\frac{d(\Phi - (1 - \delta TR)\Phi_s)}{dt} = -(\Phi - \Phi_s)D + \delta TR V \nabla (\Phi_s)$$ \hspace{1cm} (9)

- Lagrangian formulation.

$$\frac{d((\Phi - \Phi_s)J)}{dt} = 0$$ \hspace{1cm} (10)

J is a “Jacobian” quantity which matches:

$$\frac{dJ}{dt} = -JD$$ \hspace{1cm} (11)
4 The 3D equations in spherical geometry (ARPEGE/IFS).

4.1 Denotations for the 3D equations.

- \(V \) is the horizontal wind. Zonal and meridian components on computational grid are respectively denoted by \(U \) and \(V \).
- \(D \) is the horizontal wind divergence.
- \(\zeta \) is the horizontal wind vorticity.
- \(T \) is the temperature.
- \(q \) is the humidity.
- \(q_r \) is the rain.
- \(\Pi \) is the hydrostatic pressure.
- \(\Pi_s \) is the hydrostatic surface pressure.
- \(\Omega \) is the Earth rotation angular velocity.
- \((\lambda_{bne}, \theta_{bne})\) are the longitude-latitude coordinates on a tilted and not stretched geometry, the tilting being the same as the one of the computational sphere.
- \((\lambda, \theta)\) are the geographical longitude-latitude coordinates.
- \((\Lambda, \Theta)\) are the computational sphere longitude-latitude coordinates.
- \(w \) is the \(z \)-coordinate vertical velocity: \(w = \frac{dz}{dt} \).
- \(\omega = \frac{d\Pi}{dt} \) is the total temporal derivative of the hydrostatic pressure.
- \(p \) is the pressure, \(p_s \) is the surface pressure.
- \(g \) is the gravity acceleration constant.
- \(G \) is the reference value of \(g \) at \(r = a \).
- \(\rho \) is the mass per volume unit of air.

\[\alpha_T = B \left(-\frac{R_d}{g} \frac{dT}{dz} \right) T_{st} \left(\Pi_{st} \left(\frac{\Pi_{st}}{\Pi_{sst}} \right) \right) \frac{\rho_a}{\rho} \left(\frac{\rho_a}{\rho} \right)^{-1} \]

where \(B \) is a vertically dependent and horizontally constant quantity which defines the vertical hybrid coordinate (see later paragraph “Definition of the vertical coordinate \(\eta \)”, subsection (6.1)): \(B \) varies from 1 to 0 from bottom to top. Subscript “st” stands for “standard atmosphere”.

- \(a \) is the average Earth radius near the surface.
- \(W = \frac{dr}{dt} \) is the pseudo-vertical velocity used in some Coriolis and curvature terms in the deep layer equations according to (White and Bromley, 1995). \(W = 0 \) in the thin layer equations.
- \(i \) (resp. \(j \)) is the unit zonal (resp. meridian) vector on the Gaussian grid.
- \(k \) is the unit vertical vector. One can write:

\[k = \frac{r}{r} \]

- \(g \) is the gravity acceleration constant.
- In the case where vertical variations of \(g \) are taken into account, we denote by \(G \) the reference value of \(g \) at \(r = a \).
• M is the mapping factor.
• \mathcal{M} is a reference mapping factor for the semi-implicit scheme.
• D_3 is the 3D divergence used in the NH model. Its expression is given by equation (25).
• τ, γ, ν, L^*, θ^* are linear operators used in the semi-implicit scheme (for more details, see documentation (IDSI) about semi-implicit scheme).
• T^* is a vertically-constant reference temperature which is used in the semi-implicit scheme and in some non-hydrostatic equations.
• T^*_st is the cold vertically-constant reference temperature which is used in the semi-implicit scheme and in some non-hydrostatic equations.

4.2.1 Momentum equation.

Vectorial form of momentum equation is used. Coriolis force can be treated explicitly ($\delta\nu=0$) or implicitly ($\delta\nu=1$).

$$
\frac{d}{dt} \left(V + \delta\nu(2\Omega \wedge r) \right) = -2(1 - \delta\nu)(\Omega \wedge V) - \nabla \Phi - RT \nabla (\log \Pi) + F_V
$$

F_V is the physical contribution on horizontal wind.

4.2.2 Thermodynamic equation.

$$
\frac{d}{dt} \left(T + \delta_{TR} \frac{\alpha_T \Phi}{\Pi_\text{st} \alpha_T} \right) = \frac{d}{dt} \left(\delta_{TR} \frac{\alpha_T \Phi}{\Pi_\text{st} \alpha_T} \right) + RT \frac{\omega}{c_p} \frac{\Pi}{\Pi} + F_T
$$

F_T is the physical contribution on temperature. When $\delta_{TR} = 1$ the Eulerian treatment of orography is applied and the prognostic variable is replaced by one variable less sensitive to the surface orography. This modification has been proposed by Ritchie and Tanguay (1996). See equation (12) for definition of α_T. Term $\frac{d}{dt} \left(\delta_{TR} \frac{\alpha_T \Phi}{\Pi_\text{st} \alpha_T} \right)$ only contains advection terms linked to horizontal variations of orography and vertical variations of the coefficient α_T.

4.2.3 Continuity equation.

The equation which is discretised is the vertically integrated Lagrangian formulation of continuity equation.

$$
\int_{\eta=0}^{\eta=1} \frac{\partial}{\partial \eta} \left[\frac{1}{\Pi} \int_{\eta=0}^{\eta=1} \nabla \left(\frac{\partial \Pi}{\partial \eta} \right) d\eta + \nabla \left(\log \Pi_a + \delta_{TR} \frac{\Phi}{\Pi_\text{st} \alpha_T} \right) - \frac{1}{\Pi} \left[\frac{\partial}{\partial \eta} \left(\frac{\partial \Pi}{\partial \eta} \right) \right]_{\eta=0} + \frac{1}{\Pi} \left[\frac{\partial}{\partial \eta} \left(\frac{\partial \Pi}{\partial \eta} \right) \right]_{\eta=1} - \frac{1}{\Pi} g [F_m]_{\eta=1} \right] d\eta =
\int_{\eta=0}^{\eta=1} \frac{\partial}{\partial \eta} \left[- \frac{1}{\Pi_\text{st}} \int_{\eta=0}^{\eta=1} \nabla \left(\frac{\partial \Pi}{\partial \eta} \right) d\eta + \nabla \left(\log \Pi_a + \delta_{TR} \frac{\Phi}{\Pi_\text{st} \alpha_T} \right) - \frac{1}{\Pi_\text{st}} \left[\frac{\partial}{\partial \eta} \left(\frac{\partial \Pi}{\partial \eta} \right) \right]_{\eta=0} + \frac{1}{\Pi_\text{st}} \left[\frac{\partial}{\partial \eta} \left(\frac{\partial \Pi}{\partial \eta} \right) \right]_{\eta=1} - \frac{1}{\Pi_\text{st}} g [F_m]_{\eta=1} \right] d\eta
$$
Details leading to this formulation is given in part 6.2.3 of the documentation (IDEUL) about model equations and Eulerian dynamics. Variable δ_{TR} is 0 or 1; when $\delta_{TR} = 1$ the new variable is less sensitive to the orography (new variable proposed by Ritchie and Tanguay (1996) to reduce orographic resonance).

If one assumes that a volume of air occupied by rainfall drops is not replaced by dry air when drops are falling (case $\delta m = 0$, variable NDPSFI is 0 in NAMPHY), F_m is replaced by zero and $\left[\frac{\partial \Pi}{\partial \eta}\right]_{\eta=1}$ is equal to zero.

If one assumes that a volume of air occupied by rainfall drops is replaced by dry air when drops are falling (case $\delta m = 1$, variable NDPSFI is 1 in NAMPHY), F_m (diabatic flux) has to be taken in account and $\left[\frac{\partial \Pi}{\partial \eta}\right]_{\eta=1}$ is non-zero (more details are given in documentation (IDEUL)).

$\left[\frac{\partial \Pi}{\partial \eta}\right]_{\eta=0}$ is non-zero only when there is an upper radiative boundary condition (LRUBC=.TRUE.).

4.2.4 Advectable GFL variables.

Equation is written for moisture q, and is the same for the other advectable GFL variables (for example ozone, liquid water, ice, TKE, aerosols and extra GFL variables).

\[
\frac{dq}{dt} = F_q
\]

F_q is the physical contribution on moisture.

4.2.5 Non advectable pseudo-historic GFL variables:

Equation is written for rain q_r, and is the same for the other non-advectable GFL variables. Since there is no advection, the SL equation is identical to the Eulerian equation.

\[
\frac{\partial q_r}{\partial t} = F_{q_r}
\]

4.3 The deep layer 3D primitive equation model according to White and Bromley, 1995: Lagrangian formulation.

4.3.1 Deep layer equations: basics and new features.

The following modifications are done, according to (White and Bromley, 1995):

- One takes account to the fact, that the distance to the Earth centre is no longer a but a radius varying with the vertical. For convenience (with the η vertical coordinate), one approximates the radius by a pseudo-radius r which depends only on the hydrostatic pressure Π. Two vertical lines are no longer parallel, so the section of a vertical column varies with the hydrostatic pressure.

- The vertical velocity is now taken in account in the Coriolis term through a pseudo-vertical velocity W defined by $W = \frac{dr}{dt}$. W also appears in some new curvature terms.

- The total geopotential Φ, which appears in the RHS of the wind equation, is no longer equal to the geopotential height gz.

Details about deep layer equations (definition and expression of r, W, geopotential relationships) is given in the documentation (IDEUL) about model equations and Eulerian dynamics and is not detailed again here. All calculations giving the below formulation of primitive equations is also given in the documentation (IDEUL).

4.3.2 Momentum equation.

Coriolis force can be treated explicitly ($\delta_V=0$) or implicitly ($\delta_V=1$) in the Lagrangian equation.

\[
\frac{d(V + \delta_V(2\Omega \wedge r))}{dt} = (1 - \delta_V)(-2\Omega \wedge V - 2\Omega \wedge Wk) - \frac{W}{r}V - \nabla \Phi - (RT + \mu_s R dT) \nabla (\log \Pi) + F_V
\]

F_V is the physical contribution on horizontal wind. See documentation (IDEUL) for definition of Φ and μ_s.

4.3.3 Thermodynamic equation.

Lagrangian tendency:

\[
\frac{d \left(T + \delta_{TR} \frac{T \Phi s R dT}{\Pi} \right)}{dt} = \frac{d \left(\delta_{TR} \frac{T \Phi s R dT}{\Pi} \right)}{dt} + \frac{RT}{\Pi} \omega + F_T
\]

F_T is the physical contribution on temperature. When $\delta_{TR} = 1$ the Eulerian treatment of orography is applied and the prognostic variable is replaced by one variable less sensitive to the surface orography. This modification has been proposed by Ritchie and Tanguay (1996).

This equation is unchanged compared to its expression in the thin layer equations. The only change is the diagnostic expression of ω (see documentation (IDEUL) for details about expression and discretisation of ω).
4.3.4 Continuity equation.

The equation which is discretised is the vertically integrated Lagrangian formulation of continuity equation.

\[
\int_{\eta=0}^{\eta=1} \frac{\partial}{\partial \eta} \left[\frac{\log \Pi + \delta_{TR} \frac{\Phi_s}{\Pi})}{\rho_T} \right] d\eta = \int_{\eta=0}^{\eta=1} \frac{\partial}{\partial \eta} \left[\frac{\log \Pi + \delta_{TR} \frac{\Phi_s}{\Pi})}{\rho_T} \right] d\eta + \int_{\eta=0}^{\eta=1} \frac{\partial}{\partial \eta} \left[\frac{\log \Pi + \delta_{TR} \frac{\Phi_s}{\Pi})}{\rho_T} \right] d\eta
\]

where \(\frac{\partial \log (\Pi)}{\partial \eta}\) is given by equation:

\[
\frac{\partial \log (\Pi)}{\partial \eta} = -\frac{1}{\rho_T} \left[\frac{\partial \Pi}{\partial \eta} \right] \eta + \frac{1}{\rho_T} \left[\frac{\partial \Pi}{\partial \eta} \right] \eta = \frac{1}{\rho_T} g [F_m] \eta - \frac{1}{\rho_T} g [F_m] \eta \tag{21}
\]

4.3.5 Advectable GFL variables.

These equations are identical to the thin layer model ones.

4.3.6 Non advectable pseudo-historic GFL variables.

These equations are identical to the thin layer model ones.

4.4 The thin layer 3D NH-PDVD non-hydrostatic model: Lagrangian formulation.

4.4.1 Basics about NH equations.

The system of equations uses an idea of Laprise (1992) to be consistent with the hydrostatic equations: pressure \(p\) is split into an hydrostatic contribution (hydrostatic pressure \(\Pi\)) and an anhydrostatic departure (\(p - \Pi\)). \(\Pi\) is still used as an independent prognostic variable. This way of treating the non-hydrostatic equations is compatible with the use of a terrain-following vertical coordinate (\(\eta\)). For NPDVAR=2 and NVDVAR=3 the non-hydrostatic system of equations includes two additional prognostic variables: a variable \(Q\) linked to the pressure departure (its expression is \(Q = \log \frac{p}{\Pi}\)), and a vertical divergence \(d\). Details about these equations (choice of the two additional prognostic variables, discretisations, linearisation for semi-implicit scheme) can be found in (Bubnová et al., 1995), (Geleyn and Bubnová, 1995), (IDNHPB), (IDVNH1), (IDVHN2) and (IDVNH3). For the vertical divergence equation, it is also possible to use the prognostic variable:

\[
d_4 = d + x
\]

where:

\[
x = \frac{p}{\rho_T RT} \nabla \Phi \left(\frac{\partial \Phi}{\partial \eta} \right)
\]

4.4.2 Momentum equation.

Vectorial form of momentum equation is used. Coriolis force can be treated explicitly (\(\delta \Phi = 0\)) or implicitly (\(\delta \Phi = 1\)).

\[
\frac{d}{dt} (V + \delta \Phi (2\Omega \wedge r)) = [-2(1 - \delta \Phi)(\Omega \wedge V)] - \frac{\partial p}{\partial \Phi} \nabla \Phi - RT \frac{\nabla (p)}{p} + F_V \tag{22}
\]

The pressure gradient term is modified compared to the hydrostatic case. One can see that both non-hydrostatic pressure \(p\) and hydrostatic pressure \(\Pi\) are used in the RHS (right hand side) of equation (22). Term \(\nabla (p)\) replaces \(\nabla (\log p)\), the discretisation of this term is no longer a discretisation of \(\nabla (\log p)\) and is slightly more complicated (more details are given in documentation (IDEUL)).

4.4.3 Thermodynamic equation.

\[
\frac{dT}{dt} = \frac{RT}{c_p} \left(\frac{\delta T}{\delta p} \right) + F_T \tag{23}
\]

The RHS of equation (23) now uses the total pressure \(p\). This equation can be rewritten in order to use the true 3D divergence \(D_3\) in the RHS.

\[
\frac{dT}{dt} = \frac{RT}{c_v} D_3 + \left[\frac{c_p}{c_v} F_T \right] \tag{24}
\]
Expression of D_3 is:
\[D_3 = \nabla \Phi + \frac{p}{\partial \eta} \nabla \left(\frac{\partial V}{\partial \eta} \right) - \frac{gp}{RT} \left(\frac{\partial w}{\partial \eta} \right) \tag{25} \]

As for hydrostatic temperature equation, this equation can be modified by replacing temperature T by $T + \delta_T \frac{\alpha_T \Phi_s}{R_u}$ which is less sensitive to orography.

\[\frac{d}{dt} \left(T + \delta_T \frac{\alpha_T \Phi_s}{R_u} \right) = \frac{d}{dt} \left(\delta_T \frac{\alpha_T \Phi_s}{R_u} \right) - \frac{RT}{c_v} D_3 + \left[\frac{cp}{c_v} F_T \right] \tag{26} \]

See equation (12) for definition of α_T. Term $\frac{d}{dt} \left(\delta_T \frac{\alpha_T \Phi_s}{R_u} \right)$ only contains advection terms linked to horizontal variations of orography and vertical variations of coefficient α_T.

4.4.4 Continuity equation.
This equation is unchanged compared to the hydrostatic case and only uses the hydrostatic pressure Π.

4.4.5 Ad vectable GFL variables and pseudo-historic non-ad vectable GFL variables.
These equations are unchanged compared to the hydrostatic case.

4.4.6 Pressure departure variable \hat{Q} equation.
This part is valid for NPDVAR=2.

Definition of \hat{Q} is:
\[\hat{Q} = \log \frac{p}{\Pi} \tag{27} \]

Equation of \hat{Q} is:
\[\frac{d\hat{Q}}{dt} = -\frac{cp}{c_v} D_3 - \frac{\omega}{\Pi} + \frac{cp}{c_v} F_T \tag{28} \]

where D_3 is defined by equation (25). The physical contribution of \hat{Q} is linked to the physical contribution of T.

4.4.7 Vertical velocity w and vertical divergence d equations.

* Using d as prognostic variable: This part is valid for NVDVAR=3.

The relationship between d and w writes:
\[d = -\frac{gp}{R_u T \frac{\partial w}{\partial \eta}} \left(\frac{\partial w}{\partial \eta} \right) \tag{29} \]

Equation of d is:
\[\frac{dd}{dt} = -dD_3 + d\nabla V - \frac{gp}{R_u T \frac{\partial w}{\partial \eta}} \left(\frac{\partial w}{\partial \eta} \right) + \frac{gp}{R_u T \frac{\partial w}{\partial \eta}} ((\nabla _w) \left(\frac{\partial V}{\partial \eta} \right) + F_d \tag{30} \]

The physical contribution of d is linked to F_w which is the physical contribution of w, and also to F_m' (continuity equation for NDPSFI=1) by the following relationship:
\[F_d = -\frac{\hat{d}}{\frac{\partial w}{\partial \eta}} F_m' - \left[\frac{gp}{R_u T \frac{\partial w}{\partial \eta}} \frac{\partial F_w}{\partial \eta} \right] \tag{31} \]

One can notice that the RHS of equation (30) contains the term $\frac{\partial w}{\partial \eta}$ which requires the computation of $\frac{dw}{dt}$ (at least its adiabatic part).

Equation of w is:
\[\frac{dw}{dt} = g \frac{\partial (p - \Pi)}{\partial \Pi} + F_w \tag{32} \]
At the surface we have to use another equation (which requires some assumptions about the surface wind):

\[g \frac{dV_{surf}}{dt} = \frac{dV_{surf}}{dt} \nabla \Phi_s + V_{surf} [V_{surf} \nabla (\nabla \Phi_s)] + F_{w_{surf}} \]

(33)

Value of term \(\frac{dV_{surf}}{dt} \nabla \Phi_s + V_{surf} [V_{surf} \nabla (\nabla \Phi_s)] \) contains the horizontal second derivatives of surface orography and Coriolis term (cf. equation (32) of Geleyn and Bubnová, 1995). Its calculation is rather tricky and is not detailed in this documentation (for more details, see documentation (IDEUL)).

Remark: an alternative formulation is to mix the \(w \) equation in the advection scheme and the \(d \) equation in the other parts of the code.

* Using \(d_4 \) as prognostic variable: This part is valid for NVDVAR=4.

Equation of \(d_4 \) is:

\[\frac{d d_4}{dt} = \frac{dd}{dt} + \frac{dX}{dt} \]

(34)

where \(\frac{dX}{dt} \) is the Lagrangian total derivative of the quantity \((X = \frac{p}{\rho RT} \nabla \Phi \cdot \frac{\partial V}{\partial \eta}) \). The calculation of \(\frac{dX}{dt} \) is not done by a semi-Lagrangian temporal advection but simply by a diagnostic.

4.5 The deep layer NH-PDVD non-hydrostatic model according to Wood and Staniforth, 2003: Lagrangian formulation.

4.5.1 Basics deep layer equations.

* New features brought in the deep layer equations: The following modifications are done:

- One takes account to the fact, that the distance to the Earth centre is no longer \(\alpha \) but a radius \(r \) varying with the vertical. No specific approximation is done on this radius. Two vertical lines are no longer parallel, so the section of a vertical column varies with the altitude.
- The vertical velocity \(w \) is now taken into account in the Coriolis term. \(w \) also appears in some new curvature terms.
- Relationship between \(r \) and \(w \) is \(\frac{dr}{dt} = w \).
- The total geopotential \(\Phi \) does not appear in the adiabatic equations (it is replaced by \(G_z = G(r-a) \)); it may appear in some energetic quantities; \(\Phi \) is not always equal to \(G_z \).
- A mass vertically integrated quantity \(\tilde{\Pi} \) is introduced, in order to hide some metric terms, especially in the continuity equation: \(\tilde{\Pi} \) replaces \(\Pi \) in the adiabatic equations (\(\Pi \) becomes, if needed, a diagnostic quantity).

The definition of the hybrid vertical coordinate applies for \(\tilde{\Pi} \), not for \(\Pi \). Quantities \(\delta \) and \(\alpha \) (depths of logarithm of hydrostatic pressure) are replaced by \(\tilde{\delta} \) and \(\tilde{\alpha} \) (depths of logarithm of \(\tilde{\Pi} \)). The relationship between \(\tilde{\Pi} \) and \(\Pi \) is:

\[\frac{\partial \tilde{\Pi}}{\partial \Pi} = r^2 G \]

and:

\[\tilde{\Pi}_{top} = \Pi_{top} \]

- The vertical variations of \(g \) may be taken into account (optionally): we denote by \(g \) the vertically-dependent value and by \(G \) the constant reference value \((g = G \text{ where } r = a) \).
- \(\omega \) is now \(\omega = \frac{d\tilde{\Pi}}{dr} \).

See documentation (IDEUL) for more details about the calculation of \(r \) and \(\tilde{\Pi} \).

4.5.2 Momentum equation.

Modifications brought by the deep-layer formulation are:

- Additional Coriolis \(w \) terms and curvature \(w \) terms: they are similar to those of the White and Bromley formulation, but this is \(w \) and not \(W \) which appears.
- \(\Phi \) is replaced by \(Gr \), and \(\Pi \) is replaced by \(\tilde{\Pi} \) in the pressure gradient term: these modifications explain why some metric terms appear.
- Contrary to the White and Bromley formulation, there are no \(\mu \) terms appearing in the pressure gradient term (it appears in the \(w \) equation instead).

The momentum equation writes:

\[\frac{d(V + \delta V(2\Omega \wedge r))}{dt} = [-2(1 - \delta V)(\Omega \wedge V + 2\Omega \wedge w k)] - \frac{w}{r} V - r^2 \frac{\partial p}{\partial \Pi} \nabla [Gr] - RT \frac{\nabla (p)}{p} + F_V \]

(35)
4.5.3 Thermodynamic equation.
Equation (26) is still valid, but the calculation of D_3 is modified (see documentation (IDEUL) for more details).

4.5.4 Continuity equation.
Nature of changes:
- Π is changed into $\bar{\Pi}$.
- Some metric terms appear: replace $\nabla \left(\frac{a}{V} \frac{\partial \Pi}{\partial \eta} \right)$ by $\nabla \left(\frac{2a}{V} \frac{\partial \Pi}{\partial \eta} \right)$.
- G appears in factor of the diabatic term.

For example, the vertically integrated Lagrangian formulation of the continuity equation writes:

$$
\int_{\eta=0}^{\eta=1} \frac{\partial B}{\partial \eta} \left[\frac{\partial \log(\Pi_{\text{ref}} / \Pi_{\text{ref}})}{\partial \eta} \right] \, d\eta =
\int_{\eta=0}^{\eta=1} \frac{\partial B}{\partial \eta} \left(-\frac{1}{\Pi} \nabla \left(\frac{2a}{V} \frac{\partial \Pi}{\partial \eta} \right) \right) \, d\eta +
\nabla \left[\log(\Pi_{\text{ref}} / \Pi_{\text{ref}}) \right] \left[\frac{\partial \Pi}{\partial \eta} \right]_{\eta=1} +
\frac{1}{\Pi} \left[\frac{\partial \Pi}{\partial \eta} \right]_{\eta=0} -
\frac{1}{\Pi} G \left[F_{\text{m}} \right]_{\eta=1}
$$

4.5.5 Advectable GFL variables and pseudo-historic non-advectable GFL variables equations.
Cf. thin layer equations.

4.5.6 Pressure departure variable \hat{Q} equation.
This part is valid for NPDVAR=2.
Definition of \hat{Q} is modified:

$$
\hat{Q} = \log \left(\frac{p}{\Pi} \right) + \delta_P \log \left(\frac{\bar{\Pi}_{\text{ref}}}{\Pi_{\text{ref}}} \right)
$$

where $\bar{\Pi}_{\text{ref}}$ and Π_{ref} are reference values based on the standard atmosphere ($\log(\bar{\Pi}_{\text{ref}} / \Pi_{\text{ref}})$ is temporally constant and constant along the η surfaces). It is desirable to take a value of δ_P close to 1.

Equation of \hat{Q} is:

$$
\frac{d\hat{Q}}{dt} = -\frac{c_p}{c_v} D_3 - \frac{\omega}{\Pi} + \frac{\Pi}{\Pi_{\text{ref}}} \frac{\partial \log(\bar{\Pi}_{\text{ref}} / \Pi_{\text{ref}})}{\partial \eta} + \frac{c_p}{c_v} F_{\hat{Q}}
$$

where D_3 is defined by equation (25). The physical contribution of \hat{Q} is linked to the physical contribution of T.

4.5.7 Vertical velocity w and vertical divergence d equations.
Equation of w is:

$$
\frac{dw}{dt} = -G\mu_s - (g - G) + G \left(\frac{r^2}{a^2} - 1 \right) \frac{\partial p}{\partial \Pi} + G \frac{\partial (p - \Pi)}{\partial \Pi} + F_w
$$

The surface condition writes:

$$
w_{\text{surf}} = \mathbf{V}_{\text{surf}} \nabla \mathbf{r}
$$

and this relationship can be used to compute $\frac{dw_{\text{surf}}}{dt}$. Currently only the diagnostic calculation of w_{surf} is used in the code.

Lagrangian tendency of d equation:

$$
\frac{dd}{dt} = -dD_3 + d \nabla \mathbf{V} = \frac{Gp}{R_d T \frac{\partial p}{\partial \eta}} \frac{\partial \left[\frac{d^2 \mathbf{V}}{\partial \eta^2} \right]}{\partial \eta} + \frac{Gp}{R_d T \frac{\partial p}{\partial \eta}} \left(\nabla \left(\frac{r^2}{a^2} w \right) \right) \left(\frac{\partial \mathbf{V}}{\partial \eta} \right) + F_d
$$

4.6 The thin layer NH-GEOGW non-hydrostatic model: Lagrangian formulation.
See part 4.4 for momentum, temperature, continuity and GFL equations.
The NH prognostic variables are now Φ (or $\Phi + \delta_{\text{GEO}} B\Phi_s$) and gw (or $gw + \delta_w Bgw_s$). See equation (39) for gw equation. Equation for Φ is:

$$
\frac{d\Phi}{dt} = gw + F_{\Phi}
$$
5 Discretisation of the equations: general aspects.

This section does not describe in detail iterative centred-implicit schemes and describes only non-iterative schemes in detail. For more details about iterative centred-implicit schemes, see documentation (IDSI).

5.1 Denotations.

* Upper index:
 - First integration step: + (resp. \(m, o, -\)) for \(t + \Delta t\) (resp. \(t + 0.5\Delta t, t, t\)) quantity.
 - Following integration steps: + (resp. \(m, o, -\)) for \(t + \Delta t\) (resp. \(t + 0.5\Delta t, t, t - \Delta t\)) quantity.

* Lower index: \(F\) (resp. \(M\) and \(O\)) for final (resp. medium and origin) point.

* Particular case of the first timestep in a SL3TL scheme: Written discretisations are valid from the second integration step. \(\Delta t\) has to be replaced by \(\frac{\Delta t}{2}\) for the first integration step (in this case the \(t - \Delta t\) quantities are equal to the \(t\) quantities).

* The different classes of prognostic variables: Prognostic variables can be split into different classes:
 - 3D variables, the equation RHS of which has a non-zero adiabatic contribution and a non-zero semi-implicit correction contribution. They are called “GMV” in the code (“GMV” means “grid-point model variables”). This class of variables includes wind components, temperature (and the two additional non-hydrostatic variables in a non-hydrostatic model). The sub-class of thermodynamic variables includes \(T\), and the two additional non-hydrostatic variables in a non-hydrostatic model. There are \(N\) thermodynamic variables.
 - 3D advectable “conservative” variables. The equation RHS of these variables has a zero adiabatic contribution, only the diabatic contribution (and the horizontal diffusion contribution) can be non-zero. They are called “GFL” in the code (“GFL” means “grid-point fields”). This class of variables includes for example humidity, liquid water, ice, cloud fraction, ozone, TKE, aerosols, and some extra fields. See documentation (IDEUL) for a comprehensive list of advectable GFL.
 - 3D non advectable pseudo-historic variables. The equation RHS of these variables looks like the one of the 3D advectable “conservative” variables, but there is no advection. They are included in the GFL variables. This class of variables includes for example rain, snow, graupels, hail, convective precipitation flux, stratiform precipitation flux, SRC (second-order flux for AROME), forcings, easy diagnostics, greenhouse gases, moisture convergence, total humidity variation, standard deviation of the saturation depression, convective vertical velocity. See documentation (IDEUL) for a comprehensive list of non advectable pseudo-historic GFL.
 - 2D variables, the equation RHS of which mixes 3D and 2D terms, has a non-zero adiabatic contribution and a non-zero semi-implicit correction contribution. They are called “GMVS” in the code (“GMVS” means “grid-point model variables for surface”). This class of variables includes the logarithm of surface pressure (continuity equation).

5.2 Discretisation for a 3D variable in a 3D model: general case where the RHS has non-zero linear and non-linear terms (GMV variables).

5.2.1 List of equations.

- Momentum equation.
- Temperature equation.
- Pressure departure variable (non-hydrostatic model only).
- Vertical divergence variable (non-hydrostatic model only).

5.2.2 Generic notations.

Generic notation \(N(X)LAG\) stands for:

- \(NWLAG\) for momentum equation.
- \(NTLAG\) for temperature equation.
- \(NSPDLAG\) for pressure departure variable (non-hydrostatic model only).
- \(NSVDLAG\) for vertical divergence (non-hydrostatic model only).
Generic notation $P(X)L0$, $P(X)L9$, $P(X)T1$ stands for:

- $PUL0$, $PUL9$, $PUT1$ for U-momentum equation.
- $PVL0$, $PVL9$, $PVT1$ for V-momentum equation.
- $PTL0$, $PTL9$, $PTT1$ for temperature equation.
- $PSPDL0$, $PSPDL9$, $PSPDT1$ for \hat{Q} equation.
- $PSVDL0$, $PSVDL9$, $PSVDT1$ for d equation.

Generic notation $P(X)NLT9$ stands for:

- $PUNLT9$ for U-momentum equation.
- $PVNLT9$ for V-momentum equation.
- $PTNLT9$ for temperature equation.
- $PSPDNLT9$ for \hat{Q} equation.
- $PSVDNLT9$ for d equation.

Generic notation for total term, linear term, non-linear term, physics: A is the total term (sum of dynamical contributions), B is the linear term (treated in the semi-implicit scheme), the difference $A - \beta B$ is the non-linear term. F is the sum of contributions computed in the physical parameterizations.

Description stands for the general case where linear and non-linear terms are gathered in the same buffer, and where no additional splitting is required to do diagnostics or to apply SLHD interpolations to a subset of the terms interpolated by a high-order interpolation. In some particular cases, additional splitting involving separate buffers may be required:

- In the NH model for options where linear terms must be separately interpolated (controlled by variables $LSLINL$, $LSLINLC1$ and $LSLINLC2$). Linear terms are stored in arrays, the name of them has appendix SI, or in parts of $PB1$ with pointers, the name of them has appendix SI.

- Splitting between linear and non-linear terms may have to be done for some DDH diagnostics too (if $LRSIDDH=\text{T}$).

- When some diagnostics (for example DDH) impose that evaluation of the dynamics and of the physics at the origin point of the SL trajectory must be done separately in two different buffers (controlled by variable $NSPLTHOI$ set to -1). Buffer $P(X)LF9$ is used instead of $P(X)L9$ to store quantities, the interpolation of which is a non-SLHD high-order one.

- When SLHD interpolations, if switched on, are applied only to a subset of the quantities interpolated by a high order interpolation (applied to $X(t)$ or $X(t - \Delta t)$ but not to the other terms); in particular physics does not use a SLHD interpolation in this case (controlled by variable $NSPLTHOI$ set to 1). Buffer $P(X)LF9$ is used instead of $P(X)L9$ to store quantities, the interpolation of which is a non-SLHD high-order one.

Only case $N(X)LAG=3$ is described in detail, and content of $P(X)L0$, $P(X)L9$ and $P(X)T1$ given below is valid for $N(X)LAG=3$; code also contains cases $N(X)LAG=2$ and $N(X)LAG=4$ for a subset of options:

- $N(X)LAG=2$: $P(X)L0$ is not used; $P(X)L9$ contains the sum of what is spread among $P(X)L0$ and $P(X)L0$ when $N(X)LAG=3$, and is used for high-order interpolation at the origin point O.
- $N(X)LAG=4$: in this case diabatic terms are interpolated by trilinear interpolations and they enter the buffer containing terms interpolated by trilinear interpolations. Start from discretisations given for $N(X)LAG=3$ and move term $\Delta t F$ from $P(X)L9$ to $P(X)L0$.

5.2.3 Other points.

* **High-order interpolations:** In the following discretisations, “high-order interpolations” means 32 points interpolations for 3D terms (vertical interpolations are cubic), 12 points interpolations for 2D terms.

* **Uncentering:** ϵ is a first-order “uncentering factor”. It allows to remove the noise due to gravity waves (orographic resonance).

* **Vectorial variables:** The following discretisations are written for scalar variables. For vectorial variables (for example the horizontal wind) a rotation operator R has to be applied from interpolation point to final point:

 - expression interpolated at O has to be replaced by $R^{OF}\{\text{this expression}\}_O$.
 - expression interpolated at M has to be replaced by $R^{MF}\{\text{this expression}\}_M$.

17
5.2.4 3TL vertical interpolating SL scheme.

Equation
\[\frac{dX}{dt} = A + F \]
(42)
is discretised as follows:
\[(X - (1 + \epsilon)\Delta tB)_{t+\Delta t} = (X^- + (1 - \epsilon)\Delta t[A - \beta B]^m + [(1 - \epsilon)\Delta t\beta B + 2\Delta tF])_O + ((1 + \epsilon)\Delta t[A - \beta B]^m)_F \]
(43)

Buffers content before interpolations for \(N(X)LAG = 3 \):
- **P(X)L0**: \((1 - \epsilon)\Delta t[A - \beta B]^m + [(1 - \epsilon)\Delta t\beta B - \beta B] \) for trilinear interpolation at \(O \).
- **P(X)L9**: \(X^- + [2\Delta tF] - \beta B \) for high-order interpolation at \(O \).
- **P(X)T1**: \((1 + \epsilon)\Delta t[A - \beta B]^m \) then provisional add of quantity \([(1 + \epsilon)\Delta t\beta B]_O \) before \(t + dt \) physics; evaluated at the final point \(F \).

5.2.5 2TL vertical interpolating SL scheme: conventional extrapolation and first-order uncentering.

The \(t + \frac{\Delta t}{2} \) non-linear term \(A^m - \beta B^m \) used in the 2TL SL scheme is computed by a linear temporal extrapolation using the \(t \) and \(t + \Delta t \) quantities at the same location. At the first time integration step, values at \(t + \frac{\Delta t}{2} \) are set equal to initial values. This discretisation of the 2TL SL scheme follows (Mc Donald and Haugen, 1992). Quantity \(A^m - \beta B^m \) has to be saved in a buffer \(P(X)NLT9 \) to be available as \(A^m - \beta B^m \) for the following timestep. Equation (42) is discretised as follows:
\[(X - (1 + \epsilon)\Delta t\beta B)_{t+\Delta t} = (X^- + (1 - \epsilon)\Delta t[A - \beta B]^m + [(1 - \epsilon)\Delta t\beta B + \Delta tF])_O + ((1 + \epsilon)\Delta t[A - \beta B]^m)_F \]
(44)

which can be rewritten, once expanded the extrapolation:
\[(X - (1 + \epsilon)\Delta t\beta B)_{t+\Delta t} = [X^- + \frac{\Delta t}{2}(1 - \epsilon)A^m + \Delta tF]_O + 0.5(1 - \epsilon)\Delta t[(A - \beta B)^m - (A - \beta B)^-]_O + (1 + \epsilon)\Delta t[1.5(A - \beta B)^m - 0.5(A - \beta B)^-]_F \]
(45)

Buffers content before interpolations for \(N(X)LAG = 3 \):
- **P(X)L0**: \(\frac{\Delta t}{2}(1 - \epsilon)A^m + 0.5(1 - \epsilon)\Delta t[(A - \beta B)^m - (A - \beta B)^-] \) for trilinear interpolation at \(O \).
- **P(X)L9**: \(X^- + [\Delta tF]^m \) for high-order interpolation at \(O \).
- **P(X)T1**: \((1 + \epsilon)\Delta t[1.5(A - \beta B)^m - 0.5(A - \beta B)^-] \) then provisional add of quantity \([(1 + \epsilon)\Delta t\beta B]_O \) before \(t + dt \) physics; evaluated at the final point \(F \).

5.2.6 2TL vertical interpolating SL scheme: conventional extrapolation and pseudo-second order uncentering.

One starts to remove uncentering \(\epsilon \) from the nonlinear terms and to apply a second-order uncentering \(\epsilon_X \) to linear terms, that yields a term \(\beta^X \) in the discretisation. From property:
\[B^- = \beta^O - 2\beta^m \]
(46)
one can remove term \(\beta^- \) and show that discretisation is equivalent to replace \(\beta \) by \((1 + \epsilon_X)\beta \). For more details, see part 5 (equations (37) and (38)) of (Simmons and Temperton, 1996). In equation (44), uncentering \(\epsilon \) has to be replaced by zero, and \(\beta \) has to be replaced by \((1 + \epsilon_X)\beta \). The \(t + \frac{\Delta t}{2} \) non-linear term \(A^m - (1 + \epsilon_X)\beta B^m \) used in the 2TL SL scheme is computed by a linear temporal extrapolation using the \(t \) and \(t + \Delta t \) quantities at the same location. At the first time integration step, values at \(t + \frac{\Delta t}{2} \) are set equal to initial values and second-order uncentering is replaced by a first order uncentering. This discretisation of the 2TL SL scheme follows (Mc Donald and Haugen, 1992). Quantity \(A^m - (1 + \epsilon_X)\beta B^m \) has to be saved in a buffer \(P(X)NLT9 \) to be available as \(A^m - (1 + \epsilon_X)\beta B^m \) for the following timestep. Equation (42) is discretised as follows:
\[(X - (1 + \epsilon_X)\Delta t\beta B)_{t+\Delta t} = [X^- + \frac{\Delta t}{2}(1 + \epsilon_X)\beta B^m + [(1 + \epsilon_X)\Delta t\beta B + \Delta tF]^m]_O + \frac{\Delta t}{2}[A - (1 + \epsilon_X)\beta B]^m]_F \]
(47)

which can be rewritten, once expanded the extrapolation:
\[(X - (1 + \epsilon_X)\Delta t\beta B)_{t+\Delta t} = [X^- + \frac{\Delta t}{2}(1 + \epsilon_X)\beta B^m + \Delta tF]_O + 0.5\Delta t[(A - (1 + \epsilon_X)\beta B)^m - (A - (1 + \epsilon_X)\beta B)^-]_O + \frac{\Delta t}{2}[1.5(A - (1 + \epsilon_X)\beta B)^m - 0.5(A - (1 + \epsilon_X)\beta B)^-]_F \]
(48)

Buffers content before interpolations for \(N(X)LAG = 3 \):
5.2.7 2TL vertical interpolating SL scheme: stable extrapolation and first-order uncentering.

The \(t + \frac{\Delta t}{2} \) non-linear term \(A^n - \beta B^n \) used in the 2TL SL scheme for conventional extrapolation is replaced by a linear spatio-temporal extrapolation comparable to the one applied to the wind components for the research of trajectory (see formula (93)), except the fact that there is an additional uncentering. Term \(A^n - \beta B^n \) is replaced by

\[
0.5(1 + \epsilon)[A^n - \beta B^n]_F + 0.5(2 - \epsilon)[A^n - \beta B^n]_O - 0.5[A^n - \beta B^n]_O
\]

This type of extrapolation is available only for \(N(X)\text{LAG}=3 \). At the first time integration step, values at \(t + \frac{\Delta t}{2} \) are set equal to initial values. Quantity \(A^n - \beta B^n \) has to be saved in a buffer \(P(X)\text{NLT9} \) to be available as \(A^n - \beta B^n \) for the following timestep.

Equation (42) is discretised as follows:

\[
(X - (1 + \epsilon)\frac{\Delta t}{2}) \beta B^n_F = \{X^n + (2 - \epsilon)\frac{\Delta t}{2}[A^n - \beta B^n] - \frac{\Delta t}{2}[A^n - \beta B^n]_O - (1 - \epsilon)\frac{\Delta t}{2}[A^n - \beta B^n]_O + \{(1 + \epsilon)\frac{\Delta t}{2}[A^n - \beta B^n]_F \}
\]

which can be rewritten, once expanded the extrapolation:

\[
(X - (1 + \epsilon)\frac{\Delta t}{2}) \beta B^n_F = \{X^n + \frac{\Delta t}{2}[A^n - \beta B^n] + \frac{\Delta t}{2}[A^n - \beta B^n]_O + \{(1 + \epsilon)\frac{\Delta t}{2}[A^n - \beta B^n]_F \}
\]

Buffers content before interpolations for \(N(X)\text{LAG}=3 \):

- **P(X)L0**: \(\frac{\Delta t}{2}[A^n - \beta B^n]_F \) for trilinear interpolation at \(O \).
- **P(X)L9**: \(X^n + [\Delta tF]^n \) for high-order interpolation at \(O \).
- **P(X)T1**: \(\frac{\Delta t}{2}[A^n - \beta B^n]_F \) then provisional add of quantity \([(1 + \epsilon)\frac{\Delta t}{2}\beta B^n]_F \) before \(t+d\tau \) physics; evaluated at the final point \(F \).

5.2.8 2TL vertical interpolating SL scheme: stable extrapolation and pseudo-second order uncentering.

In equation (49), uncentering \(\epsilon \) has to be replaced by zero, and \(\beta \) has to be replaced by \((1 + \epsilon_x)\beta \). At the first time integration step, values at \(t + \frac{\Delta t}{2} \) are set equal to initial values and second-order uncentering is replaced by a first order uncentering. Quantity \(A^n - (1 + \epsilon_x)\beta B^n \) has to be saved in a buffer \(P(X)\text{NLT9} \) to be available as \(A^n - \beta B^n \) for the following timestep.

Equation (42) is discretised as follows:

\[
(X - (1 + \epsilon_x)\frac{\Delta t}{2}) \beta B^n_F = \{X^n + \Delta t[A - (1 + \epsilon_x)\beta B^n] - \frac{\Delta t}{2}[A - (1 + \epsilon_x)\beta B^n]_O + \{(1 + \epsilon_x)\frac{\Delta t}{2}[A - \beta B^n]_F \}
\]

which can be rewritten, once expanded the extrapolation:

\[
(X - (1 + \epsilon_x)\frac{\Delta t}{2}) \beta B^n_F = \{X^n + \frac{\Delta t}{2}[A - \beta B^n] + \frac{\Delta t}{2}[A - \beta B^n]_O + \{(1 + \epsilon_x)\frac{\Delta t}{2}[A - \beta B^n]_F \}
\]

Buffers content before interpolations for \(N(X)\text{LAG}=3 \):

- **P(X)L0**: \(\frac{\Delta t}{2}[A^n - \beta B^n]_F \) for trilinear interpolation at \(O \).
- **P(X)L9**: \(X^n + [\Delta tF]^n \) for high-order interpolation at \(O \).
- **P(X)T1**: \(\frac{\Delta t}{2}[A - (1 + \epsilon_x)\beta B^n]_F \) then provisional add of quantity \([(1 + \epsilon_x)\frac{\Delta t}{2}\beta B^n]_F \) before \(t+d\tau \) physics; evaluated at the final point \(F \).
5.2.9 Specific treatment for some options in the vertical divergence equation.

* Option LGWADV=.T.. When this option is activated, the SL scheme treats the Lagrangian equation of \(w \) instead of the one of \(d \) (or \(d_A \)). That implies the following steps in the code:

- Change of variable from \(d \) or \(d_A \) to \(w \).
- SL explicit treatment of the \(w \) equation. For finite difference vertical discretisation (LVFE GW=F) \(w \) is given at half levels: that means that the SL trajectory must be computed also for trajectories ending at half levels. For finite element vertical discretisation (LVFE GW=T) \(w \) is given at full levels. There is a specific treatment for \(w_{surf} \) (diagnostic condition at \(t + \Delta t \)).
- Calculation of the linear terms of the \(d \) equation for the semi-implicit scheme.
- Conversion from \(w^+ \) into \(d^+ \) or \(d_A^+ \). If \(\text{LVFE GW=T} \), this conversion is done by applying the vertical derivation to the temporal increment of \(w \) to obtain the temporal increment of \(d \).
- Add the linear terms to \(d^+ \) or \(d_A^+ \).

It is necessary to keep the prognostic variable \(d \) or \(d_A \) in the linear model: \(w \) in the linear model would lead to linear instabilities.

This option allows to remove spurious chimneys above slopes, and also spurious noise in some “bubble” tests.

* Option NVDVAR=4. In this case we must discretize the term \(\frac{\partial}{\partial t} \), and this is not done by a SL treatment of the equation of \(x \) (the RHS of this equation is not easy to compute).

If there is no predictor-corrector scheme activated, this term is diagnosed as follows:

- Three-time level semi-Lagrangian scheme: \(\frac{dx}{dt} = \frac{[0.5\tilde{x} - 0.5\tilde{x}_o]}{\Delta t} \).
- Two-time level semi-Lagrangian scheme: \(\frac{dx}{dt} = \frac{[\tilde{x}_o - \tilde{x}_o]}{\Delta t} \).

\(\tilde{x}_o \) is a symbolic denotation for the extrapolated \(t + 0.5\Delta t \) value of \(x \). The way of extrapolating depends on \(\text{LSETTTLs and LNESC} \) and is the same as for the other terms evaluated at \(t + 0.5\Delta t \) (there is no interpolation at \(M \)).

If \(\text{LPC FULL=}=.T. \) these discretisations also apply to the predictor step; in this case there are two options:

- Option 1 (ND4SYS=1): include all the contributions of the evolution of \(x \) in the predictor-corrector scheme iterations.
- Option 2 (ND4SYS=2): include only the advective contributions evolution of \(x \) in the predictor-corrector scheme iterations; after the last step of the corrector step, include the non advective processes.

In some cases, option 1 may generate instabilities above slopes.

* Assumptions at the surface (velocities). Calculation of \(\frac{dw_{surf}}{dt} \) for the layer \(l = L \) requires the calculation of \(\frac{\partial w_{surf}}{\partial t} \). There are two options to compute \(\frac{\partial w_{surf}}{\partial t} \), controlled by variable \(\text{LRDBBC} \).

- For \(\text{LRDBBC=}=.F. \), one simply discretizes equation (33) with a SL treatment. The RHS of this equation contains \(\frac{\partial w_{surf}}{\partial t} \) and \(V_{surf} \), and the assumptions currently done about these quantities are:
 - \(V_{surf} = V_{l=L} \)
 - \(\frac{\partial V_{surf}}{\partial t} = [\frac{\partial V}{\partial t}_{l=L,adlab} \] with an explicit treatment of the Coriolis term, even if \(\text{LADVF=}=.T. \) or \(\text{LIMPF=}=.T. \).
- An alternate discretisation (option \(\text{LRDBBC=}=.T. \)) is to evaluate \(dw_{surf}/dt \) by:
 - SL3TL: \(dw_{surf}/dt = \frac{(w_{l=L}^+ - w_{l=L}^-)}{(2\Delta t)} \)
 - SL2TL: \(dw_{surf}/dt = \frac{(w_{l=L}^+ - w_{l=L}^-)}{(\Delta t)} \)

which requires additional interpolations to compute \(w_{l=L}^- \).

This option allows to remove spurious chimneys above slopes. \(w^+ \) is computed by:

\[
w^+ = V_{l=L,prov}^+ \nabla \Phi
\]

where \(V_{l=L,prov}^+ \) is the provisional \(t + \Delta t \) value of \(V_{l=L} \) computed just after the interpolations (this is this provisional value which is used as input for the lagged physics).

The treatment of \(\frac{\partial}{\partial t} \) for the layer \(l = L \) is done according to the following steps:

- Calculation of \(\frac{\partial w}{\partial t}_{l=L,LRDBBC=F} \) (as if \(\text{LRDBBC} \) were \(.F. \)), \(\frac{\partial w_{surf}}{\partial t}_{l=LRDBBC=F} \) and \(\frac{\partial w_{surf}}{\partial t}_{l=LRDBBC=T} \).

20
Calculation of $\frac{dl}{dt}|_{l=L, lrdbbc=T}$ by the following formula:

$$\left[\frac{dl}{dt} \right]|_{l=L, lrdbbc=T} = \left[\frac{dl}{dt} \right]|_{l=L, lrdbbc=F} - \left(\left[\frac{dw_{surf}}{dt} \right]|_{l=L, lrdbbc=T} - \left[\frac{dw_{surf}}{dt} \right]|_{l=L, lrdbbc=F} \right) \left[\frac{gp}{R_d T} \right]_{l=L, MM} \Delta \Pi$$

where MM is the decentred middle of O and F (that requires a specific interpolation of $\left[\frac{gp}{R_d T} \right]_{l=L}$ at O).

For more details about these calculations and the additional interpolations required, see documentation (IDVNH3), especially the parts 1 to 3.

The above formulae are valid for thin layer equations. For WS2003 deep-layer equations change Π into $\bar{\Pi}$, g into G, w into $(r^2/a^2)w$ in the above formulae.

5.3 Discretisation for a 3D variable in a 3D model: particular case where the RHS has zero linear and non-linear terms (advectable GFL variables).

5.3.1 List of equations.

Humidity equation, and for example:
- Ozone equation.
- Liquid water equation.
- Ice equation.
- Cloudiness equation.
- TKE.
- Aerosols equation.
- Extra GFL variables equations.

See documentation (IDEUL) for a comprehensive list of advectable GFL variables.

5.3.2 Generic notations.

Generic notation $P(X)\text{L9}, P(X)\text{T1}$ stands for:
- $PGFLL9, PGFLT1$ for GFL variables.

Generic notation for total term, linear term, non linear term, physics: A is the total term (sum of dynamical contributions), B is the linear term (treated in the semi-implicit scheme), the difference $A - \beta B$ is the non-linear term. F is the sum of contributions computed in the physical parameterizations. In the present case A and B are equal to zero.

Description stands for the general case where diabatic and adiabatic terms are gathered in the same buffer, and where no additional splitting is required to do diagnostics or to apply SLHD interpolations to a subset of the terms interpolated by a high-order interpolation. In some particular cases, additional splitting involving separate buffers may be required:
- When some diagnostics (for example DDH) impose that evaluation of the dynamics and of the physics at the origin point of the SL trajectory must be done separately in two different buffers (controlled by variable $NSPLTHOI$ set to -1). Buffer $P(X)\text{LF9}$ is used instead of $P(X)\text{L9}$ to store quantities, the interpolation of which is a non-SLHD high-order one.
- When diabatic terms use a different interpolation from the adiabatic one. That can be the case for non-zero values of $NSPLTHOI$, attribute $LTDIABLIN$ set to T. Buffer $P(X)\text{LF9}$ is used instead of $P(X)\text{L9}$ to store diabatic terms to be interpolated.

5.3.3 Other points.

- **High-order interpolations:** In the following discretisations, “high-order interpolations” means: 32 points interpolations for 3D terms (vertical interpolations are cubic), 12 points interpolations for 2D terms. For ozone, vertical cubic interpolations can be replaced by vertical Hermite cubic interpolations (switch $YO3_NL%LHV$ in NAMGFL), or vertical spline cubic interpolations (switch $YO3_NL%LVSPЛИP$ in NAMGFL).

- **Uncentering:** ϵ is a first-order “uncentering factor”. It allows to remove the noise due to gravity waves (orographic resonance).
5.3.4 3TL vertical interpolating SL scheme.

Equation (42) is discretised as follows:

\[X_F^+ = \{ X^- + [2\Delta t F]^- \}_o \]

(54)

Buffers content before interpolations:
- **P(X)L9**: \(X^- + [2\Delta t F]^- \) for high-order interpolation at \(O \).
- **P(X)T1** contains zero; evaluated at the final point \(F \).

5.3.5 2TL vertical interpolating SL scheme.

At the first time integration step, values at \(t + \frac{\Delta t}{2} \) are set equal to initial values. This discretisation of the 2TL SL scheme follows (Mc Donald and Haugen, 1992).

Equation (42) is discretised as follows:

\[X_F^+ = \{ X^o + [\Delta t F]^o \}_o \]

(55)

Buffers content before interpolations:
- **P(X)L9**: \(X^o + [\Delta t F]^o \) for high-order interpolation at \(O \).
- **P(X)T1** contains zero; evaluated at the final point \(F \).

Remark for iterative centred-implicit schemes: For options where this type of scheme involves the momentum equation (this is the case for the option \(\text{LPCFULL}=.T. \)) \(X_F^+ \) has to be recomputed at all iterations of the iterative centred-implicit scheme since the origin point \(O \) is recomputed at each iteration.

5.3.6 Non advectable pseudo-historic GFL variables.

For these variables the discretization always writes (3TL SL and 2TL SL):

\[X_F^+ = \{ X^o + [\Delta t F]^o \}_o \]

(56)

and there are never interpolations.

5.4 Discretisation for a 2D variable in a 3D model (GMVS variables, for example continuity equation).

The equation which is now discretised is:

\[[\mathbf{R}_{\text{inte}}(\text{top}\text{-surf})] \langle \frac{W_{\text{vei}}}{\Delta \eta} dX \rangle_{\text{top}\text{-surf}} = [\mathbf{R}_{\text{inte}}(\text{top}\text{-surf})] \langle \frac{W_{\text{vei}}}{\Delta \eta} A \rangle_{\text{top}\text{-surf}} + [\mathbf{R}_{\text{inte}}(\text{top}\text{-surf})] \langle \frac{W_{\text{vei}} F}{\Delta \eta} \rangle_{\text{top}\text{-surf}} \]

(57)

where:

\[[\mathbf{R}_{\text{inte}}(\text{top}\text{-surf})] \langle \frac{W_{\text{vei}}}{\Delta \eta} \rangle_{\text{top}\text{-surf}} = 1 \]

(58)

and \([\mathbf{R}_{\text{inte}}(\text{top}\text{-surf})] \) is the vertical integral matricial operator (the scalar product [\(\mathbf{R}_{\text{inte}}(\text{top}\text{-surf}) \langle X \rangle \) is the discretisation of \(\int_{\eta=0}^{1} X d\eta \), \(\langle X \rangle \) is the vector containing the layer values of \(X \): \((X_1; X_2; \ldots; X_1; \ldots; X_L) \)).

In the thin layer equations or in the Wood and Staniforth formulation of deep-layer equations, expression of \(W_{\text{vei}} \) at full levels is:

\[[W_{\text{vei}}]|_L = \Delta B \]

(59)

In the deep layer equations (White and Bromley, 1995), expression of \(W_{\text{vei}} \) at full levels is:

\[[W_{\text{vei}}] = \begin{bmatrix} \frac{\Delta B}{\mathbf{R}_{\text{inte}}(\text{top}\text{-surf})} \left(\frac{\Delta B}{\Delta \eta} \right) \\ \left(\frac{\Delta B}{\mathbf{R}_{\text{inte}}(\text{top}\text{-surf})} \right) \left(\frac{\Delta B}{\Delta \eta} \right) \end{bmatrix} \]

(60)

When the finite element vertical discretisation is activated (LVERTFE=.T.), \([\mathbf{R}_{\text{inte}}(\text{top}\text{-surf})] \) is a vector tricky to compute, it is precomputed in the setup code under SUVERTFE and stored in the array RINTE or RINTBF11. Vertical integrations are done in routine VERINT. For more details see the part of the appendix of documentation (IDEUL) which explains the computation of matrix \([\mathbf{R}_{\text{inte}}] \). When the finite difference vertical discretisation is activated (LVERTFE=.F.), \([\mathbf{R}_{\text{inte}}(\text{top}\text{-surf})] \) is simply the vector of coordinates \((\Delta \eta)_1; (\Delta \eta)_2; \ldots; (\Delta \eta)_L \) so:
• equation (57) rewrites:
\[
\sum_{l=1}^{L}[W_{vei}]_{l} \left(\frac{dX}{dt} \right)_{l} = \sum_{l=1}^{L}[W_{vei}]_{l}A_{l} + \sum_{l=1}^{L}[W_{vei}]_{l}F_{l}
\]
(61)

• equation (60) rewrites:
\[
[W_{vei}]_{l} = \frac{\Delta B_{l} \left[\frac{\partial}{\partial \eta} \right]_{l}}{\sum_{k=1}^{L}[\Delta B_{k} \left[\frac{\partial}{\partial \eta} \right]_{k}}
\]
(62)

• routine VERINT is not used in this case.

5.4.1 List of equations.

- Continuity equation.

5.4.2 Generic notations.

Generic notation \(N(X)\text{LAG}\) stands for:
- \(NVLAG\) for continuity equation.

Generic notations \(P(X2D)9\) (2D term), \(P(X)T1\) (2D term), \(P(X3D)L9\) (3D term), stand for:
- \(PX9\), \(PSPT1\), \(PCL9\) for continuity equation.

Generic notation \(P(X)NLT9\) (3D term) stands for:
- \(PSPNLT9\) for continuity equation.

Generic notation for total term, linear term, non linear term, physics:
- \(A\) is the total term (sum of dynamical contributions): it is assumed to be a 3D term (sum of 3D and 2D contributions).
- \(B\) is the linear term (treated in the semi-implicit scheme): it is assumed to be a 2D term (vertical integral of a 3D term).
- the difference \(A - \beta B\) is the non-linear term, considered as a 3D term.
- \(F\) is the sum of contributions computed in the physical parameterizations; it is assumed to be a 2D term (vertical integral of a 3D term).

Description stands for the general case where linear and non-linear terms are gathered in the same buffer, and where no additional splitting is required to do diagnostics or to apply SLHD interpolations to a subset of the terms interpolated by a high-order interpolation. In some particular cases, additional splitting involving separate buffers may be required (see in part 5.2).

Buffers content for \(N(X)\text{LAG}=2\) is the same one as for \(N(X)\text{LAG}=3\) but trilinear interpolations are replaced by high-order ones. Only \(N(X)\text{LAG}=3\) is described below.

5.4.3 Other points.

* High-order interpolations: In the following discretisations, “high-order interpolations” means: 32 points interpolations for 3D terms (vertical interpolations are cubic), 12 points interpolations for 2D terms.

* Uncentering: \(\epsilon\) is a first-order “uncentering factor”. It allows to remove the noise due to gravity waves (orographic resonance).

* Horizontal interpolation of 2D terms: Since the horizontal position of the interpolation point is vertical dependent, horizontal interpolations of 2D quantities have to be done for each layer. For example, when interpolating a 2D surface variable at the origin point, \([R_{\text{inte}}(\text{top, surf})] \left[\frac{W_{\text{surf}}}{\Delta \eta} \right]_{P} [\text{surface quantity}]_{O}\) has no reason to be equal to \([\text{surface quantity}]_{O(\eta=1)}\). these quantities are generally different: this is \([R_{\text{inte}}(\text{top, surf})] \left[\frac{W_{\text{surf}}}{\Delta \eta} \right]_{P} [\text{surface quantity}]_{O}\) which has to be computed. \(\left[\frac{W_{\text{surf}}}{\Delta \eta} \right]_{P} [\text{surface quantity}]_{O}\) is the vector containing \(\left[\frac{W_{\text{surf}}}{\Delta \eta} \right]_{P} [\text{surface quantity}]_{O(l)}, \ l = 1 \ to \ L.\) For \(LVERTFE=.F.\) this is \(\sum_{l=1}^{L}[W_{\text{surf}}]_{P}[\text{surface quantity}]_{O(l)}\).
5.4.4 3TL vertical interpolating SL scheme.

Equation (57) is discretised as follows:

\[
(X - (1 + \epsilon)\Delta t \beta B)^P_f = \{(1 + \epsilon)\Delta t[A - \beta B]^m\}_F +\]

\[
[R_{\text{Int}}(\text{top, surf})] \left(\frac{[W]}{\Delta X} \right)_F \{ X^o + (1 - \epsilon)\Delta t[A - \beta B]^m + [(1 - \epsilon)\Delta t\beta B + 2\Delta t F]_O \} \] \tag{63}

Buffers content before interpolations for N(X)LAG = 3:

- P(X3D)L9: \((1 - \epsilon)\Delta t[A - \beta B]^m + [(1 - \epsilon)\Delta t\beta B]^{-}\) for trilinear interpolation at O(l).
- P(X2D)L9: \([X^o + 2\Delta t F]^{-}\) for horizontal high-order interpolation at O(l).
- P(X)T1: \((1 + \epsilon)\Delta t[A - \beta B]^o\) then provisional add of quantity \([(1 + \epsilon)\Delta t\beta B]^o\) before t + dt physics; evaluated at the final point \(F\).

5.4.5 2TL vertical interpolating SL scheme: conventional extrapolation and first-order uncentering.

The \(t + \Delta t\) non-linear term \(A'' - \beta B''\) used in the 2TL SL scheme is computed by a linear temporal extrapolation using the \(t\) and \(t + \Delta t\) quantities at the same location. At the first time integration step, values at \(t + \Delta t\) are set equal to initial values. This discretisation of the 2TL SL scheme follows (McDonald and Haugen, 1992). Quantity \(A'' - \beta B''\) has to be saved in a buffer P(X)NLT9 to be available as \(A'' - \beta B''\) for the following timestep.

Equation (57) is discretised as follows:

\[
(X - (1 + \epsilon)\Delta t \beta B)^P_f = \{(1 + \epsilon)\Delta t[A - \beta B]^m\}_F +\]

\[
[R_{\text{Int}}(\text{top, surf})] \left(\frac{[W]}{\Delta X} \right)_F \{ X^o + (1 - \epsilon)\Delta t[A - \beta B]^m + [(1 - \epsilon)\Delta t\beta B + \Delta t F]^o \} \] \tag{64}

which can be rewritten, once expanded the extrapolation:

\[
(X - (1 + \epsilon)\Delta t \beta B)^P_f = [R_{\text{Int}}(\text{top, surf})] \left(\frac{[W]}{\Delta X} \right)_F \{ X^o + \frac{\Delta t}{O} (1 - \epsilon)A'' + \Delta t F]^o \} \]

\[+0.5[R_{\text{Int}}(\text{top, surf})] \left(\frac{[W]}{\Delta X} \right)_F \{ (1 - \epsilon)\frac{\Delta t}{O}[(A - \beta B)^o - (A - \beta B)^-]_O \}
\[+\frac{\Delta t}{O}(1 + \epsilon)[1.5(A - \beta B)^o - 0.5(A - \beta B)^-]_F \] \tag{65}

Buffers content before interpolations for N(X)LAG = 3:

- P(X3D)L9: \((1 - \epsilon)\frac{\Delta t}{O}[1.5(A - \beta B)^o - 0.5(A - \beta B)^-] + [(1 - \epsilon)\frac{\Delta t}{O}\beta B]^{-}\) for trilinear interpolation at O(l).
- P(X2D)L9: \(X^o + \Delta t F)^o\) for horizontal high-order interpolation at O(l).
- P(X)T1: \((1 + \epsilon)\frac{\Delta t}{O}[1.5(A - \beta B)^o - 0.5(A - \beta B)^-] \) then provisional add of quantity \([(1 + \epsilon)\frac{\Delta t}{O}\beta B]^o\) before t + dt physics; evaluated at the final point \(F\).

5.4.6 2TL vertical interpolating SL scheme: conventional extrapolation and pseudo-second order uncentering.

One starts to remove uncentering \(\epsilon\) from the nonlinear terms and to apply a second-order uncentering \(\epsilon_X\) to linear terms, that yields a term \(B^-\) in the discretisation. From property given by formula (46), one can remove term \(B^-\) and show that discretisation is equivalent to replace \(B^-\) by \(B^+_\epsilon\). For more details, see part 5 (equations (37) and (38)) of (Simmons and Temperton, 1996). In equation (64), uncentering \(\epsilon\) has to be replaced by zero, and \(\beta\) has to be replaced by \(1 + \epsilon_X\). The \(t + \Delta t\) non-linear term \(A'' - (1 + \epsilon_X)\beta B''\) used in the 2TL SL scheme is computed by a linear temporal extrapolation using the \(t\) and \(t + \Delta t\) quantities at the same location. At the first time integration step, values at \(t + \Delta t\) are set equal to initial values and second-order uncentering is replaced by a first order uncentering. This discretisation of the 2TL SL scheme follows (McDonald and Haugen, 1992). Quantity \(A'' - (1 + \epsilon_X)\beta B''\) has to be saved in a buffer P(X)NLT9 to be available as \(A'' - (1 + \epsilon_X)\beta B''\) for the following timestep.

Equation (57) is discretised as follows:

\[
(X - (1 + \epsilon_X)\frac{\Delta t}{O} \beta B)^P_f = \{ \frac{\Delta t}{O}[A - (1 + \epsilon_X)\beta B]^m\}_F +\]

\[
[R_{\text{Int}}(\text{top, surf})] \left(\frac{[W]}{\Delta X} \right)_F \{ X^o + \frac{\Delta t}{O}[A - (1 + \epsilon_X)\beta B]^m + [(1 + \epsilon_X)\frac{\Delta t}{O}\beta B + \Delta t F]^o \} \] \tag{66}
which can be rewritten, once expanded the extrapolation:

\[(X - (1 + \epsilon X) \frac{\Delta t}{2} \beta B)_{\text{F}} = [R_{\text{int}}\|_{\text{top, surf}}] \left(\left[\frac{W_{\text{lag}}}{\Delta \nu} \right]_{F} \{ X^o + \frac{\Delta t}{2} A^o + \Delta t F^o \}_{O} \right) \]

\[+ 0.5 [R_{\text{int}}\|_{\text{top, surf}}] \left(\left[\frac{W_{\text{lag}}}{\Delta \nu} \right]_{F} \frac{\Delta t}{2} \{ (A - (1 + \epsilon X) \beta B)^o - (A - (1 + \epsilon X) \beta B)^- \}_{O} \right) \]

\[+ \frac{\Delta t}{2} \{ \{1.5(A - (1 + \epsilon X) \beta B)^o - 0.5(A - (1 + \epsilon X) \beta B)^- \}_{F} \}

Buffers content before interpolations for \(N(X)\)LAG=-3:

- \(P(3D) L9\): \(2TL\) linear interpolation for \(N(X)\)LAG=3 at \(O(I)\).
- \(P(3D) L9\): \(X^o + \{\Delta t F\}^o\) for horizontal high-order interpolation at \(O(I)\).
- \(P(X)^{T1}\): \(\frac{\Delta t}{2} \{ (1 + \epsilon X)(A - (1 + \epsilon X) \beta B)^o - (A - (1 + \epsilon X) \beta B)^- \}_{O} \) then provisional add of quantity \([(1 + \epsilon X) \frac{\Delta t}{2} \beta B]^o\) before \(t+dt\) physics; evaluated at the final point \(F\).

5.4.7 2TL vertical interpolating SL scheme: stable extrapolation and first-order uncentering.

The \(t + \frac{\Delta t}{2}\) non-linear term \(A^m - \beta B^m\) used in the 2TL SL scheme if conventional extrapolation is replaced in the case of stable extrapolation by a linear spatio-temporal extrapolation comparable to the one applied to the wind components for the research of trajectory (see formula (93)), except the fact that there is an additional uncentering. Term \(A^m - \beta B^m\) is replaced by

\[0.5 (1 + \epsilon)(A^+ - \beta B^+)_{\text{F}} + 0.5(2 - \epsilon)(A^+ - \beta B^+)_{\text{O}(l)} - 0.5(A^- - \beta B^-)_{\text{O}(l)}\]

This type of extrapolation is available only for \(N(X)\)LAG=3. At the first time integration step, values at \(t + \frac{\Delta t}{2}\) are set equal to initial values. Quantity \(A^- - \beta B^-\) has to be saved in a buffer \(P(X)\)NLT9 to be available as \(A^- - \beta B^-\) for the following timestep. Equation (57) is discretised as follows:

\[(X - (1 + \epsilon) \frac{\Delta t}{2} \beta B)_{\text{F}} = (1 + \epsilon) \frac{\Delta t}{2} \{ A - \beta B \}^o_{\text{F}} \]

\[+[R_{\text{int}}\|_{\text{top, surf}}] \left(\left[\frac{W_{\text{lag}}}{\Delta \nu} \right]_{F} \{ X^o + (2 - \epsilon) \frac{\Delta t}{2} \{ A - \beta B \}^o - \frac{\Delta t}{2} \{ A - \beta B \}^- + (1 - \epsilon) \frac{\Delta t}{2} \beta B + \Delta t F^o \}_{O} \right) \]

which can be rewritten:

\[(X - (1 + \epsilon) \frac{\Delta t}{2} \beta B)_{\text{F}} = (1 + \epsilon) \frac{\Delta t}{2} \{ A - \beta B \}^o_{\text{F}} \]

\[+[R_{\text{int}}\|_{\text{top, surf}}] \left(\left[\frac{W_{\text{lag}}}{\Delta \nu} \right]_{F} \{ X^o + (1 - \epsilon) \frac{\Delta t}{2} A + \Delta t F^o \}_{O} \right) \]

\[+[R_{\text{int}}\|_{\text{top, surf}}] \left(\left[\frac{W_{\text{lag}}}{\Delta \nu} \right]_{F} \frac{\Delta t}{2} \{ A - \beta B \}^o - \{ A - \beta B \}^- \}_{O} \] \tag{69}

Buffers content before interpolations for \(N(X)\)LAG=3:

- \(P(3D) L9\): \(2TL\) linear interpolation for \(N(X)\)LAG=3 at \(O(I)\) (which can be rewritten: \((1 - \epsilon) \frac{\Delta t}{2} A + \Delta t F^o \)

- \(P(3D) L9\): \(X^o + \{\Delta t F\}^o\) for horizontal high-order interpolation at \(O(I)\).
- \(P(X)^{T1}\): \(\frac{\Delta t}{2} \{ (1 + \epsilon X)(A - (1 + \epsilon X) \beta B)^o - (A - (1 + \epsilon X) \beta B)^- \}_{O} \) then provisional add of quantity \([(1 + \epsilon X) \frac{\Delta t}{2} \beta B]^o\) before \(t+dt\) physics; evaluated at the final point \(F\).
- \(P(3D) L0\) and \(P(3D) D0\) are not used.

5.4.8 2TL vertical interpolating SL scheme: stable extrapolation and pseudo-second order uncentering.

In equation (68), uncentering \(\epsilon\) has to be replaced by zero, and \(\beta\) has to be replaced by \((1 + \epsilon X)\beta\). At the first time integration step, values at \(t + \frac{\Delta t}{2}\) are set equal to initial values and second-order uncentering is replaced by a first order uncentering. Quantity \(A^- - (1 + \epsilon X) \beta B^-\) has to be saved in a buffer \(P(X)\)NLT9 to be available as \(A^- - (1 + \epsilon X) \beta B^-\) for the following timestep. Equation (57) is discretised as follows:

\[(X - (1 + \epsilon X) \frac{\Delta t}{2} \beta B)_{\text{F}} = (1 + \epsilon X) \frac{\Delta t}{2} \{ A - (1 + \epsilon X) \beta B \}^o_{\text{F}} \]

\[+[R_{\text{int}}\|_{\text{top, surf}}] \left(\left[\frac{W_{\text{lag}}}{\Delta \nu} \right]_{F} \{ X^o + \Delta t \{ A - (1 + \epsilon X) \beta B \}^o - \frac{\Delta t}{2} \{ A - (1 + \epsilon X) \beta B \}^- + (1 + \epsilon X) \frac{\Delta t}{2} \beta B + \Delta t F^o \}_{O} \] \tag{70}
which can be rewritten:

\[(X - (1 + \epsilon_X)A)B^\beta\to = \{\frac{\Delta}{A^2}[A - (1 + \epsilon_X)B]^\alpha\}F + [R_{int}(top, surf)] \left([\frac{B}{A^2}]_P X^\alpha + \frac{\Delta t}{A^2}A + \Delta t F^\alpha\right)_O + [R_{int}(top, surf)] \left([\frac{B}{A^2}]_P \frac{\Delta}{X^2}([A - (1 + \epsilon_X)B]^\alpha - [A - (1 + \epsilon_X)B]^\beta)]_O \right) \quad (71)\]

Buffers content before interpolations for \(N(X)LAG=3:\)

- \(P(X)3D)9:) \Delta \{[A - (1 + \epsilon_X)B]^\alpha - \frac{\Delta}{X^2}([A - (1 + \epsilon_X)B]^\alpha - [A - (1 + \epsilon_X)B]^\beta]\} for trilinear interpolation at \(O(l)\) (which can be rewritten: \(\frac{\Delta}{X^2}A + \frac{\Delta}{X^2}([A - (1 + \epsilon_X)B]^\alpha - [A - (1 + \epsilon_X)B]^\beta]\)).
- \(P(X)3D)9:) \Delta \{[A - (1 + \epsilon_X)B]^\alpha - \frac{\Delta}{X^2}([A - (1 + \epsilon_X)B]^\alpha - [A - (1 + \epsilon_X)B]^\beta]\} for horizontal high-order interpolation at \(O(l)\).
- \(P(X)T1:) \frac{\Delta}{X^2}([A - (1 + \epsilon_X)B]^\alpha \text{ for } \text{V-momentum equation.}\)
- \((P(X)T1:) \frac{\Delta}{X^2}([A - (1 + \epsilon_X)B]^\alpha \text{ for } \text{U-momentum equation.}\)
- \(P(X)0:) \text{ is the total term (sum of dynamical contributions), } B \text{ is the linear term (treated in the semi-implicit scheme), the difference } A - \beta B \text{ is the non-linear term.}\)
- \(P(X)0:) \text{ is not used.}\)

5.5 Discretisation for a 2D variable in a 2D model.

The content of the part (5.2) is generally valid, but there are particular remarks.

5.5.1 List of equations.

- Momentum equation.
- Continuity equation.

5.5.2 Generic notations.

Generic notation \(N(X)LAG\) stands for:
- \(NWLAG\) for momentum equation.
- \(NVLAG\) for continuity equation. Negative values of \(NVLAG\) are used for Lagrangian formulation of continuity equation (the following discretisations apply to the absolute value of \(NVLAG\)), only \(NVLAG=2\) is available in this case.

Generic notation \(P(X)L0, P(X)L9, P(X)T1\) stands for:
- \(PUL0, PUL9, PUT1\) for \(\text{U-momentum equation.}\)
- \(PV0, PVL9, PVT1\) for \(\text{V-momentum equation.}\)
- \(PSPL0, PSPL9, PSPT1\) for \(\text{continuity equation.}\)

Generic notation \(P(X)NT9\) stands for:
- \(PUNLT9\) for \(\text{U-momentum equation.}\)
- \(PVNL9\) for \(\text{V-momentum equation.}\)
- \(PSPLT9\) for \(\text{continuity equation.}\)

Generic notation for total term, linear term, \(\text{non linear term: } A \text{ is the total term (sum of dynamical contributions), } B \text{ is the linear term (treated in the semi-implicit scheme), the difference } A - \beta B \text{ is the non-linear term.}\)

Only case \(N(X)LAG=3\) is described in detail, and content of \(P(X)L0, P(X)L9\) and \(P(X)T1\) given below is valid for \(N(X)LAG=3\). For \(N(X)LAG=2\): \(P(X)L0\) is not used; \(P(X)L0\) contains the sum of what is spread among \(P(X)L9\) and \(P(X)L0\) when \(N(X)LAG=3\), and is used for high-order interpolation at \(O\).

5.5.3 Other points.

- **High-order interpolations:** In the following discretisations, “high-order interpolations” means 12 points interpolations.

- **Uncentering:** \(\epsilon\) is a first-order “uncentering factor”. It allows to remove the noise due to gravity waves (orographic resonance).

- **Vectorial variables:** The following discretisations are written for scalar variables. For vectorial variables (for example the horizontal wind) a rotation operator \(R\) has to be applied from interpolation point to final point:
 - expression interpolated at \(O\) has to be replaced by \(R^{OF}\{\text{this expression}\}_O\).
 - expression interpolated at \(M\) has to be replaced by \(R^{MF}\{\text{this expression}\}_M\).

26
5.5.4 3TL SL scheme.
Equation:
\[
\frac{dX}{dt} = A
\]
(72)
is discretised as follows:
\[
(X - (1 + \epsilon) \Delta t B)^+_m = X^+ + [(1 - \epsilon) \Delta t A - (1 - \epsilon) \Delta t B]^m + [(1 - \epsilon) \Delta t A + (1 + \epsilon) \Delta t B]^m \bigg|_O + \bigg\{[(1 + \epsilon) \Delta t A - (1 + \epsilon) \Delta t B]^m \bigg\}_P
\]
(73)
Buffers content before interpolations for \(N(X)\)LAG=3:
- \(P(X)L0\): \([(1 - \epsilon) \Delta t A - (1 - \epsilon) \Delta t B]^m + [(1 - \epsilon) \Delta t A + (1 + \epsilon) \Delta t B]^m \) for bilinear interpolation at \(O\).
- \(P(X)L9\): \(X^+\) for high-order interpolation at \(O\).
- \(P(X)T1\): \([(1 + \epsilon) \Delta t A - (1 + \epsilon) \Delta t B]^m\); evaluated at the final point \(F\).

5.5.5 2TL SL scheme: conventional extrapolation and first-order uncentering.
The \(t + \frac{\Delta t}{2}\) non-linear term \(A^m - \beta B^m\) used in the 2TL SL scheme is computed by a linear temporal extrapolation using the \(t\) and \(t-\Delta t\) quantities at the same location. At the first time integration step, values at \(t + \frac{\Delta t}{2}\) are set equal to initial values. This discretisation of the 2TL SL scheme follows (Mc Donald and Haugen, 1992). Quantity \(A^m - \beta B^m\) has to be saved in a buffer \(P(X)\)NLT9 to be available as \(A^m - \beta B^m\) for the following timestep, when non-zero (i.e. only for continuity equation, if \(\beta = 1\)).

Equation (72) is discretised as follows:
\[
(X - (1 + \epsilon) \frac{\Delta t}{2} B)^+_m = X^+ + [(1 - \epsilon) \frac{\Delta t}{2} A - (1 - \epsilon) \frac{\Delta t}{2} B]^m + [(1 - \epsilon) \frac{\Delta t}{2} A + (1 + \epsilon) \frac{\Delta t}{2} B]^m \bigg|_O + \bigg\{[(1 + \epsilon) \frac{\Delta t}{2} A - (1 + \epsilon) \frac{\Delta t}{2} B]^m \bigg\}_P
\]
(74)
Buffers content before interpolations for \(N(X)\)LAG=3:
- \(P(X)L0\): \([(1 - \epsilon) \frac{\Delta t}{2} A - (1 - \epsilon) \frac{\Delta t}{2} B]^m + [(1 - \epsilon) \frac{\Delta t}{2} A + (1 + \epsilon) \frac{\Delta t}{2} B]^m \) for bilinear interpolation at \(O\).
- \(P(X)L9\): \(X^+\) for high-order interpolation at \(O\).
- \(P(X)T1\): \([(1 + \epsilon) \frac{\Delta t}{2} A - (1 + \epsilon) \frac{\Delta t}{2} B]^m\); evaluated at the final point \(F\).

* Remark for momentum equation: \(\beta\) can only take the value 1 and in this case the non-linear term \(A - B\) is zero; simplifications are done in the code; arrays PVNL9 and PVNL9 are useless and not allocated.

5.5.6 2TL SL scheme: stable extrapolation and first-order uncentering.
The \(t + \frac{\Delta t}{2}\) non-linear term \(A^m - \beta B^m\) used in the 2TL SL scheme if conventional extrapolation is replaced in the case of stable extrapolation by a linear spatio-temporal extrapolation comparable to the one applied to the wind components for the research of trajectory (see formula (93)), except the fact that there is an additional uncentering. Term \(A^m - \beta B^m\) is replaced by
\[
0.5(1 + \epsilon)[A^m - \beta B^m] + 0.5(2 - \epsilon)[A^m - \beta B^m] = 0.5[A^m - \beta B^m]_O
\]
This type of extrapolation is available only for \(N(X)\)LAG=3. At the first time integration step, values at \(t + \frac{\Delta t}{2}\) are set equal to initial values. Quantity \(A^m - \beta B^m\) has to be saved in a buffer \(P(X)\)NL9 to be available as \(A^m - \beta B^m\) for the following timestep, when non-zero (i.e. only for continuity equation, if \(\beta = 1\)).

Equation (72) is discretised as follows:
\[
(X - (1 + \epsilon) \frac{\Delta t}{2} B)^+_m = X^+ + [(2 - \epsilon) \frac{\Delta t}{2} A - (2 - \epsilon) \frac{\Delta t}{2} B]^m - \frac{\Delta t}{2} A - \frac{\Delta t}{2} B + [(1 - \epsilon) \frac{\Delta t}{2} B]^m \bigg|_O + \bigg\{[(1 + \epsilon) \frac{\Delta t}{2} A - (1 + \epsilon) \frac{\Delta t}{2} B]^m \bigg\}_P
\]
(75)
Buffers content before interpolations for \(N(X)\)LAG=3:
- \(P(X)L0\): \([(2 - \epsilon) \frac{\Delta t}{2} A - (2 - \epsilon) \frac{\Delta t}{2} B]^m - \frac{\Delta t}{2} A - \frac{\Delta t}{2} B + [(1 - \epsilon) \frac{\Delta t}{2} B]^m \) for bilinear interpolation at \(O\).
- \(P(X)L9\): \(X^+\) for high-order interpolation at \(O\).
- \(P(X)T1\): \([(1 + \epsilon) \frac{\Delta t}{2} A - (1 + \epsilon) \frac{\Delta t}{2} B]^m\); evaluated at the final point \(F\).

* Remark for momentum equation: \(\beta\) can only take the value 1 and in this case the non-linear term \(A - B\) is zero; simplifications are done in the code; arrays PVNL9 and PVNL9 are useless and not allocated.
5.5.7 2TL SL scheme: pseudo-second order uncentering.

In cycle 42 of ARPEGE/IFS the pseudo-second order uncentering is not coded in the shallow-water model.

5.6 Additional vertical derivatives.

If δ_{TR} is non-zero, discretisation of temperature equation needs to compute the vertical advection $(\dot{q} \frac{\partial \alpha_T}{\partial \eta})$ (at full levels) of α_T. Layers values of α_T (array RCORDIF) are used to define $T + \delta_{TR} \frac{\alpha_T}{\eta}$, but half level values of α_T (array RCORDDIF) are used to compute vertical advection.

There is something similar in the \hat{Q} equation if δ_P is non-zero (Wood and Staniforth deep-layer version of the NH-PDVD model, use of an array RCORPDH).

5.7 Case when some variables are evaluated at half levels.

The prognostic variables and the RHS of equations are generally evaluated at full levels in the discretisation. In the NH-PDVD non-hydrostatic model there is an option allowing to advect w (at half levels) instead of d (at full levels). The previous general considerations valid to layer variables also apply to half level variables, but a “half level” trajectory has now to be computed (the origin O now matches a half level final point F).

- Horizontal displacement at half levels: the coordinates of the half level-trajectory interpolation point are computed as the average (with a vertical weight taking account of η) of the coordinates of the adjacent full level-trajectory interpolation points; this average is a lon-lat average on the computational sphere in spherical geometry, and a x-y average on the projection plane in plane geometry (LAM models).

- Vertical displacement at half levels: the vertical coordinate of the half level-trajectory interpolation point is computed as the average (with a vertical weight taking account of η) of the vertical coordinates of the adjacent full level-trajectory interpolation points; no vertical displacement if there is no vertical displacement for the two adjacent full levels.

- No complete iterative recalculation of trajectory is done for half-level trajectories.

5.8 Remarks for spline cubic vertical interpolations.

In this case the vertical interpolation uses all model levels and can be written as the product of two vertical interpolations: the first one uses all model levels and can be done at F in the unlagged grid-point calculations (the intermediate quantity obtained is stored in the array $P(X)SPL9$), the second one is a 4 points interpolation, done in the lagged grid-point calculations in the interpolation routine. Interpolation routine uses both $P(X)SPL9$ (for interpolations) and $P(X)L9$ to apply a monotonicity constraint.

5.9 Non-extrapolating formulations.

Start from formulations with stable extrapolations; replace:

$[A^n - \beta B^n]_O - 0.5[A^- - \beta B^-]_O$

by:

$0.5[A^n - \beta B^n]_O$

These formulations are generally used in the predictor step when an ICI (PC) scheme is switched on. See documentation (IDSI) for more details.
6 Computation of medium and origin points.

Preliminary remark: the subsections (6.1), (6.2) and (6.3) are detailed for a spherical geometry and for the trajectory which is used in the advection of full level variables; the subsection (6.5) gives informations about the other cases (for example plane geometry and half level variables).

6.1 Medium point \(M \) (subroutines LARMES and LARMES2).

Trajectories are great circles on the geographical sphere. The computation of the medium point \(M \) location of the Lagrangian trajectory is performed by an iterative method described by Robert (1981) and adapted to the sphere by M. Rochas. In a 3TL SL scheme, the particle is at the point \(M \) at the instant \(t \) \((t + 5\Delta t/2\) for the first integration step). In a 2TL SL scheme, the particle is at the point \(M \) at the instant \(t + \Delta t/2 \). \(M \) is at the middle position of the origin point \(O \) and the final point \(F \). Algorithm is described for deep layer equations; in the thin layer equations, replace simply \(r \) by \(a \) in formulae. For convenience equations are written with the angular velocity \(V/r \) but actually this is rather \((a/r)V \) which is used in the code. Parts (6.1.1), (6.1.2) and (6.1.3) are valid for non implicit iterative schemes. Part (6.1.4) is valid for a class of iterative centred-implicit schemes where the momentum equation is treated in an iterative centred-implicit manner (this is the case of the option LPCFULL).

* Denotations:
 - \(R_{MF} \) is the rotation operator from medium point to final point (see section 10).
 - \(\hat{R}_{OF} \) is the rotation operator from origin point to final point (see section 10).
 - \(r^F = CF \) (\(C \) Earth centre, \(F \) final point).
 - \(r^M = CM \) (\(M \) medium point).
 - \(r = rk \).
 - \(\phi^F, \lambda^F \): angle (CM,CF).
 - \(\theta^M, \lambda^M \): latitude, longitude on the geographical sphere of \(M \).
 - \(V^M \): interpolated horizontal wind at \(M \) (wind at \(t \) in 3TL SL scheme, \(t + 0.5\Delta t \) in 2TL SL scheme).
 - \(V^O \): interpolated horizontal wind at \(O \) (wind at \(t \) in 3TL SL scheme, \(t + 0.5\Delta t \) in 2TL SL scheme).
 - \(a \) is the average Earth radius near the surface.
 - \(\Delta t \): time-step.
 - \(\delta t \):
 - In a 3TL SL scheme, \(\delta t = 0.5\Delta t \) at the first integration step, \(\delta t = \Delta t \) at the following integration steps (leap-frog scheme).
 - In a 2TL SL scheme, \(\delta t = 0.5\Delta t \).
 - \(L \): number of layers of the model.
 - \(A, B \) define hydrostatic pressure on the \(\eta \) levels (\(\Pi = A + B\Pi_s \), where \(\Pi_s \) is the hydrostatic surface pressure).
 - \(\Pi_{sat} \) is a reference hydrostatic pressure equal to the surface pressure of the standard atmosphere (variable \(VP00 \)).
 - \(\Pi_{sat} \) is a reference hydrostatic pressure defined at full levels and half levels corresponding to the surface reference hydrostatic pressure \(\Pi_{sat} \) (\(\Pi_{sat} = A + B\Pi_{sat} \)): stored in array STPRE.

* Definition of the vertical coordinate \(\eta \): Research of medium point needs an exact definition of the vertical coordinate \(\eta \). For the half level number \(l \) (\(l \) between 0 and \(L \)), \(\eta_l \) is defined by:
 - Regular spacing (\(LREGETA=.T. \)): \(\eta_l = l/L \).
 - Irregular spacing (\(LREGETA=.F. \)): \(\eta_l = A_l/\Pi_{sat} + B_l \).
For the layer number \(l \) (\(l \) between 1 and \(L \)), \(\eta_l \) is defined by: \(\eta_l = 0.5(\eta_{l-1} + \eta_{l+1}) \).
A specific definition of \(\eta \) may be required for the VFE operators if \(\text{LVERTFE}=.T. \): it is controlled by the key LVFE_REGETA.

6.1.1 Conventional algorithm (always used for 3TL SL scheme, used if conventional extrapolations for 2TL SL scheme).

* Extrapolation of the wind for 2TL SL scheme: The quantity \(V/r \) at \(t + 0.5\Delta t \) used in the 2TL SL scheme is computed by a linear temporal extrapolation using the \(t \) and \(t - \Delta t \) winds at the same location.
Algorithm: The medium point is defined by the following iterative scheme: for the iteration \(k + 1 \):

\[
[r/r]_{k+1}^M = [r/r]^F \cos \phi_k - \frac{R^{MF}(V/r)_{k}^M}{|V/r|^F} \sin \phi_k
\]
(76)

where:

\[
\phi_k = \delta t \frac{\phi}{|V/r|^F}
\]
(77)

\(\phi \) is a small angle:

\[
\sin \phi \simeq \phi - \frac{\phi^3}{6}
\]
(78)

and:

\[
\cos \phi \simeq 1 - \frac{\phi^2}{2}
\]
(79)

This approximation allows to simplify some calculations and avoids the occurrence of a division by 0 in the formula defining \(r_{k+1}^M \). Of course:

\[
\sin \phi \simeq \phi \left(1 - \frac{\phi^2}{6} \right) \simeq |V/r| \frac{\delta t}{(1 - \frac{\phi^2}{6})}
\]
(80)

thus:

\[
[r/r]_{k+1}^M = |V/r|^F \left(1 - \frac{\phi^2}{2} \right) - (V/r)_{k}^M |\frac{\delta t}{(1 - \frac{\phi^2}{6})}
\]
(81)

On the vertical, for 3D model:

\[
\eta_{k+1}^M = \eta^F - \delta t \hat{\eta}_k^M
\]
(82)

First iteration: Let us start with \(M_0 = F \), \(|V/r|^F = |V/r|^F \), \(\phi_0 = \delta t \frac{\phi}{|V/r|^F} \). Horizontal wind \(V \) has components \((u,v)\). Thus

\[
\sin \theta_0^M = \sin \theta^F \cos \phi_0 - \frac{|v/r|^F}{|V/r|^F} \sin \theta^F \sin \phi_0
\]
(83)

\[
\cos \theta_0^M \cos(\lambda_0^M - \lambda^F) = \cos \theta^F \cos \phi_0 + \frac{|u/r|^F}{|V/r|^F} \sin \theta^F \sin \phi_0
\]
(84)

\[
\cos \theta_0^M \sin(\lambda_0^M - \lambda^F) = -\frac{|u/r|^F}{|V/r|^F} \sin \phi_0
\]
(85)

\[
\eta_0^M = \eta^F - \delta t \hat{\eta}_{0}^M
\]
(86)

This defines the coordinates of \(M_1 \). Then \([u/r], [v/r], \eta\) are interpolated at this point, that gives \([V/r]_{1}^M \) and \(\hat{\eta}_{1}^M \). Tri-linear interpolations are used in the 3D primitive equation model, horizontal 12 points interpolations are used in the 2D shallow-water model (see section 12).

Following iterations: Let us denote by \(\tilde{V}(u', v') = R^{MF}(V_k^M) \).

\[
\sin \theta_{k+1}^M = \sin \theta^F \cos \phi_k - \frac{|v'/r|}{|V/r|^F} \sin \theta^F \sin \phi_k
\]
(87)

\[
\cos \theta_{k+1}^M \cos(\lambda_{k+1}^M - \lambda^F) = \cos \theta^F \cos \phi_k + \frac{|u'/r|}{|V/r|^F} \sin \theta^F \sin \phi_k
\]
(88)

\[
\cos \theta_{k+1}^M \sin(\lambda_{k+1}^M - \lambda^F) = -\frac{|u'/r|}{|V/r|^F} \sin \phi_k
\]
(89)

\[
\eta_{k+1}^M = \eta^F - \delta t \hat{\eta}_{k+1}^M
\]
(90)

This defines coordinates of \(M_{k+1} \). Then, if it is not the last iteration, \([u/r], [v/r], \eta\) are interpolated at this point, that gives \([V/r]_{k+1}^M \) and \(\hat{\eta}_{k+1}^M \). Tri-linear interpolations are used in the 3D primitive equation model, horizontal 12 points interpolations are used in the 2D shallow-water model (see section 12). This iterative algorithm quickly converges: 3 iterations are generally enough.
6.1.2 “SETTLS” stable algorithm for 2TL SL scheme.

* Extrapolation of the wind: The previous algorithm with a conventional extrapolation can sometimes generate instability (especially when applied to the vertical displacement) so a stable algorithm has been developed by M. Hortal at ECMWF. For more details about theoretical aspects see (Hortal, 1998), (Hortal, 2002). The basic idea is to replace the purely temporal extrapolation by a spatio-temporal extrapolation:

\[R^{OF}_{MF}[V/r]^M(t + 0.5\Delta t) = 1.5 R^{OF}_{NF}[V/r]^N(t) - 0.5 R^{OF}_{NF}[V/r]^O(t - \Delta t) \]

(91)

where \(N \) is the position of the particle at time \(t \) for a particle which goes from the origin point \(O \) at time \(t - \Delta t \) to \(M \) at time \(t + 0.5\Delta t \). Assuming that the wind is constant along the trajectory one can write:

\[ON = 2NM = 0.5NF \]

(92)

and evaluate the angular velocity \(R^{OF}_{MF}[V/r]^M(t) \) by \(2/3 R^{MF}_{MF}[V/r]^M(t) + 1/3 R^{OF}_{MF}[V/r]^O(t) \) or \(1/3[V/r]^F(t) + 2/3 R^{OF}_{MF}[V/r]^O(t) \). Expression of \([V/r]^M(t + 0.5\Delta t) \) becomes:

\[R^{MF}_{OF}[V/r]^M(t) = 0.5[V/r]^F(t) + 0.5 R^{OF}_{OF}(2[V/r]^O(t) - [V/r]^O(t - \Delta t)) \]

(93)

The same type of extrapolation is done for the \(\eta \)-coordinate vertical velocity. The algorithm of research of trajectory uses directly the RHS of this equation, and for all iterations the origin point \(O \) is computed instead of the medium point \(M \).

* Algorithm: The origin point is defined by the following iterative scheme: for the iteration \(k + 1 \):

\[[r/r]^O_{k+1} = [r/r]^F(t) \cos \phi_k - \frac{0.5[V/r]^F(t) + 0.5 R^{OF}_{OF}(2[V/r]^O(t) - [V/r]^O(t - \Delta t))}{0.5[V/r]^F(t) + 0.5 R^{OF}_{OF}(2[V/r]^O(t) - [V/r]^O(t - \Delta t))} \sin \phi_k \]

(94)

where:

\[\phi_k = 2\Delta t \left(\frac{\partial \phi}{\partial t} \right) + 0.5 R^{OF}_{OF}(2[V/r]^O(t) - [V/r]^O(t - \Delta t)) \]

(95)

Approximations given by equations (78), (79) and (80) are still valid (change \(\Delta t \) by \(2\Delta t \) in (80)), thus:

\[[r/r]^O_{k+1} = [r/r]^F(t) \left(1 - \frac{\phi_k^2}{2} \right) - \frac{0.5[V/r]^F(t) + 0.5 R^{OF}_{OF}(2[V/r]^O(t) - [V/r]^O(t - \Delta t))}{2\Delta t} \left(1 - \frac{\phi_k^2}{2} \right) \]

(96)

On the vertical, for 3D model:

\[\eta_{k+1}^O = \eta^F(t) - 2\Delta t (0.5 \eta^F(t) + 0.5(2\eta^O_{k+1}(t) - \eta^O_{k+1}(t - \Delta t))) \]

(97)

* First iteration: One starts with \(M_0 = F \). \([V/r]^F(t)\) as a first guess for the spatio-temporally extrapolated horizontal angular velocity, \(\phi_0 = 2\Delta t \left(\frac{\partial \phi}{\partial t} \right) \). \(\eta^F(t) \) as a first guess for the spatio-temporally extrapolated \(\eta \)-coordinate vertical wind. Remark that quantities at \(t \) are taken as a first guess and not quantities at \(t + 0.5\Delta t \), contrary to the case with conventional extrapolations. Use equations (83) to (86) replacing \(\Delta t \) by \(2\Delta t \) and the superscript \(M \) by \(O \). This defines the coordinates of \(O_t : (2[V/r]^O(t) - [V/r]^O(t - \Delta t)) \) and \((2\eta(t) - \eta(t - \Delta t)) \) are interpolated at this point, that allows to compute the wind components which will be used for the next iteration.

* Following iterations: \([V/r] \) (of coordinates \([u/r, v/r] \)) is a generic notation for \((0.5[V/r]^F(t) + 0.5 R^{OF}_{OF}(2[V/r]^O(t) - [V/r]^O(t - \Delta t)) \). For horizontal displacement use equations (87) to (89) replacing \(\Delta t \) by \(2\Delta t \) and the superscript \(M \) by \(O \). For vertical displacement use equation

\[\eta_{k+1}^O = \eta^F(t) - 2\Delta t (0.5 \eta^F(t) + 0.5(2\eta^O_{k+1}(t) - \eta^O_{k+1}(t - \Delta t))) \]

(98)

6.1.3 “LELTRA” alternate stable algorithm for 2TL SL scheme.

* Extrapolation of the horizontal angular velocity: The quantity \([V/r]\) at \(t + 0.5\Delta t \) used in the 2TL SL scheme is computed using the RHS of the \([V/r]\) equation with explicit formulation of Coriolis term. We denote this RHS by \(R^{SAV}_{RHS} \) in subsubsection (6.1.3). The extrapolated value of \([V/r]\) is given by:

\[[V/r]_{ext} = [V/r](t) + 0.5\Delta t R^{SAV}_{RHS} \]

(99)

* Extrapolation of the vertical velocity: The RHS is assumed to be zero, so:

\[\tilde{\eta}_{ext} = \tilde{\eta}(t) \]

(100)

There is no extrapolation at all.
* **Algorithm:** The medium point is defined by the following iterative scheme: for the iteration \(k + 1 \), a provisional position of the origin point is computed using equations (76) to (82), replacing \(\varphi(\cdot) \) by \(\varphi(\cdot) \) by \(\Delta t \).

* **First iteration:** Let us start with \(O_0 = F, \gamma/\varphi = \gamma/\varphi \), \(\varphi_0 = \Delta t \) \(|\gamma/\varphi|_{\Delta t} \), \(\varphi_0 = \gamma/\varphi \). Horizontal angular velocity \(\gamma/\varphi \) has components \((u,v)\). Use equations (83) to (86), replacing \(\varphi(\cdot) \) by \(\varphi(\cdot) \) \(\Delta t \) to define coordinates of \(O_1 \). Then \((u,v)\) are interpolated at this point, that gives \(\gamma/\varphi \). Tri-linear interpolations are used in the 3D primitive equation model, horizontal 12 points interpolations are used in the 2D shallow-water model (see section 12).

* **Following iterations:** Use equations (87) to (90), replacing \(\varphi(\cdot) \) by \(\varphi(\cdot) \) \(\Delta t \) to define coordinates of \(O_{k+1} \). Then \((u,v)\) are interpolated at this point, that gives \(\gamma/\varphi \). Tri-linear interpolations are used in the 3D primitive equation model, horizontal 12 points interpolations are used in the 2D shallow-water model (see section 12). This iterative algorithm quickly converges: 3 iterations are generally enough.

6.1.4 Algorithm used with the iterative centred-implicit schemes.

* **Preliminary remarks:** Iterative centred-implicit schemes are used to improve stability and it has been shown that this type of scheme has to be used when non-hydrostatic equations are advected by a SL2TL scheme. There are several manners to do iterative centred-implicit schemes; these schemes are not described in detail here; for some of them which are not obsolescent, see documentation (IDSI). When the momentum equation is treated by an iterative centred-implicit scheme, the semi-Lagrangian trajectory has to be recomputed at each iteration of the iterative centred-implicit scheme and interpolations have to be done again. In this case the algorithm of research trajectory is modified. The case is currently encountered with a SL2TL scheme and LPC_FULL_LET . Subsequent iterations will be described for a SL2TL scheme but it can be extended to a SL3TL scheme (replacing instant \(t \) by instant \(t + \Delta t \)).

* **Extrapolation of the wind if non-extrapolating option:** No extrapolation is done. The first iteration of the iterative centred-implicit scheme uses \(\gamma/\varphi \) \(\Delta t \) and \(\gamma(\cdot) \). The following iterations of the iterative centred-implicit scheme use the \(\gamma/\varphi \) \(t + \Delta t \) and \(\gamma(t + \Delta t) \) of the previous iteration to start the research of trajectory. As for the “SETTLS”-stable extrapolating option, the algorithm computes the origin point \(O \).

* **Extrapolation of the wind if “SETTLS”-stable extrapolating option:** The only difference with the previous case is for the first iteration of the iterative centred-implicit scheme: the wind which is used is now \(1.5[\gamma/\varphi]_t(t) - 0.5[\gamma/\varphi](t - \Delta t) \) and \(1.5\gamma(t) - 0.5\gamma(t - \Delta t) \).

* **Algorithm:** One denotes by index “\(k \)” the numbering of the SL-trajectory research algorithm iteration, and by index “\((i) \)” the number of the iterative centred-implicit scheme iteration (in variable \(\text{NCURRENT} _\text{ITER} \)). The origin point is defined by the following iterative scheme: for the iteration \(k + 1 \) of the SL-trajectory research algorithm:

\[
[r/r]^O \Gamma_{k+1}(i) = [r/r]^F [\cos \phi_k(i)] - \frac{0.5 \rho F}{0.5 \rho F} [\gamma/\varphi]^O_i(t) + 0.5 [\gamma/\varphi]^F(t + \Delta t)_{(i-1)} \sin \phi_k(i) \]

where:

\[
[\phi_k(i)] = 2\delta t \frac{0.5 \rho F}{0.5 \rho F} [\gamma/\varphi]^O_i(t) + 0.5 [\gamma/\varphi]^F(t + \Delta t)_{(i-1)} \]

Approximations given by equations (78), (79) and (80) are still valid (change \(\delta t \) by \(2\delta t \) in (80)), thus:

\[
[r/r]^O \Gamma_{k+1}(i) = [r/r]^F \frac{1 - (\frac{\phi_k(i)}{2})}{2} - \left(0.5 \rho F [\gamma/\varphi]^O_i(t) + 0.5 [\gamma/\varphi]^F(t + \Delta t)_{(i-1)} \right) (2\delta t) \frac{1 - (\frac{\phi_k(i)}{6})}{2}
 \]

On the vertical, for 3D model:

\[
[\eta_k(i)] = \eta^F - 2\delta t \left(0.5 \rho F [\gamma/\varphi]^O_i(t) + 0.5 [\gamma/\varphi]^F(t + \Delta t)_{(i-1)} \right) \]

For \(i = 0 \):

\[
[\gamma/\varphi](t + \Delta t)_{(i=0)} = [\gamma/\varphi]_t(t) \] and \(\eta(t + \Delta t)_{(i=0)} = \eta(t) \) for non-extrapolating option; \([\gamma/\varphi](t + \Delta t)_{(i=0)} = 2[\gamma/\varphi]_t(t) - [\gamma/\varphi](t - \Delta t) \) and \(\eta(t + \Delta t)_{(i=0)} = 2\eta(t) - \eta(t - \Delta t) \) for “SETTLS”-stable extrapolating option.
the origin point horizontal coordinates can be computed by:

\[x^o = 2 \cos \phi \cos \theta \cos \phi - 2 \sin \phi \cos \phi \]

(108)

\[y^o = 2 \sin \phi \cos \phi \]

(109)

the origin point horizontal coordinates can be computed by:

\[\sin \theta^o = \sin \theta^F \cos 2\phi - 2 \cos \phi \sin \theta^o \sin \phi \]

(110)

\[\cos \theta^o \cos (\lambda^o - \lambda^F) = \cos \theta^F \cos 2\phi + 2 \cos \phi \sin \theta^F \sin \phi \]

(111)

\[\cos \theta^o \sin (\lambda^o - \lambda^F) = -2 \sin \phi \sin \phi \]

(112)

Terms in brackets are already computed to determine \(M \).

6.3 Refined recomputation of point \(O \).

* Option L2TLLF for RW2TLLF=1: This option controls recomputation of the origin point using the average between the angular velocity at the origin point and the provisional \(t + \Delta t \) angular velocity, according to the algorithm previously described. Only term \((2\Omega + \omega_k) \) is computed (always analytically) at this improved position of \(O \) (so L2TLLF is active only if LADVFW=.T. or LADVFW=.T.). Refined recomputation of point \(O \) is available only in a limited set of options. In the following sections 7, 8 and 9 discretised equations are written with notation \(O \) for all quantities. Equations system is integrated to find a first guess of \(\mathbf{V}^F(t + \Delta t) \) and also a first guess of \(\Omega_k(t + \Delta t) \) which provides \(r(t + \Delta t) \), then 0.5(\([\mathbf{V}^F]_k^F + \mathbf{R}^{OF}[\mathbf{V}^F]_k^D \)) is used to recompute \(O \).
correction \((2\Omega \wedge a k)(O_{\text{improved}}) - (2\Omega \wedge k)(O)\) is analytically computed and added to wind equation to find the “improved” value of \(\mathbf{V}^F(t + \Delta t)\). In the deep layer equations and in the cases where a multiplicative factor \(r/a\) is required, this factor remains interpolated at \(O\) and is never re-interpolated at the refined origin point (this is too tricky to code and too expensive also). Computations are currently done in routine \text{LAPINEB} and \text{LADINE}.

* Options L2TLFF for RW2TLFF between 0 and 1: In this case the improved position \(O\) of the origin point is computed as a linear interpolation between \(O\) and its position for \(\text{RW2TLFF} = 1\) on a great circle bow on geographical sphere. For \(\text{RW2TLFF} = 0\), \(O = O\). For an idealised straight displacement with a wind of constant acceleration and constant direction, one can show that the “exact” position of the origin point is given by \(\text{RW2TLFF} = 1/3\) (Yessad, internal paper in French).

6.4 Trajectory going out of atmosphere or underground, and algorithms to prevent that.

* Trajectory going out of atmosphere for trajectories ending at a layer final point:

If the origin point \(O\) is found above the top of the atmosphere (resp. under the ground) it is put on the top of the atmosphere (resp. on the ground). Then the position of the medium point is recomputed (when necessary), that gives necessary a point between the bottom and the top of the atmosphere. At last the origin point is bounded by a vertical position \(\eta_O\) between the top of the atmosphere and the layer \(l = 1\), according to the namelist variable \text{VETAON} (resp. between the layer \(l = L\) and the ground, according to the namelist variable \text{VETAOX}). Upper bound of \(O\) is \(\eta_O = \eta_{nL} + (\text{VETAON} - 1)(\eta_{nL} - \eta_{inl})\). Lower bound of \(O\) is \(\eta_O = \eta_{nL} + (1 - \text{VETAOX})(\eta_{nL} - \eta_{inL})\).

* Alternate treatment of vertical displacement (LRALTVDISP=T): The algorithm proposed is an extension of an algorithm described in (Wood et al., 2009). We propose to compute two vertical displacements, one with \(\eta\) and one with \(\log((\eta - \eta_N)/(\eta_X - \eta))\), and we finally take the shorter displacement computed.

- \(\eta_N\) is a lower boundary for \(\eta\) which matches \(0 \leq \eta_N < \eta_{n1}\) (currently taken equal to \text{VETAON}).
- \(\eta_X\) is an upper boundary for \(\eta\) which matches \(\eta_{nL} < \eta_X \leq 1\) (currently taken equal to \text{VETAOX}).

The vertical displacement computed with \(\log((\eta - \eta_N)/(\eta_X - \eta))\) yields, in a 2TLSL scheme (replace \(\Delta t\) by \(2\Delta t\) for a 3TLSL scheme):

\[
\log \left(\frac{\eta_O - \eta_N}{\eta_X - \eta_O} \right) = \log \left(\frac{\eta_F - \eta_N}{\eta_X - \eta_F} \right) - \Delta t \frac{d\log((\eta - \eta_N)/(\eta_X - \eta))}{dt} \tag{113}
\]

This equation can be rewritten:

\[
\log \left(\frac{\eta_O - \eta_N}{\eta_X - \eta_O} \right) = \log \left(\frac{\eta_F - \eta_N}{\eta_X - \eta_F} \right) - \Delta t \left(\frac{1}{\eta - \eta_N} + \frac{1}{\eta_X - \eta} \right) \dot{\eta} \tag{114}
\]

The solution of this equation ensures that:

\(\eta_N < \eta_O < \eta_F\)

For \(\eta < 0.5\) the vertical displacement computed with \(\log((\eta - \eta_N)/(\eta_X - \eta))\) computes lower displacements if the trajectory is descending (this is the case where the origin point may be out of the atmosphere), and bigger displacements if the trajectory is ascending.

For \(\eta > 0.5\) the vertical displacement computed with \(\log((\eta - \eta_N)/(\eta_X - \eta))\) computes lower displacements if the trajectory is ascending (this is the case where the origin point may be under the ground), and bigger displacements if the trajectory is descending.

In both cases the origin point remains in the atmosphere.

This algorithm can be done for non extrapolating or “SETTLS” extrapolation in a 2TLSL scheme.

6.5 Remarks.

* **Shallow water model:** Computations remain valid for horizontal coordinates (there is no vertical movement, equations containing \(\eta\) have not to be considered). There are remaining some old features (compute \(M\) in \text{LARMES2} even for options where \(O\) is directly computed in the 3D model, then \(O\) in \text{LAINOR2}).
* Case of interpolations applied to half level variables: That produces for example in the non-hydrostatic scheme when the half level variable \(w \) is advected instead of the full level vertical divergence variable (option LGWADV=.T.). In this case one needs to define an origin \(O(\tilde{t}) \) for a half level trajectory (which ends at a half level final point \(F(\tilde{t}) \)). The following rules are applied to compute such a kind of trajectory:

- The horizontal displacement from \(F(\tilde{t}) \) is a weighted average of the horizontal displacements from \(F(\tilde{t}-1) \) and \(F(\tilde{t}) \) (see below for vertical displacement).
- At the top (resp. bottom) the horizontal displacement from \(F(\tilde{t} = 0) \) (resp. \(F(\tilde{t} = L) \)) is equal to the horizontal displacement from \(F(\tilde{t} = 1) \) (resp. \(F(\tilde{t} = L) \)).
- The rule applied to the horizontal displacement is also applied to the vertical displacement for \(\tilde{t} \) between 1 and \(L-1 \). For example, if \(\tilde{t} \) is between 1 and \(L-1 \):

 \[
 \eta_{\tilde{t}} = + \left(1 - \frac{\eta_{\tilde{t}+1} - \eta_{\tilde{t}}}{\eta_{\tilde{t}+1} - \eta_{\tilde{t}-1}} \right) \eta_{\tilde{t}-1} + \frac{\eta_{\tilde{t}+1} - \eta_{\tilde{t}}}{\eta_{\tilde{t}+1} - \eta_{\tilde{t}-1}} \eta_{\tilde{t}+1}
 \]

 - A particle coming from the top or the bottom has no vertical displacement (that assumes that \(\dot{y} = 0 \) at the top and the bottom, and so that excludes the options LRUBC=.T., NDPSFI=1 and \(\Pi_{\text{top}} > 0 \) which are not consistent with the constraint \(\eta_{\text{top}} = 0; \eta_{\text{bottom}} = 0 \).)
 - If the trajectory goes above the top of the atmosphere, it is bounded at the top of the atmosphere.
 - If the trajectory goes below the surface, it is bounded at the surface.
 - Computation of the position of \(O(\tilde{t}) \) is done in routine LARCINHA.

* Plane geometry (LAM models): Computation of the SL trajectory is done on the projected plane geometry. ELARMES and ELARMES2 are called instead of LARMES and LARMES2.

* Treatment of \(\dot{\eta} \) in the upper stratosphere: For some options of the code the horizontal interpolations applied on \(\dot{\eta} \) are replaced by “least-square” interpolations; that allows to remove some instabilities. See documentation (IDSVTSM) for more details.

* Generalised formulation of extrapolations (SL2TL schemes): For a quantity \(X \) (\(X \) stands for example for \(V/r \) or \(\dot{\eta} \), and if \(\tilde{X} \) is an extrapolated value of \(X \) which represents the value of \(X \) at \(t + 0.5\Delta t \) and at location \(M \) (half location between \(O \) and \(F \)), \(\tilde{X} \) writes:

\[
\tilde{X} = [0.5X(t,F) + 0.5X(t,O)] + C_\gamma [0.5X(t,F) - 0.5X(t - \Delta t,F)]
\]

\[
+ C_\gamma (0.25 - C_\alpha) [(X(t,F) - X(t - \Delta t,F)) - (X(t,O) - X(t,F))]
\]

- \(C_\gamma = 0 \) yields the non-extrapolated way to compute \(\tilde{X} \) (NESC).
- \(C_\gamma = 1, C_\alpha = 0.25 \) yields the stable extrapolation (SETTLS).
- \(C_\gamma = 1, C_\alpha = 0 \) yields the conventional extrapolation.

* Option LSETTLLSVF (SL2TL schemes): When the “SETTLS” stable extrapolation is applied to \(\dot{\eta} \), and when LSETTLLSVF=T, the stable extrapolation is replaced by a non-extrapolating evaluation of \(\dot{\eta} \) at locations matching:

\[
| \dot{\eta}(t,F) - \dot{\eta}(t - \Delta t,F) | / | \dot{\eta}(t,F) | + | \dot{\eta}(t,F - \Delta t) | > C_{\text{settlef}}
\]

\(C_{\text{settlef}} \) is a vertical dependent coefficient, equal to 1 in the lower atmosphere and slightly below 1 in the upper atmosphere; \(C_{\text{settlef}} \) is stored in the array RSETTLLF.
7 The SL discretisation of the 2D shallow-water system of equations (spherical geometry).

7.1 Momentum equation.

* Definition of X, A and B.

$$X = V + \delta V(2\Omega \wedge r)$$ \hfill (115)

$$A = -2(1 - \delta V)(\Omega \wedge V) - \nabla \Phi$$ \hfill (116)

$$B = -\nabla \Phi + \beta Co[-2(1 - \delta V)(\Omega \wedge V)]$$ \hfill (117)

* Remarks.
 - Coriolis term can be treated explicitly ($\delta V = 0$) or implicitly ($\delta V = 1$). Use key LADVF. LADVF=F. matches with ($\delta V = 0$). LADVF=T. matches with ($\delta V = 1$). If LADVF=T., term $(2\Omega \wedge r)$ is analytically computed.
 - For a limited set of options, term $(2\Omega \wedge r)$ can be recomputed at an improved position of the origin point (RW2TLFF>0).
 - Coriolis term can also be put in the semi-implicit scheme by tuning βCo (which has a sense only if LADVF=F.). Caution: do not use LIMPF=T. in variable resolution (formulation of spectral computations is not correct in this case for the semi-implicit scheme).
 - If $\beta = 1$, the non linear term $(-2(1 - \delta V)(\Omega \wedge V) - \nabla \Phi) - \beta(-\nabla \Phi + \beta Co[-2(1 - \delta V)(\Omega \wedge V)])$ is zero.

7.2 Continuity equation.

7.2.1 Conventional formulation (positive value of NVLAG).

* Definition of X, A and B.

$$X = (\Phi - (1 - \delta TR)\Phi s)$$ \hfill (118)

$$A = -(\Phi - \Phi s)D + \delta TR \nabla (\Phi s)$$ \hfill (119)

$$B = -\Phi^* M^2 D^* J$$ \hfill (120)

$\delta TR = 1$ plays the same role as the "Tangney-Ritchie" modification for 3D model.

7.2.2 Lagrangian formulation (negative value of NVLAG).

* Definition of X, A and B.

$$X = (\Phi - \Phi s)J$$ \hfill (121)

$$A = 0$$ \hfill (122)

$$B = -\Phi^* M^2 D^* J$$ \hfill (123)

where J is a "Jacobian" quantity defined by its Lagrangian derivative (see equation (11)).

* Calculation of J if 3TL scheme. Jacobian quantities are computed by: $J^- = (1 - \Delta t D^\alpha) / (1 + \Delta t D^\alpha)$, $J^+ = 1 / (1 + \Delta t D^\alpha)$ and $J^0 = 1$.

* Discretisation if 2TL scheme. In cycle 42 of ARPEGE/IFS the option NVLAG=-2 is not coded for the 2TLSL scheme.

7.3 Quantities to be interpolated.

When researching the medium/origin point by an iterative algorithm, the interpolation at the medium/origin point of the two components of the horizontal wind is needed: a 12 points interpolation is used. For other quantities to be interpolated, see section 5. For more details about interpolations, see section 12.
8 The SL discretisation of the 3D primitive equation model.

Remark: the detailed discretisation of each part of the RHS is given in the documentation (IDUL). Some notations used in the expression of linear term B (like τ, γ, μ, ν) are given in the documentation (IDS1).

8.1 Thin layer formulation of the momentum equation.
* Definition of X, A, B and F, top and bottom values.

\[X = V + \delta V (2\Omega \wedge r) \]
\[A = -2(1 - \delta V) (\Omega \wedge V) - \nabla \Phi - RT \nabla (\log(\Pi)) \]
\[B = -\nabla [\gamma T + R_d T^* \log(\Pi)] + \beta_{Co} [-2(1 - \delta V) (\Omega \wedge V)] \]
\[F = F_V \]

Top:
\[V_{\eta=0} = V_{t=1} \]
Bottom if $\delta m = 0$:
\[V_{\eta=1} = V_{t=L} \]
Bottom if $\delta m = 1$:
\[V_{\eta=1} = 0 \]

* Remarks.
- Coriolis term can be treated explicitly ($\delta V = 0$) or implicitly ($\delta V = 1$). Use key LADV.F. LADV.F=T matches with ($\delta V = 0$). LADV.F=T matches with ($\delta V = 1$). If LADV.F=T, term (2$\Omega \wedge r$) is analytically computed.
- For a limited set of options, term (2$\Omega \wedge r$) can be recomputed at an improved position of the origin point (RW2TLFF>0).
- Coriolis term can also be put in the semi-implicit scheme by tuning β_{Co} (which has a sense only if LADV.F=T). Caution: do not use LIMPF=T in variable resolution (formulation of spectral computations is not correct in this case for the semi-implicit scheme).

8.2 White and Bromley deep layer formulation of the momentum equation.
* Definition of X, A, B and F, top and bottom values.

\[X = V + \delta V (2\Omega \wedge r) \]
\[A = (1 - \delta V) (-2\Omega \wedge V - 2\Omega \wedge Wk) - \frac{W}{r} V - \nabla \Phi - (RT + \mu \cdot \nu \cdot \nabla) \nabla (\log(\Pi)) \]
\[B = -M \nabla^2 [\gamma T + R_d T^* \log(\Pi)] + \beta_{Co} [-2(1 - \delta V) (\Omega \wedge V)] \]
\[F = F_V \]

Top:
\[V_{\eta=0} = V_{t=1} \]
Bottom if $\delta m = 0$:
\[V_{\eta=1} = V_{t=L} \]
Bottom if $\delta m = 1$:
\[V_{\eta=1} = 0 \]

* Remarks.
- Coriolis term can be treated explicitly ($\delta V = 0$) or implicitly ($\delta V = 1$). Use keys LADV.F and LADV.FW. (LADV.F.LADVW)=(F.;F.) matches with ($\delta V = 0$). (LADV.F.LADVW)=(T.;T.) matches with ($\delta V = 1$). If (LADV.F.LADVW)=(T.;F.) term (2$\Omega \wedge ak$) is treated explicitly and the remaining Coriolis term is treated explicitly. If (LADV.F.LADVW)=(F.;T.) term (2$\Omega \wedge (r - a)k$) is treated implicitly and the remaining Coriolis term is treated explicitly. If at least LADV.F=T or LADV.FW=T, term (2$\Omega \wedge ak$) is analytically computed. If LADV.FW=T, r/a (at $t + \Delta t$) is treated using a provisional value of $\log(\Pi)$ at $t + \Delta t$.
- For a limited set of options, term (2$\Omega \wedge ak$) can be recomputed at an improved position of the origin point (RW2TLFF>0).
- The horizontal part of the Coriolis term can also be put in the semi-implicit scheme by tuning β_{Co} (which has a sense only if LADV.F=T). Caution: do not use LIMPF=T in variable resolution (formulation of spectral computations is not correct in this case for the semi-implicit scheme). The combination (LIMPF.LADVW)=(T.;T.) is possible but does not eliminate completely a residual explicit term linked to Coriolis force in the RHS of the momentum equation.
8.3 Thermodynamic equation.

* Definition of \(X, A, B \) and \(F \), top and bottom values.

\[
X = T + \delta_{TR} \frac{\alpha_{T} \Phi_{s}}{R_{a}T_{at}}
\]
(138)

\[
A = \frac{RT}{c_{p} \Pi} + \delta_{TR} \frac{\alpha_{T} \Phi_{s}}{R_{a}T_{at}} \frac{\Phi_{s}}{\eta} \frac{d_{\alpha_{T}}}{d\eta}
\]
(139)

\[
B = -\tau (M^2 D')
\]
(140)

\[
F = F_{T}
\]
(141)

Top:

\[
T_{\eta=0} = T_{l}=1
\]
(142)

Bottom if \(\delta m = 0 \):

\[
T_{\eta=1} = T_{l}=L
\]
(143)

Bottom if \(\delta m = 1 \) (output of physics):

\[
T_{\eta=1} = T_{s}
\]
(144)

8.4 Thin layer formulation of the continuity equation.

* Definition of \(X, A, B, \) and \(F \).

\[
X = \log \Pi + \delta_{TR} \frac{\Phi_{s}}{R_{a}T_{at}}
\]
(145)

\[
A = -\frac{1}{\Pi_{a}} \int_{\eta=0}^{\eta=1} \nabla \left(\frac{\partial \Pi}{\partial \eta} \right) d\eta + \nabla \left(\log \Pi + \delta_{TR} \frac{\Phi_{s}}{R_{a}T_{at}} \right) - \frac{1}{\Pi_{a}} \left[\frac{\partial \Pi}{\partial \eta} \right]_{\eta=1} + \frac{1}{\Pi_{a}} \left[\frac{\partial \Pi}{\partial \eta} \right]_{\eta=0}
\]
(146)

\[
B = -\frac{M^2}{M^2} \nu D
\]
(147)

\[
F = \left(\frac{F_{m}}{\Pi_{a}} \right)
\]
(148)

* Remarks:

- \(A \) is a sum of 3D terms (the advection term) and 2D terms (the other terms).
- \(B \) and \(F \) are 2D terms (vertical integrals).

8.5 White and Bromley deep layer formulation of the continuity equation.

* Definition of \(X, A, B, \) and \(F \).

\[
X = \log \Pi + \delta_{TR} \frac{\Phi_{s}}{R_{a}T_{at}}
\]
(149)

\[
A = -\left[\frac{a^2}{\eta^2} \right] \frac{1}{\Pi_{a}} \int_{\eta=0}^{\eta=1} \nabla \left(\frac{\partial \Pi}{\partial \eta} \right) d\eta + \frac{a}{\eta} \frac{\partial \Pi}{\partial \eta} \left[\log \Pi + \delta_{TR} \frac{\Phi_{s}}{R_{a}T_{at}} \right] - \frac{1}{\Pi_{a}} \left[\frac{\partial \Pi}{\partial \eta} \right]_{\eta=1} + \frac{1}{\Pi_{a}} \left[\frac{a^2}{\eta^2} \right]_{\eta=0} \left[\frac{\partial \Pi}{\partial \eta} \right]_{\eta=0}
\]
(150)

\[
B = -\nu (M^2 D')
\]
(151)

\[
F = \left(\frac{F_{m}}{\Pi_{a}} \right)
\]
(152)

* Remarks:

- \(A \) is a sum of 3D terms (the advection term) and 2D terms (the other terms).
- \(B \) and \(F \) are 2D terms (vertical integrals).
8.6 Moisture equation.

* Definition of X, A, B and F, top and bottom values.

$$X = q \quad (153)$$
$$A = 0 \quad (154)$$
$$B = 0 \quad (155)$$
$$F = F_q \quad (156)$$

Top:

$$q_{η=0} = q_{η=1} \quad (157)$$

Bottom if $δm = 0$:

$$q_{η=0} = q_{η=L} \quad (158)$$

Bottom if $δm = 1$ (see CPQSOL, relative humidity is the same for $η = η_L$ and $η = 1$):

$$q_{η=1} = q_{surf} \quad (159)$$

8.7 Other advectable GFL variables.

Equations are discretised as for humidity equation. Vertical boundary conditions: quantities are assumed constant above the middle of the upper layer and below the middle of the lower layer in case $δm = 0$; quantities are assumed constant above the middle of the upper layer in case $δm = 1$; quantities other than q are assumed to be zero at the surface in case $δm = 1$.

8.8 Case of lagged physics.

All the previous discretisations have been written with not lagged physics (interpolated at O).

- For lagged physics ($LAGPHY=.T.$, $LSLPHY=.F.$): the previous discretisations are done without physics, then the provisional

$$\left(X^+ - (1 + ε_x) \frac{Δt}{2} β^+ + (1 + ε_x) \frac{Δt}{2} β^n \right)_F$$

or

$$\left(X^+ - (1 + ε) \frac{Δt}{2} β^+ + (1 + ε) \frac{Δt}{2} β^n \right)_F$$

is used as input to the lagged physics.

- For split physics used at ECMWF ($LEPHYS=.T.$, $LAGPHY=.T.$, $LSLPHY=.T.$): one part of the physics is interpolated at O (t or $t - Δt$ physics according to $LTWOTL$), the remainder is evaluated at the final point ($t + Δt$ physics). The physical contribution is put in a separate interpolation buffer (name $P(X)P9$) and tri-linearly interpolated. The way to compute the non-lagged contribution is different than the way used at METEO-FRANCE: compute it at the previous timestep as a lagged contribution, then saving it from one timestep to the following one (where it is restored and added to the interpolation buffer by calling the routine $GPADDSLPHY$). Partition between the non-lagged and lagged contribution is done by a linear partition of coefficient $RSLWX$.

8.9 Quantities to be interpolated (computation under subroutine LACDYN).

8.9.1 Research of trajectory.

When researching the medium/origin point by an iterative algorithm, the interpolation at the medium/origin point of $([U/r],[V/r],\dot{η})$ is needed: a tri-linear interpolation is performed. For more details about interpolations, see section 12.

8.9.2 RHS of equations.

The list of quantities to be interpolated has been described in subsections 5.2, 5.3 and 5.4 for each type of equation.

8.9.3 Additional quantities to be interpolated at O if $RW2TLFF>0$.

The two components of the $[V/r]$ at time t (if 2TL SL scheme) or $t - Δt$ (if 3TL SL scheme) when not available after the other interpolations (for example if not lagged physics). These additional interpolations are useless if lagged physics (or adiabatic run) and $NWLAG=3$.
9 The SL discretisation of the 3D non hydrostatic model.

Remarks: Some notations used in the expression of linear term B (like τ, γ, μ, ν) are given in the documentation (IDSI).

9.1 Thin layer NH-PDVD model.

9.1.1 Momentum equation.

* Definition of X, A, B and F, top and bottom values.

\[X = \mathbf{V} + \delta \mathbf{V} (2\Omega \land \mathbf{r}) \] \hspace{1cm} (160)

\[A = [-2(1 - \delta \mathbf{V})(\Omega \land \mathbf{V})] - \frac{\partial p}{\partial \Pi} \nabla \Phi - RT \frac{\nabla (\rho)}{p} \] \hspace{1cm} (161)

\[B = -\nabla \left[\gamma T - T^*(\gamma \hat{Q}) + R_d T^* \log(\Pi_L) + R_d T^* \hat{Q} \right] + \beta \mu [2(1 - \delta \mathbf{V})(\Omega \land \mathbf{V})] \] \hspace{1cm} (162)

\[F = F \mathbf{V} \] \hspace{1cm} (163)

Top:

\[\mathbf{V}_{\eta=0} = \mathbf{V}_{l=1} \] \hspace{1cm} (164)

Bottom if $\delta m = 0$:

\[\mathbf{V}_{\eta=1} = \mathbf{V}_{l=L} \] \hspace{1cm} (165)

Bottom if $\delta m = 1$:

\[\mathbf{V}_{\eta=1} = 0 \] \hspace{1cm} (166)

Remarks about implicit formulations of the Coriolis term are generally valid for the non-hydrostatic equations.

9.1.2 Temperature equation.

* Definition of X, A, B and F, top and bottom values.

\[X = T + \delta T \frac{\alpha T \Phi_s}{R_d T_{st}} \] \hspace{1cm} (167)

\[A = \frac{RT}{c_v} D_3 + \delta \frac{\alpha T}{R_d T_{st}} D_2 \nabla (\Phi_s) + \delta \frac{\Phi_s}{R_d T_{st}} \left(\frac{\partial \alpha T}{\partial T} \right) \] \hspace{1cm} (168)

\[B = -R_d T^* \left[\mathbf{T} \mathbf{D}^* + a \right] \] \hspace{1cm} (169)

\[F = \frac{c_p}{c_v} F_T \] \hspace{1cm} (170)

Top:

\[T_{\eta=0} = T_{l=1} \] \hspace{1cm} (171)

Bottom if $\delta m = 0$:

\[T_{\eta=1} = T_{l=L} \] \hspace{1cm} (172)

Bottom if $\delta m = 1$ (output of physics):

\[T_{\eta=1} = T_s \] \hspace{1cm} (173)

9.1.3 Continuity equation.

Same discretisation as in the hydrostatic case, see part (8.4).

9.1.4 Moisture equation.

Same discretisation as in the hydrostatic case, see part (8.6).

9.1.5 Other advectable GFL variables equations.

Same discretisation as in the hydrostatic case, see part (8.7).
9.1.6 Pressure departure variable equation.

* Definition of X, A, B and F, top and bottom values, case NPDVAR=2.

\[X = \hat{Q} \]
\[A = -\frac{\omega}{\Pi} \]
\[B = -\left[\frac{c_{pd}}{c_{vd}} (M^2 D' + \frac{d}{d}) - \frac{c_{pd}}{RdT^* \tau (M^2 D')} \right] \]
\[F = \frac{c_p}{c_v} T_1 \]
\[\text{Top:} \quad \hat{Q}_{\eta=0} = 0 \]
\[\text{Bottom if } \delta m = 0: \quad \hat{Q}_{\eta=1} = \hat{Q}_{l=L} \]

9.1.7 Vertical divergence equation.

* Definition of X, A, B and F, top and bottom values, case NVDVAR=3, LGWADV=.F.

\[X = d \]
\[A = -dD_3 + d \nabla V = \frac{gp}{RdT^* \frac{d}{d}} \left(\nabla w \right) \frac{\partial \Pi}{\partial \eta} \]
\[B = -\frac{g^2}{RdT^*} (L^* \hat{Q}) \]
\[F = -d \frac{\partial \Pi}{\partial \eta} - \left[\frac{\partial F_w}{\partial \Pi} \right] \]
\[\text{Top:} \quad d_{\eta=0} = d_{l=1} \]
\[\text{Bottom if } \delta m = 0: \quad d_{\eta=1} = d_{l=L} \]

* Definition of X, A, B and F, top and bottom values, case NVDVAR=3, LGWADV=.T.

\[X = w \]
\[A = g \frac{\partial (p - \Pi)}{\partial \Pi} \]
\[B = B_w \]
\[\text{where } B_w \text{ matches the following relationships:} \]
\[[B_w]_{\text{surf}} = 0 \]
\[[B_w]_{l} = -g \frac{\Pi^*}{T^*_d} \sum_{k=L}^{b} \left(\frac{\Delta \Pi^*}{[\Pi^*]_k} [L^* \hat{Q}]_k \right) \]
\[[\Delta B_w]_{l} = g \frac{\Pi^*}{T^*_d} \frac{\Delta \Pi^*}{[\Pi^*]_l} [L^* \hat{Q}]_l \]

The relationship between B_d and B_w writes:
\[B_d = -g \frac{\Pi^*}{T^*_d} \frac{\partial B_w}{\partial \Pi} \]
\[\text{Discretization of equation (192) at full levels writes:} \]
\[[B_d]_{l} = -g \frac{\Pi^*}{T^*_d} \frac{[\Delta \Pi^*]_l}{[\Delta \Pi^*]_l} [B_w]_{l} \]
\[F = F_w \]
\[\text{Top:} \]
• LVERTFE=F.: \(w_{\eta=0} \) is computed by the general formula giving \(w \) at half levels.
• LVERTFE=T.: FD treatment for \(w_{\eta=0} \) (cf. above).

Bottom if \(\delta m = 0 \):
\[
w_{\eta=1} = V_{surf} \nabla z_{surf}
\] (195)

Bottom if \(\delta m = 1 \): not yet coded.

9.1.8 Case of lagged physics.
See part (8.8).

9.1.9 Quantities to be interpolated (computation under subroutine LACDYN).
See section (5).

9.2 Wood and Staniforth deep layer NH-PDVD model.

9.2.1 Momentum equation.
* Definition of \(X \), \(A \), \(B \) and \(F \), top and bottom values.
\[
A = [-2(1 - \delta \nu)(\Omega \land V + 2\Omega \land w_k)] - \frac{w}{r} V - \frac{r^2}{a^2} \frac{\partial p}{\partial \bar{\Pi}} \nabla [Gr] - RT \nabla \left(\frac{\partial p}{p} \right)
\] (196)
Equations (160), (163), (164), (165), (166) remain valid. Replace \(\Pi \) by \(\bar{\Pi} \) in equation (162).

9.2.2 Temperature equation.
See part 9.1.2.

9.2.3 Continuity equation.
Start from the equations given in part (8.4), apply the following changes:
• \(\Pi \) is changed into \(\bar{\Pi} \).
• Some metric terms appear: replace \(\nabla \left(\frac{\omega}{\Pi} \frac{\partial \Pi}{\partial \eta} \right) \) by \(\nabla \left(\frac{\omega}{\bar{\Pi}} \frac{\partial \bar{\Pi}}{\partial \eta} \right) \).
• \(G \) appears in factor of the diabatic term.

9.2.4 Moisture equation.
Same discretisation as in the hydrostatic case, see part (8.6).

9.2.5 Other advectable GFL variables equations.
Same discretisation as in the hydrostatic case, see part (8.7).

9.2.6 Pressure departure variable equation.
* Definition of \(X \), \(A \), \(B \) and \(F \), top and bottom values, case NPDVAR=2.
\[
X = \dot{Q} + \delta p \log(\bar{\Pi}_{ref}/\Pi_{ref})
\] (197)
\[
A = \frac{c_p}{c_v} D_3 - \frac{\omega}{\bar{\Pi}} + \delta \bar{\Pi} \eta \frac{\partial \log(\bar{\Pi}_{ref}/\Pi_{ref})}{\partial \eta}
\] (198)
Top:
\[
[\dot{Q} + \delta p \log(\bar{\Pi}_{ref}/\Pi_{ref})]_{\eta=0} = 0
\] (199)
Bottom if \(\delta m = 0 \):
\[
[\dot{Q} + \delta p \log(\bar{\Pi}_{ref}/\Pi_{ref})]_{\eta=1} = [\dot{Q} + \delta p \log(\bar{\Pi}_{ref}/\Pi_{ref})]_{L=L}
\] (200)
Bottom if \(\delta m = 1 \): not yet coded.
Equations (176), (177) remain valid.
9.2.7 Vertical velocity equation.

* Definition of X, A, B and F, top and bottom values, case NVDVAR=3, LGWADV=.T. .

\[
X = w
\]

\[
A = -G\mu_s - (g - G) + G \left(\frac{r^2}{a^2} - 1 \right) \frac{\partial p}{\partial \Pi} + G \frac{\partial (p - \Pi)}{\partial \Pi} \tag{202} \]

Linear terms, physics, top and bottom values: cf. thin layer formulation, simply change Π by $\bar{\Pi}$.

* Definition of X, A, B and F, top and bottom values, case NVDVAR=3, LGWADV=.F. .

\[
X = d \tag{203} \]

\[
A = -dD_3 + d\nabla - \frac{Gp}{R_d T \frac{\partial \eta}{\partial \eta}} \frac{\partial [d^2 \frac{\partial \Phi}{\partial \eta^2}]_{\eta=0}}{\partial \eta} + \frac{Gp}{R_d T \frac{\partial \eta}{\partial \eta}} \left(\nabla \left[\frac{r^2}{a^2} \Phi \right] \right) \left(\frac{\partial \nabla}{\partial \eta} \right) \tag{204} \]

Linear terms, physics, top and bottom values: cf. thin layer formulation, simply change Π by $\bar{\Pi}$.

9.2.8 Case of lagged physics.

See part (8.8).

9.2.9 Quantities to be interpolated (computation under subroutine LACDYN).

See section (5).

9.3 Thin layer NH-GEOGW model.

Linear term B is generally different, not detailed. See documentation (IDSI) for more details. We just mention the differences with the NH-PDVD model for A and X.

9.3.1 Momentum equation, temperature equation, continuity equation, GFL equations.

See part 9.1 for terms A and X.

9.3.2 Vertical velocity equation.

If $\delta_W = 0$, see part 9.2.7. This is gw which is actually the prognostic variable.

An alternate possibility is to take $gw - \delta_W Bgw_{surf}$ as prognostic variable: in this case additional terms are present in the RHS.

9.3.3 Geopotential equation.

\[
X = \Phi \tag{205} \]

\[
A = gw \tag{206} \]

Top: not used for VFE discretisation.

Bottom:

\[
\Phi_{\eta=1} = \Phi_s \tag{207} \]

An alternate possibility is to take $\bar{\Phi} - \delta_{\text{GEO}} B\Phi_s$ as prognostic variable: in this case additional terms are present in the RHS.
10 \(\mathcal{R} \) operator.

10.1 No tilting.

To transport a vector along a trajectory (part of a great circle) from an origin point \(O \) to a final point \(F \) the following operator \(\mathcal{R}^{OF} \) is defined:

\[
V' = \mathcal{R}^{OF}(V)
\]

(208)

where \(V' \) has coordinates \((u', v')\), \(V \) has coordinates \((u, v)\), and the relationship between \((u, v)\) and \((u', v')\) is:

\[
\begin{pmatrix}
 u' \\
 v'
\end{pmatrix} = \begin{pmatrix}
 p & q \\
 -q & p
\end{pmatrix} \begin{pmatrix}
 u \\
 v
\end{pmatrix}
\]

(209)

where:

\[
p = \frac{i^F i^O + j^F j^O}{1 + k^O} = \frac{\cos \theta^F \cos \theta^O + (1 + \sin \theta^F \sin \theta^O) \cos (\lambda^F - \lambda^O)}{1 + \cos \phi}
\]

(210)

\[
q = \frac{i^F j^O + j^F i^O}{1 + k^O} = \frac{(\sin \theta^F + \sin \theta^O) \sin (\lambda^F - \lambda^O)}{1 + \cos \phi}
\]

(211)

(Denotations \(\theta^O, \theta^F, \lambda^O, \lambda^F, \phi \): see section 6.)

\(p \) and \(q \) verify the following identity:

\[p^2 + q^2 = 1 \]

(212)

Computation of \(p \) and \(q \) is done in subroutine \texttt{LARCHE}.

10.2 Tilting.

The coordinates of \(V' \) and \(V \) are linked by the following relationship:

\[
\begin{pmatrix}
 u' \\
 v'
\end{pmatrix} = \begin{pmatrix}
 GNORDM & GNORDL \\
 -GNORDL & GNORDM
\end{pmatrix} \begin{pmatrix}
 p & q \\
 -q & p
\end{pmatrix} \begin{pmatrix}
 \cos \alpha & -\sin \alpha \\
 \sin \alpha & \cos \alpha
\end{pmatrix} \begin{pmatrix}
 u \\
 v
\end{pmatrix}
\]

(213)

where:

\[
\cos \alpha = \frac{2c}{A \cos \Theta^O} [\sin \theta_p \cos \Theta^O - \sin \Theta^O \cos \theta_p \cos (\lambda^O - \lambda_p)]
\]

(214)

\[
\sin \alpha = \frac{2c}{A \cos \Theta^O} [\cos \theta_p \sin (\lambda^O - \lambda_p)]
\]

(215)

\[
A = (1 + c^2) + (1 - c^2)(\sin \theta_p \sin \Theta^O + \cos \theta_p \cos \Theta^O \cos (\lambda^O - \lambda_p))
\]

(216)

and where:

- \(c \) is the stretching coefficient.
- \(\Theta^O \) is the latitude on the computational sphere of the origin point \(O \).
- \((\theta_p, \lambda_p)\) are the latitude and longitude on the geographical sphere of the stretching pole.
- \(p \) and \(q \) are computed like in the not tilted case (in subroutine \texttt{LARCHE}).
- \(\cos \alpha \) and \(\sin \alpha \) are also computed in subroutine \texttt{LARCHE}.
- \((GNORDL, GNORDM)\) are the coordinates in the computational sphere of the unit vector directed towards the true north, computed in subroutine \texttt{SUGEM2}.

10.3 Plane geometry (LAM models).

The curvature of the Earth is now taken into account in computing an operator \(\mathcal{R}^{OF} \) in the routine \texttt{ELARCHE} instead of computing curvature terms. Expressions of \(p \) and \(q \) are different from the ones of ARPEGE and are not detailed here.
11 Computation of longitudes and latitudes on the computational sphere.

For interpolations it is necessary to compute \((\Theta^O, \Lambda^O)\), latitude and longitude of the interpolation point \(O\) in the computational sphere. The iterative algorithm allowing to find \(O\) gives \((\theta^O, \lambda^O)\), latitude and longitude in the geographical sphere (more exactly \(\sin \theta^O, \cos \theta^O \cos \lambda^O - \lambda^F\) and \(\cos \theta^O \sin \lambda^O - \lambda^F\) where \((\theta^F, \lambda^F)\) are the coordinates of the final point on the geographical sphere). Transform formulae giving \((\Theta, \Lambda)\) on the computational sphere once knowing \((\theta, \lambda)\) on the geographical sphere are given by equations (217) to (219).

\[
\begin{align*}
\sin \Theta &= \frac{(1 - c^2) + (1 + c^2)(\sin \theta_p \sin \theta + \cos \theta_p \cos \theta \cos(\lambda - \lambda_p))}{A} \quad \text{(217)} \\
\cos \Theta \cos \Lambda &= \frac{2c(\cos \theta_p \sin \theta - \sin \theta_p \cos \theta \cos(\lambda - \lambda_p))}{A} \quad \text{(218)} \\
\cos \Theta \sin \Lambda &= \frac{2c \cos \theta \sin(\lambda - \lambda_p)}{A} \quad \text{(219)}
\end{align*}
\]

where:

- \(A = (1 + c^2) + (1 - c^2)(\sin \theta_p \sin \theta + \cos \theta_p \cos \theta \cos(\lambda - \lambda_p))\)
- \(c\) is the stretching coefficient.
- \((\theta_p, \lambda_p)\) are the latitude and longitude on the geographical sphere of the stretching pole.
- Computation of \(\Theta, \Lambda\) is done in subroutine LARCHE.

* Plane geometry (LAM models): The SL trajectory is already computed on the computational grid, so equivalent transformation formulae from geographical space to computational space are useless.
12 Interpolations and weights computations.

12.1 Interpolation grid and weights (subroutine LASCAW).

12.1.1 Horizontal interpolation grid and weights for bi-linear interpolations.

* Definitions: A 16 points horizontal grid is defined as it is shown in figure 12.1, but only 4 of these 16 points are used in the interpolations. The interpolation point O (medium or origin point) is between B₁, C₁, B₂ and C₂. Λ and Θ are the longitudes and latitudes on the computational sphere. Linear weights are defined as follows:

- zonal weights for latitudes 1 and 2:

 \[ZDLO1 = \frac{(\Lambda_O - \Lambda_{B_1})}{(\Lambda_{C_1} - \Lambda_{B_1})} \quad \text{and} \quad ZDLO2 = \frac{(\Lambda_O - \Lambda_{B_2})}{(\Lambda_{C_2} - \Lambda_{B_2})} \]

- meridian weight: \[ZDLAT = \frac{(\Theta_O - \Theta_{B_1})}{(\Theta_{B_2} - \Theta_{B_1})} \]

* Computations:

 - The weights ZDLO1 and ZDLO2 are computed then stored in the array PDLO.
 - The weight ZDLAT is computed then stored in the array PDLAT.
 - The memory address (in SL arrays) of the data concerning the points A₁ and A₂ are computed then stored in the array KL0 or KLH0. Memory address of the data concerning the points B₁, B₂, C₁ and C₂ can be easily computed in interpolations routines knowing these ones of A₁ and A₂.
 - Interpolations use data of points B₁, B₂, C₁ and C₂.

12.1.2 Vertical interpolation grid and weights for vertical linear interpolations.

* Definitions: A 4 points vertical grid is defined as it is shown in figure 12.2, but only 2 of these 4 points are used in the interpolations. The interpolation point O (medium or origin point) is between \(T_{i+1} \) and \(T_{i+2} \). The vertical weight is defined by: \[ZDVER = \frac{(\eta_{O} - \eta_{T_{i+1}})}{(\eta_{T_{i+2}} - \eta_{T_{i+1}})} \]

* Computations:

 - The weight ZDVER is computed then stored in the array PDVER.
 - The level number l of \(T_l \) is stored in the array KLEV.
 - Interpolations use data of points \(T_{i+1} \) and \(T_{i+2} \).

* Remark: The same formulae and computations are valid for half level data, simply replace the layer index \(l \) by the half level index \(l/2 \).

12.1.3 Horizontal interpolation grid and weights for 12 points cubic interpolations.

* Definitions: A 16 points horizontal grid is defined as it is shown in figure 12.3, but only 12 of these 16 points are used in the interpolations. The interpolation point O (medium or origin point) is between B₁, C₁, B₂ and C₂. The following weights are defined as follows:

- zonal linear weights for latitudes 0, 1, 2, 3:

 \[ZDLO0 = \frac{(\Lambda_O - \Lambda_{B_0})}{(\Lambda_{C_0} - \Lambda_{B_0})} \]
 \[ZDLO1 = \frac{(\Lambda_O - \Lambda_{B_1})}{(\Lambda_{C_1} - \Lambda_{B_1})} \]
 \[ZDLO2 = \frac{(\Lambda_O - \Lambda_{B_2})}{(\Lambda_{C_2} - \Lambda_{B_2})} \]
 \[ZDLO3 = \frac{(\Lambda_O - \Lambda_{B_3})}{(\Lambda_{C_3} - \Lambda_{B_3})} \]

- zonal cubic weights for latitude 1:

 \[ZCLO11 = f_1(ZDLO1) \]
 \[ZCLO12 = f_2(ZDLO1) \]
 \[ZCLO13 = f_3(ZDLO1) \]

where:

* \(f_1(\alpha) = (\alpha + 1)(\alpha - 2)(\alpha - 1)/2 \)
* \(f_2(\alpha) = -(\alpha + 1)(\alpha - 2)\alpha/2 \)
* \(f_3(\alpha) = \alpha(\alpha - 1)/(\alpha + 1)/6 \)

- zonal cubic weights for latitude 2:

 \[ZCLO21 = f_1(ZDLO2) \]
 \[ZCLO22 = f_2(ZDLO2) \]
 \[ZCLO23 = f_3(ZDLO2) \]
We just give a sum-up of the way to compute the cubic weights. Provided in this documentation (because it leads to rather tricky formulae), but details about the calculations have been redesigned, and now it is completely contained in the calculation of cubic weights: we pass from conventional cubic interpolations to diffusive SLHD cubic interpolations simply by changing properties of interpolations.

Computations:

- The zonal linear weights ZDLO0, ZDLO1, ZDLO2 and ZDLO3 are computed then stored in the array PDLO.
- The zonal cubic weights ZCLO11, ZCLO12, ZCLO13, ZCLO21, ZCLO22, ZCLO23 are computed then stored in the array PCLO.
- The meridian cubic weights ZCLA1, ZCLA2 and ZCLA3 are computed then stored in the array PCLA. One can notice that the denominators of ZCLA1, ZCLA2 and ZCLA3 do not depend on coordinates of Ω and can be pre-computed in array YRHSLMER%RIPI.
- The memory address (in SL arrays) of the data concerning the points A0, A1, A2 and A3 are stored in the array KL0 or KLH0. Once knowing these addresses one can easily retrieve the other points addresses in the interpolations routines.
- Interpolations use data of the following 12 points B0, C0, A1, B1, C1, D1, A2, B2, C2, D2, B3 and C3.

Extension to diffusive interpolations (SLHD): The way to take account of the diffusive properties of interpolations has been redesigned, and now it is completely contained in the calculation of cubic weights: we pass from conventional cubic interpolations to diffusive SLHD cubic interpolations simply by changing the way of computing the cubic weights. The comprehensive way of computing the SLHD cubic weights is not provided in this documentation (because it leads to rather tricky formulae), but details about the calculations can be found in documentation (IDSLIF2) and looking in routine LASCAW (ELASCAW in LAM models). We just give a sum-up of the way to compute the cubic weights.

- **Meridian diffusive cubic weights:**

 \[
 ZCLA_{1\text{slhd}} = ZCLA1 + ZINCRM1 \\
 ZCLA_{2\text{slhd}} = ZCLA2 + ZINCRM2 \\
 ZCLA_{3\text{slhd}} = ZCLA3 + ZINCRM3
 \]

 where each of increments ZINCRM1, ZINCRM2 and ZINCRM3 is a linear combination of cubic Lagrangian weights ZCLA1, ZCLA2 and ZCLA3 and diffusive weights (linear for LSLHD_OLD=_T., quadratic otherwise).

 Coefficients of these linear combinations depend on:
 - Constants in time \(C_{\text{slhddepsh}}\), describing Laplacian smoother.
 - A pre-computed quantity \(κ\) (computed in GP_KAPPA) depending on horizontal flow deformation, ranging from 0 to 1; \(κ\) is equal to 1 if LSLHD_STATIC=_T. An alternate expression of \(κ\) is computed in GP_KAPPAT if different coefficients are asked for thermic variables.
 - Lower and upper bounds \(κ_{\text{min}}\) and \(κ_{\text{max}}\) respectively stored in variables SLHDKMIN and SLHDKMAX, used to construct limit interpolators (0 - cubic Lagrange, 1 - linear/quadratic; they are not restricted to range 0-1).

- **Zonal diffusive cubic weights for latitude number 1:**

 \[
 ZCLO_{1\text{slhd}} = ZCLO11 + ZINCRL11 \\
 ZCLO_{2\text{slhd}} = ZCLO12 + ZINCRL12 \\
 ZCLO_{3\text{slhd}} = ZCLO13 + ZINCRL13
 \]

 where each of increments ZINCRL11, ZINCRL12 and ZINCRL13 is a linear combination of cubic Lagrangian weights ZCLO11, ZCLO12 and ZCLO13 and diffusive weights (linear for LSLHD_OLD=_T., quadratic otherwise).

 Coefficients of these linear combinations depend on:
 - Constants like \(C_{\text{slhddepsh}}\).
 - \(κ\) (see above).
 - Lower and upper bounds \(κ_{\text{min}}\) and \(κ_{\text{max}}\) (see above).
• Zonal diffusive cubic weights for latitude number 2:

\[ZCLO21_{\text{slhd}} = ZCLO21 + ZINCRV1 \]
\[ZCLO22_{\text{slhd}} = ZCLO22 + ZINCRV2 \]
\[ZCLO23_{\text{slhd}} = ZCLO23 + ZINCRV3 \]

where each of increments \(ZINCRV1, ZINCRV2 \) and \(ZINCRV3 \) is a linear combination of cubic Lagrangian weights \(ZCLO21, ZCLO22 \) and \(ZCLO23 \) and diffusive weights (linear for \(\text{LSLHD}_1\text{OLD} \), quadratic otherwise).

Coefficients of these linear combinations depend on \(C_{\text{sldeph}}, \kappa, \kappa_{\text{min}}, \kappa_{\text{max}} \) like the zonal weights for latitude number 1.

Several options of SLHD smoothing are available, according to values of the keys \(\text{LSLHD}_1\text{QUAD} \) and \(\text{LSLHD}_1\text{OLD} \).

In part 12.2, cubic interpolations are written with conventional cubic weights: replace conventional cubic weights by their SLHD counterpart for diffusive cubic interpolations.

* **Extension to 3D-turbulence:** not described in detail; additional cubic weights are computed if \(\text{L3DTURB} = \text{T} \).

12.1.4 Vertical interpolation grid and weights for vertical cubic 4 points interpolations.

A 4 points vertical grid is defined as it is shown in figure 12.2. The interpolation point \(O \) (medium or origin point) is between \(T_{l+1} \) and \(T_{l+2} \). The vertical weights are defined by:

\[ZCVE1 = [(\eta_0 - \eta_l)(\eta_0 - \eta_{l+2})(\eta_0 - \eta_{l+3})]/[(\eta_{l+1} - \eta_l)(\eta_{l+1} - \eta_{l+2})(\eta_{l+1} - \eta_{l+3})] \]
\[ZCVE2 = [(\eta_0 - \eta_l)(\eta_0 - \eta_{l+1})(\eta_0 - \eta_{l+3})]/[(\eta_{l+2} - \eta_l)(\eta_{l+2} - \eta_{l+1})(\eta_{l+2} - \eta_{l+3})] \]
\[ZCVE3 = [(\eta_0 - \eta_l)(\eta_0 - \eta_{l+1})(\eta_0 - \eta_{l+2})]/[(\eta_{l+3} - \eta_l)(\eta_{l+3} - \eta_{l+1})(\eta_{l+3} - \eta_{l+2})] \]

* **Computations:**
 - The vertical weights \(ZCVE1, ZCVE2 \) and \(ZCVE3 \) are computed then stored in the array \(\text{PVINTW} \).
 - One can notice that the denominators of \(ZCVE1, ZCVE2 \) and \(ZCVE3 \) do not depend on coordinates of \(O \) and can be pre-computed in the array \(\text{YRVSLETA}_1\text{VCUICO} \).
 - The level number \(l \) of \(T_l \) is stored in the array \(\text{KLEV} \).
 - Interpolations use data of points \(T_l, T_{l+1}, T_{l+2} \) and \(T_{l+3} \).

* **Remark:** The same formulae and computations are valid for half level data, simply replace the layer index \(l \) by the half level index \(l' \), and use array \(\text{YRVSLETA}_1\text{VCUICOH} \).

* **Extension to diffusive interpolations (SLHD):** Like we do for horizontal weights, the semi-Lagrangian diffusion can be taken into account by modifying vertical cubic weights as follow:

\[ZCVE1_{\text{slhd}} = ZCVE1 + ZINCRV1 \]
\[ZCVE2_{\text{slhd}} = ZCVE2 + ZINCRV2 \]
\[ZCVE3_{\text{slhd}} = ZCVE3 + ZINCRV3 \]

Expressions giving vertical increments \(ZINCRV1 \) to \(ZINCRV3 \) have a shape similar to those of horizontal increments, and still depend on quantities like \(\kappa, \kappa_{\text{min}}, \kappa_{\text{max}} \).

In part 12.2, cubic interpolations are written with conventional cubic weights: replace conventional cubic weights by their SLHD counterpart for diffusive cubic interpolations.

12.1.5 Vertical interpolation grid and weights for vertical cubic Hermite interpolations.

This part is valid only for interpolations of full level data.

A 4 points vertical grid is defined as it is shown in figure 12.2. The interpolation point \(O \) (medium or origin point) is between \(T_{l+1} \) and \(T_{l+2} \).

First weights to compute vertical derivatives at layers \(l+1 \) and \(l+2 \) are computed. For a variable \(X \), \(\frac{\partial X}{\partial \eta} \) is computed as close as possible as \(\left(\frac{\partial X}{\partial \eta} \right) / \eta \), but with additional approximations allowing to avoid horizontal interpolations for term \(\left(\frac{\partial X}{\partial \eta} \right) / \eta \).
• For layers other than the first or the last layer, discretisation follows:

\[
\frac{\partial X}{\partial \eta} \bigg|_{l+1} = \frac{0.5(X_{l+2} - X_l)}{\eta_{l+1} - \eta_l}
\]

(220)

• For layer \(l = 1 \), discretisation assumes that \(\frac{\partial X}{\partial \eta}\bigg|_{t=0} = 0 \) (valid only if LRUBC=..); discretisation follows:

\[
\frac{\partial X}{\partial \eta} \bigg|_{t=1} = \frac{(X_{l=2} - X_{l=1})}{\eta_{l=1} - \eta_{l=0}}
\]

(221)

• For layer \(l = L \), discretisation assumes that \(\frac{\partial X}{\partial \eta}\bigg|_{t=L} = 0 \); discretisation follows:

\[
\frac{\partial X}{\partial \eta} \bigg|_{l=L} = \frac{(X_{l=L} - X_{l=L-1})}{\eta_{l=L} - \eta_{l=L-1}}
\]

(222)

The following weights are computed:

• For an interpolation point included between layers 2 and \(L - 1 \) (\(l \geq 1 \) and \(l \leq L - 3 \)):

\[
\begin{align*}
VDERW11 &= 0.5(\eta_{l=2} - \eta_{l=1})/(\eta_{l+1} - \eta_l) \\
VDERW21 &= 0.5(\eta_{l=2} - \eta_{l=1})/(\eta_{l+1} - \eta_l) \\
VDERW12 &= 0.5(\eta_{l=2} - \eta_{l=1})/(\eta_{l+1} - \eta_l) \\
VDERW22 &= 0.5(\eta_{l=2} - \eta_{l=1})/(\eta_{l+1} - \eta_l)
\end{align*}
\]

• For an interpolation point included between layers 1 and 2:

\[
\begin{align*}
VDERW11 &= 0 \\
VDERW21 &= (\eta_{l=2} - \eta_{l=1})/(\eta_{l+1} - \eta_l) \\
VDERW12 &= 0.5(\eta_{l=2} - \eta_{l=1})/(\eta_{l+1} - \eta_l) \\
VDERW22 &= 0.5(\eta_{l=2} - \eta_{l=1})/(\eta_{l+1} - \eta_l)
\end{align*}
\]

such case is extended to the case where the interpolation point is between the top and the first layer; in this case the interpolation becomes an extrapolation.

• For an interpolation point included between layers \(L - 1 \) and \(L \):

\[
\begin{align*}
VDERW11 &= 0.5(\eta_{l=L} - \eta_{l=L-1})/(\eta_{l+1} - \eta_l) \\
VDERW21 &= 0.5(\eta_{l=L} - \eta_{l=L-1})/(\eta_{l+1} - \eta_l) \\
VDERW12 &= 0.5(\eta_{l=L} - \eta_{l=L-1})/(\eta_{l+1} - \eta_l) \\
VDERW22 &= 0
\end{align*}
\]

such case is extended to the case where the interpolation point is between the last layer and the ground; in this case the interpolation becomes an extrapolation.

Computations:

• The vertical weights \(VDERW11, VDERW21, VDERW12 \) and \(VDERW22 \) are computed then stored in the array PVD\(\text{ERW} \).

• The weight \(ZDVER \) is computed then stored in the array PD\(\text{VER} \) (see subsubsection 12.1.2).

• Functions \(f_{H1}(ZDVER) \) to \(f_{H4}(ZDVER) \) (involved in any Hermite cubic interpolation), where:

\[
\begin{align*}
*f_{H1}(\alpha) &= (1 - \alpha)^2(1 + 2\alpha) \\
*f_{H2}(\alpha) &= \alpha^2(3 - 2\alpha) \\
*f_{H3}(\alpha) &= \alpha(1 - \alpha)^2 \\
*f_{H4}(\alpha) &= -\alpha^2(1 - \alpha)
\end{align*}
\]

are computed and stored in array PH\(\text{VW} \).

• The level number \(l \) of \(T_i \) is stored in the array KLEV.

• Interpolations use data of points \(T_l, T_{l+1}, T_{l+2} \) and \(T_{l+3} \).
12.1.6 Vertical interpolation grid and weights for vertical cubic spline interpolations.

This part is valid only for interpolations of full level data.

A 4 points vertical grid is defined as it is shown in figure 12.2. The interpolation point \(O \) (medium or origin point) is between \(T_{i+1} \) and \(T_{i+2} \).

* Computations:

- Vertical interpolation is the product of two operators. The first one uses all the layers and is done in the unlagged part of the grid-point calculations by a routine \text{VSPILTRANS} and needs to compute top and bottom values and vertical derivatives of the field to be interpolated, and also the inversion of a tridiagonal matrix (routine \text{TRIDIA}); for this operation it is necessary to use some coefficients stored in the arrays \text{YRVSPLIP}%, \text{RSVPTRI} and \text{YRVSPLIP}%, \text{RVSPEC} and pre-computed in the set-up subroutine \text{UVSPLIP} (array \text{YRVSPLIP}%, \text{RFV}).
- The level number \(l \) is stored in the array \text{KLEV}.
- Interpolations use data of points \(T_i, T_{i+1}, T_{i+2} \) and \(T_{i+3} \), stored in the intermediate array \text{P}(X)SPL9.

12.1.7 Interpolation grid and weights for tri-linear interpolations.

A 64 points grid is defined as it is shown in figure 12.4, but only 8 of these 64 points are used in the interpolations. The interpolation point \(O \) (medium or origin point) is between \(B_{1,i+1}, C_{1,i+1}, B_{2,i+1}, C_{2,i+1}, B_{1,i+2}, C_{1,i+2}, B_{2,i+2}, C_{2,i+2} \). For the two levels \(l + 1 \) and \(l + 2 \) see subsubsection 12.1.1 corresponding to bi-linear horizontal interpolations for weights computations. For weights needed for vertical interpolations (\text{ZDVER}) see subsubsection 12.1.2 corresponding to linear vertical interpolations.

- The memory address (in SL arrays) of the data concerning the points \(A_{0,i}, A_{1,i}, A_{2,i} \) and \(A_{3,i} \) is computed then stored in the array \text{KL0}. Once knowing these addresses one can easily retrieve the other points addresses in the interpolations routines.
- Interpolations use data of points \(B_{1,i+1}, C_{1,i+1}, B_{2,i+1}, C_{2,i+1}, B_{1,i+2}, C_{1,i+2}, B_{2,i+2}, C_{2,i+2} \). For the two levels \(l + 1 \) and \(l + 2 \) see subsubsection 12.1.3 corresponding to 12 points horizontal interpolations for weights computations. For weights needed for vertical interpolations see subsubsection 12.1.4 for vertical cubic interpolations, see subsubsection 12.1.5 for vertical Hermite cubic interpolations, see subsubsection 12.1.6 for vertical spline cubic interpolations.

- The memory address (in SL arrays) of the data concerning the points \(A_{0,i}, A_{1,i}, A_{2,i} \) and \(A_{3,i} \) is computed then stored in the array \text{KL0}. Once knowing these addresses one can easily retrieve the other points addresses in the interpolations routines.
- Interpolations use data of the following 32 points \(B_{1,i}, C_{1,i}, B_{2,i}, C_{2,i}, B_{0,i+1}, C_{0,i+1}, A_{1,i+1}, B_{1,i+1}, C_{1,i+1}, D_{1,i+1}, A_{2,i+1}, B_{2,i+1}, C_{2,i+1}, D_{2,i+1}, C_{3,i+1}, B_{3,i+1}, C_{4,i+1}, B_{4,i+1}, A_{1,i+2}, B_{1,i+2}, C_{1,i+2}, D_{1,i+2}, A_{2,i+2}, B_{2,i+2}, C_{2,i+2}, D_{2,i+2}, B_{3,i+2}, C_{3,i+2}, B_{4,i+3}, C_{4,i+3}, B_{2,i+3}, C_{2,i+3} \).

* Remarks:

- The same formulae and computations are valid for half level data, simply replace the layer index \(l \) by the half level index \(l \).
- For vertical spline cubic interpolations a 12 points grid is used on each level \(l, l + 1, l + 2, l + 3 \) (total = 48 points used).
12.1.9 Horizontal interpolation grid and weights for 16 points linear least-square fit interpolations.

A 16 points horizontal grid is defined as it is shown in figure 12.3. The interpolation point \(O \) (median or origin point) is between \(B_1, C_1, B_2 \) and \(C_2 \). The interpolation is replaced by a linear least-square fit minimisation of a first order polynomial in each direction (first zonal interpolations, then meridian interpolations).

The weights used are the same ones for the 4 points bilinear horizontal interpolation, but the zonal linear weights are required for the 4 latitudes of the 16 points grid (\(ZDLO0, ZDLO1, ZDLO2, ZDLO3, ZDLAT \)). The actual weights used in one direction (for example the meridian direction) are respectively: 0.4 – 0.3ZDLAT, 0.3 – 0.1ZDLAT, 0.2 + 0.1ZDLAT, 0.1 + 0.3ZDLAT.

* Computations:
 - The weights ZDLO0, ZDLO1, ZDLO2 and ZDLO3 are computed then stored in the array PDLO.
 - The meridian weight ZDLAT is computed then stored in the array PDLAT.
 - The memory address (in SL arrays) of the data concerning the points \(A_0, A_1, A_2 \) and \(A_3 \) are stored in the array KL0 or KLH0. Once knowing these addresses one can easily retrieve the other points addresses in the interpolations routines.
 - Interpolations use data of the following 16 points \(A_0, B_0, C_0, D_0, A_1, B_1, C_1, D_1, A_2, B_2, C_2, D_2, A_3, B_3, C_3, D_3 \).

12.1.10 Horizontal interpolation grid and weights for 32 points linear least-square fit interpolations.

A 32 points grid is defined as it is shown in figure 12.4 where only the two intermediate layers are retained. The interpolation point \(O \) (median or origin point) is between \(B_{1,t+1}, C_{1,t+1}, B_{2,t+1}, C_{2,t+1}, B_{1,t+2}, C_{1,t+2}, B_{2,t+2} \) and \(C_{2,t+2} \). For the two levels \(t+1 \) and \(t+2 \) see subsubsection 12.1.9 corresponding to 16 points linear least-square fit interpolations for weights computations. For weights needed for vertical interpolations, only the linear weight ZDEVER is required; see subsubsection 12.1.2 for vertical linear interpolations.

 - The memory address (in SL arrays) of the data concerning the points \(A_{0,t+1}, B_{0,t+1}, C_{0,t+1}, D_{0,t+1}, A_{1,t+1}, B_{1,t+1}, C_{1,t+1}, D_{1,t+1}, A_{2,t+1}, B_{2,t+1}, C_{2,t+1}, D_{2,t+1}, A_{3,t+1}, B_{3,t+1}, C_{3,t+1}, D_{3,t+1}, A_{0,t+2}, B_{0,t+2}, C_{0,t+2}, D_{0,t+2}, A_{1,t+2}, B_{1,t+2}, C_{1,t+2}, D_{1,t+2}, A_{2,t+2}, B_{2,t+2}, C_{2,t+2}, D_{2,t+2}, A_{3,t+2}, B_{3,t+2}, C_{3,t+2}, D_{3,t+2} \).

* Remarks:
 - The same formulae and computations are valid for half level data, simply replace the layer index \(l \) by the half level index \(l/2 \).

12.1.11 Modified weights for COMAD interpolations.

Name COMAD stands for “continuous mapping around departure points”.

Any linear weight ZDL is modified as follows, to take account of convergence:

\[
ZDL_{\text{comad}} = ZDL + q(ZDL) \ast (ZDL - 0.5) \ast (STDDIS - 1)
\]

where STDDIS is the stretching/shrinking deformation along interpolation direction:

\[
STDDIS = 1 + (dV/dx)Dt
\]

- \(STDDIS \) is then bounded by 0.0001 and 1.
- \(dV/dx \) is a generic denotation for zonal, meridian or vertical first-order wind derivative.
- \(q(ZDL) \) is by default 1 on the whole interval \([0, 1]\). To ensure continuity of interpolations, \(q(ZDL) \) can be taken as a compact support \(C^\infty \) function, close to 1 on \([0, 1]\), and matching \(q(0) = 0, q(0.5) = 1, q(1) = 0; \)
For example the following expression could be used for \(q \):

\[
q(ZDL) = \exp(0.0000001(1 - 1/(1 - (2ZDL - 1)^2)))
\]

Modified high-order weights are computed using COMAD linear weights.

This scheme is described in more details in (Malardel and Ricard, 2014).

12.1.12 Plane geometry (LAM models).

All previous formulae for weight computation can be used for an irregular latitude spacing and a different number of points on each longitude. The LAM model grid has a horizontal regular spacing, so the previous formulae can be simplified and array YRHSLMER%RIPI is no longer necessary. ELASCAW is called instead of LASCAW and is cheaper in CPU time.
12.2 Interpolations.

12.2.1 Bilinear interpolation (subroutine LAIDL1).

See figure 12.1 and subsubsection 12.1.1 for definition of ZDLO1, ZDLO2, ZDLAT and points B1, C1, B2 and C2.

For a quantity X, are computed successively:
- a linear interpolation on the longitude number 1: $X_1 = X_{B1} + ZDLO1(X_{C1} - X_{B1})$.
- a linear interpolation on the longitude number 2: $X_2 = X_{B2} + ZDLO2(X_{C2} - X_{B2})$.
- a meridian linear interpolation: $X_{interpolated} = X_1 + ZDLAT(X_2 - X_1)$.

12.2.2 Tri-linear interpolation (subroutine LAITLI).

For layers $l+1$ and $l+2$ (see figure 12.4) bilinear horizontal interpolations give two interpolated values X_{i+1} and X_{i+2} (see subsubsection 12.2.1). Then the final interpolated value is given by the following expression:

$$X_{interpolated} = X_{i+1} + ZDVER(X_{i+2} - X_{i+1})$$

Remark: The same formulae and computations are valid for half level data, simply replace the layer index l by the half level index $\frac{l}{2}$.

12.2.3 Horizontal 12 points interpolation (subroutine LAIDDI).

See figure 12.3 and subsubsection 12.1.3 for definition of ZDLO0, ZDLO1, ZDLO2, ZDLO3, ZCLA1, ZCLA2 and ZCLA3 and points B0, C0, A1, B1, C1, D1, A2, B2, C2, D2, B3 and C3.

For a quantity X, are computed successively:
- a linear interpolation on the longitude number 0:
 $$X_0 = X_{B0} + ZDLO0(X_{C0} - X_{B0}).$$
- a cubic 4 points interpolation on the longitude number 1:
 $$X_1 = X_{A1} + ZCL11(X_{B1} - X_{A1}) + ZCL12(X_{C1} - X_{A1}) + ZCL13(X_{D1} - X_{A1}).$$
- a cubic 4 points interpolation on the longitude number 2:
 $$X_2 = X_{A2} + ZCL21(X_{B2} - X_{A2}) + ZCL22(X_{C2} - X_{A2}) + ZCL23(X_{D2} - X_{A2}).$$
- a linear interpolation on the longitude number 3:
 $$X_3 = X_{B3} + ZDLO3(X_{C3} - X_{B3}).$$
- a meridian cubic 4 points interpolation:
 $$X_{interpolated} = X_0 + ZCLA1(X_1 - X_0) + ZCLA2(X_2 - X_0) + ZCLA3(X_3 - X_0).$$

There is a shape-preserving option: after cubic 4 points interpolations on longitudes number 1 and 2, X_1 is bounded between X_{B1} and X_{C1} and X_2 is bounded between X_{B2} and X_{C2}; after meridian cubic 4 points interpolation $X_{interpolated}$ is bounded between X_1 and X_2. Use of switches LQMWD (momentum equation), LQMWT (temperature equation), LQMP (continuity equation), LQMWSPD (pressure departure variable equation), LQMVSVD (vertical divergence equation), Y[X]_NL%LQM for GFL variables allow to use shape-preserving option.

12.2.4 Cubic 4 points vertical interpolation.

See figure 12.2 and subsubsection 12.1.4 for definition of ZCVE1, ZCVE2 and ZCVE3. The cubic 4 points vertical interpolation gives the final interpolated value:

$$X_{interpolated} = X_l + ZCVE1(X_{i+1} - X_l) + ZCVE2(X_{i+2} - X_l) + ZCVE3(X_{i+3} - X_l)$$

Remark: The same formulae and computations are valid for half level data, simply replace the layer index l by the half level index $\frac{l}{2}$.

12.2.5 Cubic Hermite vertical interpolation.

This part is valid for interpolations of full level variables. See figure 12.2 and subsubsection 12.1.5 for definition of VDERW11, VDERW21, VDERW12 and VDERW22. See subsubsection 12.1.2 for definition of ZDVER. See subsubsection 12.1.5 for definition of functions f_{H1} to f_{H4}. The cubic Hermite vertical interpolation gives the final interpolated value:

$$X_{interpolated} = f_{H1}(ZDVER)(X_{i+1} + f_{H2}(ZDVER)(X_{i+2})$$

$$+ f_{H3}(ZDVER)(VDERW11(X_{i+1} - X_l) + VDERW21(X_{i+2} - X_{i+1}))$$

$$+ f_{H4}(ZDVER)(VDERW12(X_{i+2} - X_{i+1}) + VDERW22(X_{i+3} - X_{i+2}))$$

52
12.2.6 Spline cubic 4 points vertical interpolation.

This part is valid for interpolations of full level variables. See figure 12.2 and subsubsection 12.1.6 for definition of \(ZCVE0, ZCVE1, ZCVE2 \) and \(ZCVE3 \). The spline cubic 4 points vertical interpolation gives the final interpolated value:

\[
X_{\text{interpolated}} = ZCVE0 \times XRP + ZCVE1 \times XRP_{+1} + ZCVE2 \times XRP_{+2} + ZCVE3 \times XRP_{+3}
\]

where \(XRP \) is the re-profiled version of \(X \) available in \(P(X)\text{SPL9} \). A monotonic constraint can be added, bounding \(X_{\text{interpolated}} \) between \(X_{i+1} \) and \(X_{i+2} \).

12.2.7 32 points 3D interpolation with vertical cubic 4 points interpolation (subroutine LAIITR).

For layers \(l \) and \(l + 3 \) (see figure 12.4) bilinear horizontal interpolations give two interpolated values \(X_l \) and \(X_{l+3} \) (see subsubsection 12.2.1). For layers \(l + 1 \) and \(l + 2 \) (see figure 12.4) 12 points horizontal interpolations give two interpolated values \(X_{l+1} \) and \(X_{l+2} \) (see subsubsection 12.2.3). The final interpolated value \(X_{\text{interpolated}} \) is a cubic 4 points vertical interpolation of \(X_l, X_{l+1}, X_{l+2} \) and \(X_{l+3} \) (see subsubsection 12.2.4).

There are shape-preserving options for horizontal or both horizontal and vertical interpolations.

Use of switches \(\text{LQMWM} \) (momentum equation), \(\text{LQMT} \) (temperature equation), \(\text{LQMP} \) (continuity equation), \(\text{LQMSPD} \) (pressure departure variable equation), \(\text{LQMSVD} \) (vertical divergence equation), \(\text{Y[X].NL\%LQM} \) (GFL equations), allows to use shape-preserving option for both horizontal and vertical interpolations.

Use of switches \(\text{LQMHW} \) (momentum equation), \(\text{LQMHT} \) (temperature equation), \(\text{LQMHP} \) (continuity equation), \(\text{LQMHPD} \) (pressure departure variable equation), \(\text{LQMHSVD} \) (vertical divergence equation), \(\text{Y[X].NL\%LQMH} \) (GFL equations), allows to use shape-preserving option for horizontal interpolations.

* Remark: The same formulae and computations are valid for half level data, simply replace the layer index \(l \) by the half level index \(f \).

12.2.8 32 points 3D interpolation with vertical cubic Hermite interpolation (subroutine LAIHVT).

This part is valid for interpolations of full level variables. For layers \(l \) and \(l + 3 \) (see figure 12.4) bilinear horizontal interpolations give two interpolated values \(X_l \) and \(X_{l+3} \) (see subsubsection 12.2.1). For layers \(l + 1 \) and \(l + 2 \) (see figure 12.4) 12 points horizontal interpolations give two interpolated values \(X_{l+1} \) and \(X_{l+2} \) (see subsubsection 12.2.3). The final interpolated value \(X_{\text{interpolated}} \) is a cubic Hermite vertical interpolation of \(X_l, X_{l+1}, X_{l+2} \) and \(X_{l+3} \) (see subsubsection 12.2.5).

There are shape-preserving options for horizontal or both horizontal and vertical interpolations.

Use of switch \(\text{Y[X].NL\%LQM} \) (GFL equations), allows to use shape-preserving option for both horizontal and vertical interpolations.

Use of switch \(\text{Y[X].NL\%LQMH} \) (GFL equations), allows to use shape-preserving option for horizontal interpolations.

12.2.9 48 points 3D interpolation with vertical cubic spline interpolation (subroutine LAITVSPCQM).

This part is valid for interpolations of full level variables. This type of interpolation is activated for GFL variables when \(\text{Y[X].NL\%LVSPLP} \neq \text{T} \) in \(\text{NAMGFL} \) (currently for ozone only). Contrary to what is done for the other 32 points interpolations routines, the vertical interpolations are performed first. 12 vertical interpolations are done on the verticals matching the following points: \(B_{0, l+1}, C_{0, l+1}, A_{1, l+1}, B_{1, l+1}, C_{1, l+1}, A_{2, l+1}, B_{2, l+1}, C_{2, l+1}, D_{2, l+1}, B_{3, l+1}, C_{3, l+1}, A_{3, l+1}, D_{3, l+1}, B_{4, l+1}, C_{4, l+1}, A_{4, l+1}, D_{4, l+1} \). A monotonic constraint is added for the lower levels (currently the 9 lower levels). The projection horizontal plane on the level of the interpolation point provides a 12-points grid. A 12 points interpolation is done on this projection (see part 12.2.5). A final monotonic constraint is added: the interpolated value of \(X \) is bounded between the value of \(X \) at the points \(B_{1, l+1}, C_{1, l+1}, B_{2, l+1}, C_{2, l+1}, B_{3, l+1}, C_{3, l+1}, B_{4, l+1}, C_{4, l+1}, D_{4, l+1}, B_{5, l+2}, C_{5, l+2}, A_{5, l+2}, D_{5, l+2} \), and the overshoots/undershoots found are dispatched on upper levels to ensure as possible it can be done conservation properties.

12.2.10 Horizontal 16 points linear least-square fit interpolation.

See figure 12.3 and subsubsection 12.1.9 for definition of \(ZDLO0, ZDLO1, ZDLO2, ZDLO3, ZDLAT \) and points \(A_0, B_0, C_0, D_0, A_1, B_1, C_1, D_1, A_2, B_2, C_2, D_2, A_3, B_3, C_3, D_3 \). Let us define:

- \(f_1(\alpha) = 0.4 - 0.3\alpha \)
- \(f_2(\alpha) = 0.3 - 0.1\alpha \)
- \(f_3(\alpha) = 0.2 + 0.1\alpha \)
- \(f_4(\alpha) = 0.1 + 0.3\alpha \)
For a quantity X, are computed successively:

- a linear least-square fit 4 points interpolation on the longitude number lon for $\text{lon} = 0, 1, 2, 3$:
 \[X_{\text{lon}} = f_1(ZDLO_{\text{lon}})X_{A_{\text{lon}}} + f_2(ZDLO_{\text{lon}})X_{B_{\text{lon}}} + f_3(ZDLO_{\text{lon}})X_{C_{\text{lon}}} + f_4(ZDLO_{\text{lon}})X_{D_{\text{lon}}}. \]

- a meridian linear least-square fit 4 points interpolation:
 \[X_{\text{interpolated}} = f_1(ZDLAT)X_0 + f_2(ZDLAT)X_1 + f_3(ZDLAT)X_2 + f_4(ZDLAT)X_3. \]

12.2.11 32 points 3D interpolation with linear least-square fit horizontal interpolations and vertical linear interpolations (subroutine LAISMOO).

For layers $l + 1$ and $l + 2$ (see figure 12.4) 16 points linear least-square fit horizontal interpolations give two interpolated values X_{l+1} and X_{l+2} (see subsubsection 12.2.10). The final interpolated value is then given by the following expression:

\[X_{\text{interpolated}} = X_{l+1} + ZDVER(X_{l+2} - X_{l+1}). \]

* Remark: In the current usage of this interpolation (for $\dot{\eta}$ in the upper stratosphere) there is an additional smoothing done in routine LAISMOA before the interpolation by LAISMOO.

* For more information: See the internal paper (IDSVTSM).

12.3 Code structures to store weights.

Two structures have been created in module intdynsl_mod.F90:

- structure TLSCAW for linear weights.
- structure TRSCAW for non-linear weights.
The figure illustrates an interpolation horizontal grid for bilinear interpolations. Each grid line is labeled with its corresponding latitude (lat), and the intersection points are marked with points labeled A, B, C, and D. The conditions for the interpolations are:

- $x_1(B_1) = x_2(B_2) = 0$; $x_1(C_1) = x_2(C_2) = 1$.

Figure 12.1: Interpolation horizontal grid for bilinear interpolations.
Figure 12.2: Interpolation vertical grid for linear and cubic vertical interpolations.
Figure 12.3: Interpolation horizontal grid for 12 points interpolations.

\[y = -ZDA \]
\[y = -ZDB \]
\[y = -ZDC \]
\[x_0(B_0) = x_1(B_1) = x_2(B_2) = x_3(B_3) = 0; \]
\[x_0(C_0) = x_1(C_1) = x_2(C_2) = x_3(C_3) = 1. \]
Figure 12.4: Interpolation grid for tri-linear and 32 points interpolations.
13 Computation of $\dot{\eta}$ at full levels.

* **General expression:** $\dot{\eta}$ is needed to find the height of the medium and origin points.

$\dot{\eta}$ can be written:

$$\dot{\eta} = \left(\frac{\partial \Pi}{\partial \eta} \right) \frac{\partial \eta}{\partial \Pi}$$ (223)

* **Discretisation at full levels for LVERTFE=.F.:** $(\dot{\eta} \frac{\partial \Pi}{\partial \eta})$ is provided at half levels, and $\Delta \eta$ and $\Delta \Pi$ are provided at full levels. Discretisation of (223) is:

$$\dot{\eta}_l = 0.5 \left[\left(\frac{\partial \Pi}{\partial \eta} \right)_T + \left(\frac{\partial \Pi}{\partial \eta} \right)_{T-1} \right] \frac{|\Delta \eta|}{|\Delta \Pi|}$$ (224)

* **Discretisation at full levels for LVERTFE=.T.:** $(\dot{\eta} \frac{\partial \Pi}{\partial \eta})$ is provided at full levels, and $\Delta \eta$ and $\Delta \Pi$ are provided at full levels. Discretisation of (223) is:

$$\dot{\eta}_l = \left(\frac{\partial \Pi}{\partial \eta} \right)_l \frac{|\Delta \eta|}{|\Delta \Pi|}$$ (225)

* **Wood and Staniforth deep-layer NH-PDVD model:** Π must be replaced by $\bar{\Pi}$ in formulae (223), (224) and (225).
14 Lateral boundary conditions.

14.1 Extra longitudes.

Let us denote by L_X the number of longitudes (in the array YRGE%NLOENG for each latitude in the code). For a quantity X, let us define:

- $X(\text{longitude number } 0)=X(\text{longitude number } L_X)$.
- $X(\text{longitude number } L_X+1)=X(\text{longitude number } 1)$.
- $X(\text{longitude number } L_X+2)=X(\text{longitude number } 2)$.

These extra computations are necessary for all interpolated fields. For distributed memory computations are done when making the halo (routine SLCOMM+SLCOMM2A which exchange data with other processors).

14.2 Extra latitudes.

Let us denote by l_x the number of latitudes (YRDIM%NDGLG in the code): latitudes number -1,0,l_x+1,l_x+2 are respectively the symmetric of latitudes number 2,1,l_x,l_x-1. These extra computations are necessary for all interpolated fields. For distributed memory computations are done in SLEXTPOL.

14.3 Vertical boundary conditions in the 3D model.

* Vertical linear interpolations for layer variables at the medium point: The medium point has a vertical coordinate always included between $\eta_l=0$ and $\eta_l=L$ in case of vertical interpolating scheme. Therefore no extrapolated values are needed.

* Vertical cubic 4 points interpolations for layer variables at the origin point: When the origin point is above the layer number 2 (resp. below the layer number $L-1$), the vertical cubic 4 points interpolations using data of the layers number 1, 2, 3 (resp. $L-2$, $L-1$, L) and the extra-layer number 0 (resp. $L+1$) are degenerated into linear interpolations between the layers number 1 and 2 (resp. $L-1$ and L). The extrapolated values at the extra-layer number 0 (resp. $L+1$) are always multiplied by a weight equal to 0 and are set to 0 in subroutine LAVABO. This algorithm extends itself to the case where the origin point is between the top (resp. surface) and the layer number 1 (resp. L), but in this case the interpolation using data of the layers number 1 and 2 (resp. $L-1$ and L) becomes an extrapolation.

* Vertical cubic 4 points interpolations for half level variables at the origin point: When the origin point is above the half level number 1 (resp. $L-1$), the vertical cubic 4 points interpolations using data of the half levels number -1, 0, 1, 2 (resp. $L-2$, $L-1$, L and $L+1$) are degenerated into linear interpolations between the half levels numbers 0 and 1 (resp. $L-1$ and L).

* Vertical cubic Hermite interpolations for layer variables at the origin point: When the origin point is above the layer number 2 (resp. $L-1$), interpolation is still a vertical cubic Hermite one, computation of vertical derivatives is modified for layer number 1 (resp. L). This algorithm extends itself to the case where the origin point is between the top (resp. ground) and the layer number 1 (resp. L), but in this case the interpolation using data of the layers number 1 and 2 (resp. $L-1$ and L) becomes an extrapolation. For more details see subsubsection 12.1.5.

* Vertical cubic spline interpolations for layer variables at the origin point: Some top and bottom values are computed (the algorithm of computation will be provided in a later version of this documentation) and the vertical interpolation always uses 4 points.
15 2D shallow water and 3D models organigrammes.

15.1 Interpolation and weight calculation routines.
All calculations are DM-local.

* Weights:
 - LASCAW: computes weights and interpolation grid.
 - LASCAW_CLO: computes zonal high-order weights (and also meridian high-order weights in LAM models).
 - LASCAW_CLA: computes meridian high-order weights (spherical geometry).
 - LASCAW_VINTW: computes vertical high-order interpolation weights.

* Bilinear and trilinear interpolations:
 - LAIDLI: bi-linear 3D interpolations.
 - LAITLI: tri-linear 3D interpolations.

* High-order interpolations:
 - LAIDDI: 12 points horizontal interpolation.
 - LAITRI: 32 points 3D interpolations, with vertical cubic 4 points interpolations. Is also used for SLHD diffusive interpolations (with modified pre-computed weights).
 - LAIHVT: 32 points 3D interpolations, with vertical cubic Hermite interpolations.
 - LAITVSPCQM: Shape-preserving routine for 48 points 3D interpolations, with 12 points horizontal interpolations and vertical cubic spline interpolations.

* Other routines:
 - LAISMOO: 32 points interpolation by linear least-square fit.
 - LAISMOA: preliminary smoothing applied on quantities interpolated by the routine LAISMOO.
 - LAITRE_GFL: interface routine for interpolations done on GFL variables.
 - LAITRE_GMV: interface routine for interpolations done on GMV variables.
 - LAQMLIMITER: a posteriori quasi-monotone limiter (called after LAITRI).

15.2 Routines common to 3D and 2D organigrammes.
All calculations are DM-local.
 - GP_MODEL: interface for grid-point calculations.
 - LACONE: computes analytically \(2\Omega \wedge \mathbf{a}_k\).

15.3 Routines specific to 2D organigramme.
All calculations done in CPG2, CPG2LAG and under these routines are DM-local.
 - LACDYNSHW: computation of the SL quantities, and semi-implicit scheme quantities.
 - CPG2LAG: lagged grid-point computations; manages interpolations and computation of \(t+\Delta t\) quantities.
 - LARMES2: computation of medium point by an iterative algorithm for 2D model.
 - LAINOR2: computation of origin point.
 - LARCIN2: manages computation of medium/origin point coordinates (on the computational sphere), weights for interpolations, and interpolations.
 - LARCHE2: computes latitude, longitude of the medium/origin point coordinates on the computational sphere, \(p\) and \(q\) of the \(R\) operator matrix.
15.4 Routines specific to 3D organigramme.

All calculations done in CPG, CPGLAG and under these routines are DM-local.

- **CPG**: unlagged adiabatic calculations.
- **CPG_DRV**: driver for unlagged adiabatic calculations.
- **CPG_GP, CPG_DIA, CPG_DYN, CPG_END**: different parts of the grid-point calculations (resp. beginning including call to some GP.. routines, diagnostics, unlagged dynamics, end).
- **EC_PHYS**: interface for ECMWF physics.
- **EC_PHYS_LSLPHY**: interface for ECMWF split physics.
- **GPADDSLPHY**: adds the physical tendencies to the interpolation buffers for ECMWF physics if split physics.
- **GP_KAPPA**: computes the deformation and κ, required in the SLHD interpolations. Called only if LSLHD=.T.
- **GP_KAPPAT**: alternate way to compute κ for thermic variables.
- **GP_STDDIS**: computes the stretching/shrinking deformation STDDIS required in the COMAD interpolations. Called only if LCOMAD=.T.
- **LACdyn**: computation of the SL quantities, and semi-implicit scheme quantities.
- **LARCHE**: computes latitude, longitude of the medium/origin point coordinates on the computational sphere, p and q of the R operator matrix. ELARCHE is called instead of LARCHE for plane geometry.
- **LASURE**: some initialisations.
- **LASSIE**: computation of semi-implicit linear terms for hydrostatic equations.
- **LANHSI**: computation of semi-implicit linear terms for non-hydrostatic equations.
- **LANHSIB**: fills the $P[X]S1$ arrays in the NH model when LGWADV=.T.
- **LAVENT**: computation of quantities to be interpolated (wind) for trajectory research.
- **LATTEX**: computation of quantities to be interpolated for 3D variables equations (GFL and GMV).
- **LATTEX_TNT**: called by LATTEX for a SL3TL scheme, part of the code which is the same for all variables.
- **LATTEX_CBC**: computes the additional quantities to be stored in the buffers "SLBUF1" and "SLBUF2" for the option LRDBBC=.T.
- **LATTEX**: computation of quantities to be interpolated for 2D variables equations (currently continuity equation).
- **LAVABO**: vertical extrapolations (boundary conditions).
- **CPGLAG**: lagged adiabatic calculations other than semi-Lagrangian interpolations.
- **CALL_SL**: manages interpolations and computation of $t + \Delta t$ quantities.
- **LAPINEA**: manages the research of SL-trajectory.
- **LAPINEB**: manages the interpolated part of the equations RHS.
- **LARMS**: computation of medium point by an iterative algorithm for 3D model. Computes also the origin point. ELARMS is called instead of LARMS for plane geometry.
- **LARCINA**: manages computation of medium/origin point coordinates (on the computational sphere), weights for interpolations, and interpolations needed in the SL-trajectory research; apply to interpolations on layer data.
- **LARCINHA**: the same as LARCINA but for half level data.
- **LARCINB**: manages interpolations needed at the origin point in the equations RHS; apply to interpolations on layer data.
- **LARCINHB**: the same as LARCINB but for half level data.
- **GNHG2SVD**: manages the conversions from \textit{gw} towards \textit{d} in the non-hydrostatic model when the key LGWADV is put to .T.
- **MF_PHYS_PREP**: preparation of input data for MF_PHYS.
- **MF_PHYS**: interface for MF physics.
- **VSPLTRANS**: re-profiling of the quantity to be interpolated prior to vertical cubic spline interpolations (calls TRIDIA to invert tridiagonal linear systems).
- **VDIFLCZ**: interface for Buizza simplified physics.
- **VERINT**: does vertical integrals for vertical finite elements discretisation.
15.5 Set-up routines.

- **SUCT0**: 0-level control setup routine.
- **SUDYNA**: sets-up first part of dynamics.
- **SUDYN**: sets-up second part of dynamics.
- **SUINTDYN**: sets-up some structures used in the dynamics.
- **SUINTDYNSL**: sets-up some structures used in the dynamics under `CALL_SL`.
- **SUSLB**: initialise pointers of SL buffers and other quantities used in the SL scheme.
- **SUSLB2**: cf. **SUSLB** for 2D models.
- **SUVEC2B**: computes different dimensions for SL buffers.
- **SLCSET+SLRSET**: computes some distributed memory environment for interpolations buffers.
- **SUSLAD1**: initialise data structures for SL adjoint.
- **SUSLAD2**: initialise constant arrays for SL adjoint interpolation.
- **SUSLAD3**: optimise halo for SL adjoint interpolation.
- **SUHSLMER**: compute intermediate quantities used in high order horizontal interpolations.
- **SUVERT**: computes some variables linked to vertical geometry.
- **SUVERTFE**: computes vertical operators used for VFE discretisation.
- **SUVSPLIP**: computes some variables linked to cubic spline vertical interpolations.
- **SUVSLETA**: fills YRVSLETA (intermediate quantities used in high order vertical interpolations).

15.6 Main features of organigramme for setup.

Only the most important features for SL scheme are described.

CNT0 ->
* SU0YOMA ->
 - SUCT0
 - SUDYNA
 - SUINTDYN
 - SUGEOMETRY ->
 * geometry setup
 * SUINTERPOLATOR -> SUVSPLIP, SUVSLETA, SUHSLMER
 - SUDYNB ->
 - SUINTDYNLSL
 - SUSC2B ->
 * SUSLB or SUSLB2
 * SLCSET -> SLRSET
 * SUSLAD1
 * SUSLAD2

15.7 Organigramme for 2D model.

STEPO -> SCAN2M -> GP_MODEL_HEAP or GP_MODEL_STACK -> GP_MODEL ->
* CPG2 ->
 - GPTF2
 - LACDYNSHW
 - WRSLTRAJ2
* SLCOMM and SLEXTPOL
* CPG2LAG ->
 - LADINE ->
 * LARMS2 -> LARCIN2 ->
 - LARCH2 + LASCW (ELASCW in LAM models)
 -> LASCW_CLA, LASCW_CL0
 - LAIDD1
 * LAINOR2 -> LARCIN2 ->
 - LARCH2 + LASCW (ELASCW in LAM models)
 -> LASCW_CLA, LASCW_CL0
 - LAIDD1
 * LACONE
 * LARCH2
 - GPTF1

63
15.8 Organigramme for 3D model.

* Organigramme under STEPO.

STEPO -> SCAN2M -> GP_MODEL_HEAP or GP_MODEL_STACK -> GP_MODEL ->
* CPG_DRV -> CPG ->
 - CPG_GP (see documentation (IDEUL) for details)
 - GPINIDDH
 - EC_PHYS_LSLPHY (split ECMWF physics) ->
 * GPADSLPHY
 - MF_PHYS_PREP
 - MF_PHYS (unlagged MF physics, organigramme not detailed)
 - CPG_DIA -> (routines for some diagnostics, organigramme not detailed)
 - CPDGSLDIA -> (semi-Lagrangian diagnostics)
 - CPG_DYN ->
 * LACDYN ->
 - LASURE
 - LASSIE (-> SITU, SIGAM, GPRCP) or LANHSI (-> SIPTP, SIDD, SISEVE, GPRCP)
 - LAVENT
 - LATTEX ->
 * LATTEx_TNT or LATTEx_DNT
 * VSQLTRNS -> TRIDIA
 - LATTE_KAPPA -> GP_KAPPA and GP_KAPPAT
 - LATTE_STDDIS -> GP_STDDIS
 - LATTE_BEC
 - LATTES -> VERINT
 - LAVABO
 - LANHSI and LANHSIB for NH and LGWADV=T
 * VDIPLCZ (see documentation (IDEUL) for details)
 - CPEND -> (see documentation (IDEUL) for details)
* CALL_SL_HEAP or CALL_SL_STACK -> CALL_SL ->
 - SLCOMM and SLEXTPOL (global model) or ESLEXTPOL (LAM model)
 * LAPINEA ->
 * LARMES (ELARMES in LAM models) ->
 - LARCINA (see below) + LAISMOA
 - LARCINA ->
 - LARCHE + LASCAW (ELARCHE + ELASCAW in LAM models)
 -> LASCAW_CLA, LASCAW_CLO, LASCAW_VINTW
 - LAITLI
 - LAISMOG
 * LARCINA ->
 - LARCHE + LASCAW (ELARCHE + ELASCAW in LAM models)
 -> LASCAW_CLA, LASCAW_CLO, LASCAW_VINTW
 * LARCinha ->
 - LARCHE + LASCAW (ELASCAW in LAM models)
 -> LASCAW_CLA, LASCAW_CLO, LASCAW_VINTW
 - SLCOMM2A and SLEXTPOL (global model) or ESLEXTPOL (LAM model)
 if on-demand SL communications asked for
 * LAPINNEB ->
 * LARCINB ->
 - LAITRE_GMV -> LAITRI
 - LAITRE_GPL -> LAITRI, LAITHVT, LAITVSPCQM, LAQLIMITER
 - LAITLI
 - LAIDDI
 * LARCINHB ->
 - LAITRE_GMV -> LAITRI
 - LAITLI
 * some GP... and GNH... routines.
 * LARCHE
 * LACONE
 * VERINT
 * GNHGw2svd for NH and LGWADV=T
 * CPGLAG (organigramme not detailed, see documentation (IDEUL))
 * EC_PHYS_DRV (organigramme not detailed)
16 Tangent linear and adjoint codes.

16.1 3D hydrostatic model.

16.1.1 Available options.

Code is available for the following subset of options in the cycle 42 of ARPEGE/IFS:

- Two-time level semi-Lagrangian scheme.
- NVLAG=3, NWLAG=3, NTLAG=3.
- Non monotonic horizontal interpolations.
- LSLPHY=.F.
- All Y[X].NL%LHV=.F.
- All Y[X].NL%LVSPlip=.F.
- LCOMAD=.F.

16.1.2 Basics about TL code.

The coded linearised formulae will not be detailed in this documentation: the tangent linear code is taken line by line, thus it depend on the way the direct code is written. The main features of the tangent linear code are roughly the following ones:

- the tangent code looks like the direct code but with a differentiated shape. For example if the direct code contains an instruction like
 \[Z = XY \]
 the tangent linear code will contain at the same place the instruction
 \[Z = XY_5 + X_5Y \]
 using some trajectory variables subscripted by index “5”.
- There is additionally a “trajectory” code which is a copy of the direct code, but applied to the trajectory variables subscripted by index “5”.
- For the interpolation grid indices that appear in the weight computation routine (`LASCAWTL`) and the interpolation routines, there is only one version and the names of variables are not subscripted by index “5”. The “trajectory”-coordinates (subscripted by index “5”) are used to compute the indices of the interpolation grid.
- Concerning the interpolation buffers “PB1...” there are several ways to deal with them, according to the value of variable `NTRSLTYPE`. The ADTL-trajectory is stored in the array `TRAJEC%SLAG`. For `NTRSLTYPE`=2 (the default value and the only value coded in the 3D model), some quantities (essentially some quantities of buffer `PB1...`) are stored in the direct model and read in the TL model, so their recomputation is not necessary in the TL model.
16.1.3 Organigramme of TL code.

* TL code organigramme under SCAN2MTL:

```
SCAN2MTL -> GP_MODEL_TL ->
  * CPG_DRV_TL -> CPGTL ->
    - Allocations
      * CPGS_GP (for trajectory) ->
        * some routines reading trajectory (RDPHTRAJM)
        * some GP.. routines computing intermediate grid-point quantities for trajectories.
      * CPG_GP_TL ->
        * SC2NDG (organigramme not detailed)
        * GPTF2
        * GPMPFC (for model variables)
        * some GP..TL routines computing intermediate grid-point quantities for model variables.
        * GPINISLB
      - MF_PHYSTL (TL of simplified non lagged physics)
    * CPG_DYN_TL ->
      * LACDYNTL ->
        - LASURE
        - LASSIETL
        - LAVENTTL
        - LATTEXTL -> LATTEX_DNT
        - LATTABLE -> GP_KAPPATL and GP_KAPPATTL
        - LATTESTL -> VERINT
        - LAVABOTL
      * VDIFLCZTL (organigramme not detailed)
    - CPG_END_TL ->
      * GPMPFC (for model variables)
      * SC2WRG (organigramme not detailed)
      * GPMPFC5 (for trajectory)
    - Deallocations
    * CALL_SL_TL ->
      - SLCOMM and SLEXTPOL (DM code only)
        - LAPINEAS ->
          * LARMESSTL (ELARMESSTL in LAM models) -> LARCINA ->
            - LARCHE + LASCW (ELARCHE + ELASCW in LAM models)
            -> LASCW_CLA, LASCW_CL0, LASCW_VINTW
            - LAITL
          * LARCINA ->
            - LARCHE + LASCW (ELARCHE + ELASCW in LAM models)
            -> LASCW_CLA, LASCW_CL0, LASCW_VINTW
        - LAPINEATL ->
          * LARMESTL (ELARMESTL in LAM models) -> LARCINATL ->
            - LARCHETL (ELARCHETL in LAM models)
            - LASCWTL (ELASCWTL in LAM models)
            -> LASCW_CLA_TL, LASCW_CL0_TL, LASCW_VINTW_TL
            - LAITLTL
          * LARCINATL ->
            - LARCHETL (ELARCHETL in LAM models)
            - LASCWTL (ELASCWTL in LAM models)
            -> LASCW_CLA_TL, LASCW_CL0_TL, LASCW_VINTW_TL
        - SLCOMM2A and SLEXTPOL (DM code only and on-demand SL communications asked for)
        - LAPINEBTL ->
          * LARCBNELT ->
            - LAITRE_GMV_TL -> LAITRITL
            - LAITLTL
            - LAIDDITL
          * VERINT
          * LACUNETL
          * LARCHETL (ELARCHETL in LAM models)
          * VERINT
    * EC_PHYSTL (organigramme not detailed)
    * CPGLAGTTL (organigramme not detailed, see documentation (IDEUL))
```
* Additional remarks:

- For subroutines, the name of which ends by “5”, see their corresponding direct code routines, the explanation of which is given in the section describing the direct code. These routines compute the trajectory which is required in the TL calculations for some quantities, the trajectory of which is not computed in the direct code.
- For subroutines, the name of which ends by “TL”, see their corresponding direct code routines, the explanation of which is given in the section describing the direct code.
- LATTEXTL and LATTESTL: quantities P(X)T15 are not computed, excepted in the case L2TLFF=.T. where PUT15 and PVT15 are computed. PB1...-buffers are directly recovered by a memory transfer under CPGTL if NTRSLTYPE=2.
- LARMESTL: computation of the semi-Lagrangian displacement yields a duplication of the code into a “differentiated code” and a “ADTL-trajectory code” (for example an instruction like Z = XY yields the “differentiated code” Z = XY5 + X5Y and the “ADTL-trajectory code” Z5 = X5Y5). This is the reason for which one can find in routine LARCHETL two sets of coordinates (PLON PLAT) and (PLON5 PLAT5) and two sets of (p, q) matrices. Only the “5” quantities are used to compute the indices of the interpolation grid. On the contrary both sets of coordinates are used to compute the weights in LASCAWTL because both sets of weights are needed in the linear tangent versions of the interpolation routines.
- LAPINEBTL: computation of P(X)T1 needs both the arrays Z(X)95 and Z(X)9.
- LARCHETL: has optimisations which are not present in the direct code. First the code for not tilted geometry has been split into a code for stretched geometry (also valid for unstretched geometry) and a code for unstretched geometry. Additionally some functions such as MAX, MIN, MOD, have been replaced by tests with sometimes additional variables. The consequence is that the TL code looks not straightforward to compare with the direct code.

16.1.4 Basics about AD code.

One starts from the linear tangent code and “adjoints” the code: for example a matricial expression of the following type

\[Y = MX \]

leads to the expression

\[X = X + 'MY \]

in the adjoint code. Some particular features appear in the code of the semi-Lagrangian scheme, and the adjoint code is not completely the mirror of the linear tangent code.
16.1.5 Organigramme of AD code.

* AD code organigramme under SCAN2MAD:

SCAN2MAD -> GP_MODEL_AD ->
- CPGS
 * CPGLAD (call tree not detailed, see documentation (IDEUL))
 * EC_PHYS_AD (call tree not detailed)
 * PRE_SLADREP (case LSLADREP=T) ->
 - SLCOMM2A (case LSLONDEM=T)
 - SLCOMM (case LSLONDEM=F)
 * CALL_SL_AD ->
 - SLCOMM and SLEXTPOL (DM code only)
 - LAPINEAS ->
 * LARMES -> LARCINA ->
 - LARCHE (ELARCHE in LAM models)
 - LASCAW (ELASCAW in LAM models)
 -> LASCW_CLA, LASCW_CL0, LASCW_VINTW
 - LAITLI
 * LARCINA ->
 - LARCHE + LASCAW (ELASCAW in LAM models)
 -> LASCW_CLA, LASCW_CL0, LASCW_VINTW
 - SLCOMM2A and SLEXTPOL (DM code only and on-demand SL communications asked for)
 - LAPINEBAD ->
 * LARCINBS ->
 - LAITLI
 - LAITRI
 * LACONE
 * LARCHE
 * VERINTAD
 * LACONEAD
 * LARCHEAD
 * LARCHBAD ->
 - some LA..._INIT routines (LSLADREP=T)
 - LAITLID
 - LAITRE_GMV_AD -> LAITRIAD
 - LAIDDIAD
 - LAPINEAD ->
 * LARClNAD ->
 - LARCHBAD + LASCAWAD
 -> LASCW_CLA_AD, LASCW_CL0_AD, LASCW_VINTW_AD
 * LARMESAD -> LARCHNAAD ->
 - some LA..._INIT routines (LSLADREP=T)
 - LAITLAD
 - LARCHAD + LASCAWAD
 -> LASCW_CLA_AD, LASCW_CL0_AD, LASCW_VINTW_AD
 - SLEXTPOLAD (case LSLADREP=F)
 - SLCOMM2 (case LSLADREP=F + LSLONDEM=T)
 - SLCOMM (case LSLADREP=F + LSLONDEM=F)
 * CPG_DRV_AD -> CPGAD ->
 - Allocations
 - CPNG_GP (for trajectory) ->
 * some routines reading trajectory (RDPHTRAJM)
 * GPMPFC, GP_SPV (for trajectory)
 - some GP... routines computing intermediate grid-point quantities for trajectories.
 - CPEND_AD ->
 - SC2RDG (organigramme not detailed)
 - GPMPFC
 - CPZERG_AD
 - CP_GYN_AD ->
 - VDIFLCZAD (organigramme not detailed)
 - LADYNAD ->
 - LASURE
 - LATTESAD -> VERINTAD
 - LATTE_KAPPAAD -> GP_KAPPAAD and GP_KAPPATAD
 - LATTEXAD -> LATTEX_DNT_AD
 - LAVENTAD
 - LAAssIAD
 - MF_PHYSAD (organigramme not detailed)
 - CPG_GP_AD ->
 - some GP... AD routines computing intermediate grid-point quantities for model variables.
 - GPMPFC (for model variables)
 - GPTF2AD
 - SC2WRG (organigramme not detailed)
 - GPMPFC5 (for trajectory)
* Additional remarks:

- For subroutines, the name of which ends by “5”, see their corresponding direct code routines, the explanation of which is given in the section describing the direct code. These routines compute the trajectory which is required in the AD calculations for some quantities, the trajectory of which is not computed in the direct code.

- For subroutines, the name of which ends by “AD”, see their corresponding direct code routines, the explanation of which is given in the section describing the direct code.

- The storage of the ADTL-trajectory variables (indexed by “5”) is not fully done in the direct code, because of the huge amount of data to store. So some quantities which have normally to be stored in the direct code, are in this case recomputed in the adjoint code and stored in arrays, the name of which is ending by “5” (sometimes “6” or “7”). This recomputation is done on all data concerning the iterative calculation of the semi-Lagrangian displacement (medium and origin points) and the weights and grid for interpolations. One can notice that, when computing the position of the mid-point, all intermediate positions are stored at each iteration (contrary to the direct code which only retains the last iteration). The consequence is that the adjoint code calls the routines \texttt{LARMES5} (slightly modified version of \texttt{LARMES}), \texttt{LARCNB5}, \texttt{LARCHE} and \texttt{LACONE}.

- In \texttt{LASCAW}, only the computation of interpolation weights has an adjoint code, but not the index-array for the interpolation grid (arrays \texttt{KL0} and \texttt{KLH0}).

- In interpolation routines (\texttt{LAIDDIAD}, \texttt{LAIDLIAAD}, \texttt{LAITRIAD}, \texttt{LAITLIAD}), adjoint codes have some optimisations not present in the direct code and the TL code, in order to avoid memory conflicts. The main feature of these optimisation is the use of an intermediate array \texttt{PZINC} in the adjoint code of the interpolation routines. Memory transfer in \texttt{PSLBUF1} is done only in \texttt{LARCRNAD} and \texttt{LARCNBAD} once all adjoints of interpolation routines have been called.

- \texttt{CPG5} is a very simplified version of \texttt{CPG} which currently only reads trajectory.

- \texttt{LARCHFAD}: has optimisations which are not present in the direct code and does not follow completely \texttt{LARCHETL} (no splitting between stretched and unstretched geometry). Some functions such as \texttt{MAX}, \texttt{MIN}, \texttt{MOD}, have been replaced by tests with sometimes additional real or logical variables. The consequence is that the AD code looks not straightforward to compare with the direct and TL codes.

- The adjoint interpolation routines have options of reproducibility which are not present in the direct and TL codes, and which need to call intermediate \texttt{LAI...INI} routines.

16.2 3D non hydrostatic model.

Adjoint code is not yet available in the cycle 42 of ARPEGE/IFS.

16.3 2D shallow-water model.

16.3.1 Available options.

Code is available for the following subset of options in the cycle 42 of ARPEGE/IFS:

- Two-time level semi-Lagrangian scheme.
- Spherical geometry with no tilting.
- Unstretched geometry.
- Conventional formulation for continuity equation.
- Non monotonic horizontal interpolations.
- Eulerian treatment of orography (\texttt{RCMSLP0=1}).
- “On demand” processor communications not activated.

16.3.2 Basics about TL code.

See part (16.1.2).

16.3.3 Organigramme of TL code.

* Direct code modification: \texttt{CPG2} calls \texttt{WRSLTRAJ2} to store the trajectory in configurations where the TL code is called (configurations 421 and 521). \texttt{WRSLTRAJ2} is a subroutine which writes data on a buffer.
* TL code organigramme under SCAN2MTL:

SCAN2MTL -> GP_MODEL_TL ->
* CPG2TL ->
 - RDSLTRAJ2 (if NTRSLTYPE = 1)
 - GPTF2
 - LACDYNSHWTL ->
 - RDSLTRAJ2 (if NTRSLTYPE = 2)
* CPG2LAGTL ->
 - LADINETL ->
 * LARMES2TL -> LARCIN2TL -> (see below)
 * LAINOR2TL -> LARCIN2TL -> (see below)
 * LARCHE2TL
 * LACUNETL
 - GPTF1

Organigramme below LARCIN2TL:

LARCIN2TL ->
* LARCHE2TL + LASCRAWTL (ELASCAWTL in LAM models)
 -> LASCRAW_CLA_TL, LASCRAW_CLO_TL
* LAIDDLTL or LAIDDLTL

* Additional remarks:

 - **RDSLTRAJ2** reads the TL trajectory, which is stored in arrays underscripted by index “5”.
 - For subroutines, the name of which ends by “TL”, see their corresponding direct code routines, the explanation of which is given in the section describing the direct code.
 - **LACDYNSHWTL**: quantities \(P(X)T15 \) are not computed. One only computes \(P(B)1... \)-buffers \(P(X)L95 \) and \(P(X)L05 \) if \(NTRSLTYPE \) is zero or 1; otherwise the \(P(B)1... \)-buffers are directly recovered by a call to **RDSLTRAJ2** under **CPG2TL** if \(NTRSLTYPE=2 \).
 - **LARMES2TL** and **LAINOR2TL**: computation of the semi-Lagrangian displacement yields a duplication of the code into a “differentiated code” and a “ADTL-trajectory code” (for example an instruction like \(Z = XY \) yields the “differentiated code” \(Z = X5Y5 + X3Y5 \) and the “ADTL-trajectory code” \(Z5 = X5Y5 \)). This is the reason for which one can find in routine **LARCHE2TL** two sets of coordinates \((PLON, PLAT)\) and \((PLON5, PLAT5)\) and two sets of \((p, q)\) matrices. Only the “5” quantities are used to compute the indices of the interpolation grid. On the contrary both sets of coordinates are used to compute the weights in **LASCRAWTL** because both sets of weights are needed in the linear tangent versions of the interpolation routines.
 - **LADINETL**: computation of \(P(X)T1 \) needs both the arrays \(Z(X)95 \) and \(Z(X)9 \).
 - **LARCHE2TL**: cf. **LARCHETL**.

16.3.4 Basics about AD code.

One starts from the linear tangent code and “adjoints” the code: for example a matricial expression of the following type

\[
Y = MX
\]

leads to the expression

\[
X = X + tMY
\]

in the adjoint code. Some particular features appear in the code of the semi-Lagrangian scheme.

 - The storage of the ADTL-trajectory variables (indexed by “5”) is not fully done in the direct code, because of the huge amount of data to store. So some quantities which have normally to be stored in the direct code, are in this case recomputed in the adjoint code and stored in arrays, the name of which is ending by “5” (sometimes “6” or “7”). This recomputation is done on all data concerning the iterative calculation of the semi-Lagrangian displacement (medium and origin points) and the weights and grid for interpolations. One can notice that, when computing the position of the mid-point, all intermediate positions are stored at each iteration (contrary to the direct code which only retains the last iteration). The consequence is that the adjoint code will call the routines **LARMES25**, **LAINOR2**, **LARCIN2**, **LARCHE2**, **LACONE** and **LASCRAW**. Concerning the not lagged dynamics one finds a sequence **CPG25** -> **LACDYNSHW** before the call to **CPG2LAGAD** under **SCAN2MAD**. **CPG25** is a simplified version of **CPG2** which calls **LACDYNSHW** and gets some \(t - \Delta t \) variables by calling **RDSLTRAJ2**.

 - In **LASCRAW**, only the computation of interpolation weights has an adjoint code, but not the index-array for the interpolation grid (arrays **KL0** and **KLH0**).
16.3.5 Organigramme of AD code.

* AD code organigramme under SCAN2MAD:

SCAN2MAD -> GP_MODEL_AD ->
 * CPG25 ->
 - RDSLTRAJ2
 - LACDYNSHW
 * CPG2LAGAD ->
 - GPTF1AD
 * LADAD ->
 - LADINEAD ->
 * LARMES25 -> LARCI2N2 -> (see below)
 * LAINOR2 -> LARCI2N2 -> (see below)
 * LACONE
 * LARCH2E
 * LACONEAD
 * LARCH2EAD
 * LAINOR2AD -> LARCI2N2AD -> (see below)
 * LARMES2AD -> LARCI2N2AD -> (see below)
 * CPG2AD ->
 - LACDYNSHWAD
 - GPTF2AD

Organigramme below LARCI2N2:

LARCI2N2 ->
 * LARCH2E + LASCAW (ELASCAW in LAM models)
 -> LASCAW_CLA, LASCAW_CLO
 * LAIDDII or LAIDLI

Organigramme below LARCI2N2AD:

LARCI2N2AD ->
 * LARCH2E + LASCAW (ELASCAW in LAM models)
 -> LASCAW_CLA, LASCAW_CLO
 * LAIDDIIAD or LAIDLIAD
 * LASCAWAD + LARCH2EAD (ELASCAWAD in LAM models)
 -> LASCAW_CLA_AD, LASCAW_CLO_AD

* Additional remarks:
 - Some direct code is called again under SCAN2MAD, LADINEAD and LARCI2N2AD.
 - LARMES25 is a version of LARMES2, the only differences are actually:
 - only the semi-lagrangian displacement is computed; no call of interpolations at the mid-point for the RHS of the equations.
 - all the intermediate positions of the mid-point are stored in the iterative algorithm.
 - CPG25 is a very simplified version of CPG2.
 - LADAD: interface for interpolations (equivalent of CALL_SL_AD in the 3D model).
 - LARCH2EAD: same remarks as for the hydrostatic 3D model.
17 Some distributed memory features.

The horizontal dimensions (NPROMA, NGPBKLS, NDGLG) referenced below are attributes of YRDIM. The horizontal quantities NGPTOT.. and NLOENG referenced below are attributes of YRGEM.

17.1 Case LEQ_REGIONS=F.

17.1.1 Calculations packets.

- **Grid-point computations:** The total number of processors involved in the A-level parallelisation is NPRGPNS. The total number of processors involved in the B-level parallelisation is NPRGPEW. One processor treats NGPTOT points (a part of the Gaussian grid points). The total amount of grid-points for all the processors is NGPTOTG. The maximum value of NGPTOT is NGPTOTMX. In the grid-point space there is a subdivision of the current processor grid-points into NGPBLKS packets of length NPROMA (the useful number of values in each packet is lower or equal than NPROMA). These packets do not contain neither extra-longitudes nor polar or extra-polar latitudes data. A NPROMA-packet does not always contain a set of complete latitudes. This subdivision into NPROMA-packet both concern not lagged and lagged computations. Currently all the not lagged calculations are done for the int[(NGPTOT+NPROMA-1)/NPROMA] packets of length NPROMA before calling the lagged computations for the int[(NGPTOT+NPROMA-1)/NPROMA] packets of length NPROMA. int[(NGPTOT+NPROMA-1)/NPROMA] is stored in the variable NGPBKLS. More details will be given later for the data transmission for horizontal interpolations. One 2D field has NGPTOTG points divided into NPRGPNS*NPRGPEW sets of NGPTOT points treated by each processor. NGPTOT does not take account of the extra-longitudes and the extra-polar latitudes. All these variables take account of the reduced Gaussian grid. It is assumed and hardcoded that there are one western extra-longitude and two eastern extra-longitudes. The DM-global longitude jlon = 1 is always the “Greenwich” meridian of the computational sphere. All the vertical levels and the variables corresponding to a same grid-point are treated by the same processor. There are necessary transpositions (reorganisation of data) between grid point computations and Fourier transforms because Fourier transforms need complete latitudes.

- **Additional remarks about the LEQ_REGIONS environment variables.** Variables N_REGIONS_NS, N_REGIONS and N_REGIONS_EW are used even when LEQ_REGIONS=F but in this case:
 - N_REGIONS_NS=NPRGPNS.
 - N_REGIONS=NPRGPEW everywhere.
 - N_REGIONS_EW=NPRGPEW.

17.1.2 Transmission of data necessary for semi-Lagrangian horizontal interpolations from the non lagged grid-point computations towards the lagged grid-point computations: interpolation buffers.

Description is done for the 3D model.

First one associates to each interpolation point, which is generally not a model grid-point, an “associated” model grid-point which currently matches to the following rule: for the semi-Lagrangian scheme one associates to the interpolation point the corresponding arrival point of the SL trajectory. This associated model grid-point is always between the latitudes 1 and NDGLG (it is never a pole or an extra-polar latitude point). The processor which treats the interpolation point is the processor which treats this associated model grid-point.

Interpolations use data of points which are not necessary on the same latitude and longitude as the interpolation point and the arrival grid-point of the semi-Lagrangian trajectory. Thus interpolation routines need to have access to a limited number of surrounding latitudes and longitudes which are not necessary treated by the current processor. First the not lagged computations are done for the int[(NGPTOT+NPROMA-1)/NPROMA] packets of length NPROMA, then the lagged computations are done for the int[(NGPTOT+NPROMA-1)/NPROMA] packets of length NPROMA interpolation points. The number of surrounding latitudes and longitudes rows necessary for interpolations but which do not belong to the current processor is precomputed in the subroutine SUSC2B (variable YRSL%NSLWIDE). This is a sort of “halo” belonging to some other processors. Due to the “halo” there is still need to split calculations into not lagged ones and lagged ones. Quantities to be
Interpolated are computed in the non-lagged part and interpolations are performed in the lagged part. In the non-lagged part, only data of the current processor (without any extra-longitudinal data nor polar and extra-polar data) are computed. For all the NPROMA-packages treated by the current processor these data are stored in the arrays PB1 in CPG. The first dimension of PB1 is NASLB1, which is the total number of points one needs for the interpolations (NASLB1 is greater than NGPTOT). The second dimension of PB1 is NFLDSLB1: this is the number of 2D quantities to be interpolated. Inside CPG, an intermediate array ZSLBUF1AU is used and data are transferred in PB1: this memory transfer uses a precomputed intermediate array NSLCORE. Then some communication routines are called in CALL_SL to constitute the halo. SLCOMM does processor communication to fill the halo (receives and sends data from some other processors). When all the NASLB1 dataset is constituted, the lagged part CALL_SL is called which do horizontal interpolations for all the data to be interpolated for the current processor.

* Particular case of the “on demand” processor communication: SLCOMM and SLEXTPOL are still called with specific options, and do the communications only on the part of the buffer which contains the information to find the semi-Lagrangian displacement. For the RHS of equations, the interpolations need to communicate a subset of points, this subset can be known only when all the interpolations grids have been computed (in LASCAW): communications are currently done by SLCOMM2A and SLEXTPOL called by CALL_SL just before the interpolations. SLCOMM2A and SLEXTPOL have less points to exchange so the model integration is slightly less expensive.

Terms which must be evaluated at F are stored in GFLT1, GMVT1, GMVT1S (for the RHS of equations) and PB2 for additional intermediate terms. See documentation (IDEUL) for more details about PB2 and the dataflow in the grid-point calculations.

17.2 Case LEQ_REGIONS=T.

This case is relevant only when NPRGPEW>1 (B-level parallelisation at least in the grid-point calculations). This is an optimised version of the LEQ_REGIONS=F case which is well designed for reduced Gaussian grid and it improves the load balance in this case. A comprehensive description can be found in (Mozdzynski, 2006). To sum-up, we can say that:

- the A-level grid-point distribution splits the Earth into N_REGIONS_NS bands. N_REGIONS_NS can be slightly different from NPRGPNS.
- for each band $jroca$, the B-level grid-point distribution splits the band into N_REGIONS($jroca$) zones: the minimum value of N_REGIONS is at the poles of the computational sphere (equal to 1 in the examples provided by Mozdzynski); the maximum value of N_REGIONS is at the equator of the computational sphere and this maximum is equal to N_REGIONS_EW. The meridian variations of N_REGIONS are highly correlated to those of YRGER%NLOENG.
- In the examples provided by Mozdzynski, NPRGPNS=NPRGPEW=NPRTRW=NPRTRV and we notice that N_REGIONS_NS is slightly below NPRGPNS, and that N_REGIONS_EW is slightly below 2*NPRGPEW.
18 Specific SL variables in pointer modules, modules and namelists.

These modules are auto-documented so description of each variable is provided in the code source. We can recall here the most important variables to know for each module:

- **PARDIM** (parameter dimensions).
- **PTRSLB1** (pointers for quantities to be interpolated).
- **PTRSLB15** (pointers for quantities to be interpolated: trajectory for TL and AD models).
- **PTRSLB2** (pointers for arrays to communicate information between the different blocks in the grid-point calculations).
- **YOM_YGFL** and namelist **NAMGFL**: some GFL attributes like LADV, LINTLIN, LTDIABL1N, LHORUS, LQM, LQMH, LQM3D, LSLHD, LCOMAD, LHV, LVSPLIP.
- **YOMARG** (0-level control, former command line) and **YOMCT0** (0-level control):
 - All NAMARG variables: for ex. NCONF, LELAM, LECMWF, UTSTEP, LSLAG, NSUPERSEDE.
 - LR3D, LR2D, LRSHW, LRVEQ.
 - LSPRT.
 - LREGETA, LVFAREGETA.
 - LNHDFN.
 - LRPLANE.
 - LSLPHY.
 - All variables, the name starts by LSLHD or SLHD (SLHD = semi-lagrangian horizontal diffusion).
 - All variables, the name starts by LCOMAD or COMAD (for COMAD interpolations).
 - LSLDIA, LRPRSLTRJ (diagnostics).
 - LRALTVDISP.
 - LVSPLIP (spline cubic vertical interpolations).
 - LPCFULL, LPCCHEAP (predictor-corrector scheme).
 - LNESC, LNESTC, LNESCV, LSEIILS, LSEITLS, LSEITLSV, LELTRA (extrapolations).
Some of these variables are in namelist **NAMCT0**.
- **YOMCVER** (vertical finite element discretisation keys). Some of these variables are in namelist **NAMCVER**.
- **YOMDIM, YOMDIMV and YOMDIMF** (dimensioning): most of variables. Some of these variables are in namelist **NAMDIM**.
- **YOMDYNA** (adiabatic dynamics: first part):
 - LAPRXPK, NDLNPR, RHYDR0 (vertical discretisation).
 - NPDVAR, NVDVAR, ND4SYS, LNH_PDVD, LNH_GEOGW, LNHX, LNHXDER, RC_PD1 (NH model).
 - LGWADV, NGWADVSI, LRDBBC (treatment of vertical divergence equation in NH model).
 - LGWOPT1.
 - L3DTURB (3D turbulence).
 - LVERCOR, LRWSDLW, LRWSDLR, LRWSDLR2, LRWSDLG, LCURVW, RC_PD1 (deep-layer equations).
 - All variables, the name starts by LSLHD or SLHD (SLHD = semi-lagrangian horizontal diffusion).
- **YOMDYN** (adiabatic dynamics: second part):
 - REPS1, REPS2, REPSM1, REPSM2, REPS1 (Asselin filter).
 - LSIDG, BETADT, RBT, RBTS2, NITERHELM (semi-implicit scheme).
 - REFGEOM, SIPI, SITR, SIWUB, SIRUB, SITIME, SIRPRG, SIRPRN (reference values used in the semi-implicit scheme).
 - NSITER, NCURRENT_ITER, LRHD_LASTITERPC (predictor-corrector scheme).
 - VCAP, VCTR, VCAK, NIPACHS (deep-layer equations formulations).
 - LSVTSM, RPRES_SVTSM (stratospheric vertical trajectory smoothed in SL scheme).
– NVLAG, NWLAG, NTLAG, NSPDLAG, NSVDLAG (controls interpolations done in equations).
– NSPLTHOI, LSPLTHOIGFL (controls splitting high order interpolations).
– NSPLTHOI, LSPLTHOIGFL (controls splitting high order interpolations).
– NITMP, VETAON, VETAOX, VMAX1, VMAX2 (SL trajectory).
– VESL, XIDT (uncentering factors).
– LQMHW, LQMHT, LQMHP, LQMHSVPD, LQMHSVD (horizontally quasi-monotonic interpolations).
– LQMHW, LQMHT, LQMHP, LQMHSVPD, LQMHSVD (horizontally quasi-monotonic interpolations).
– LADV, LADVFW, LIMPF, L2TLFF, RW2TLFF (treatment of Coriolis term).
– RCMSLP0 (Eulerian treatment of orography).
– SLHDA (κ_a), SLHDA0 or SLHDA0T (κ_{a0}), SLHDB or SLHDBT (κ_b), SLHDD0 or SLHDD00T, SLHDDIV ($C_{slhddiv}$), SLHDDRATDIV ($C_{slhdratdiv}$), SLHDHOR, ZSLHDP1 (κ_a), ZSLHDP3 (DEF_0), SLHDKREF, LSLHDHEAT for SLHD scheme.
– LFINVSEP, NVSEPL, NVSEPC (optimisations for semi-Lagrangian adjoint code).
– LSETTLTVF, RSETTLF, LSEFSTAT, RPRES_SETTLSTF, RMAX_SETTLSTF, REP_PSET, NFLEVSF.

Some of these variables are in namelist NAMFL.

• **YOMMPP0** and **YOMMP** (distributed memory environment, see documentation (IDDM) for more details).
• **YOMSLPHY** (interactions between SL scheme and split ECMWF physics).
• **YOMSLREP** (variables used for bit reproducibility in the AD code of SL). A subset of them must go later in EINT_MOD.
• **EINT_MOD** (quantities used in externalisable interpolator and halo management). In particular attributes of variable YRSL.
• **YOMHSLMER**: for high-order horizontal meridian interpolations.
• **YOMVSLIP**: for spline vertical interpolations.
• **YOMVSLTOA**: for high-order vertical interpolations.
• **YOMMASK** (must go later in EINT_MOD).
• **YOMVAR**: LSLADREP, LVECADIN.

Modules for trajectory stored for TL and AD models:

– **TRAJECTORY_MOD** (manages trajectory for TL and AD runs in a unified way).
– **TRAJ_MAIN_MOD** (manages main trajectory).
– **TRAJ_PHYSICS_MOD** (manages physics trajectory).
– **TRAJ_SEMILAG_MOD** (manages semi-Lagrangian trajectory).
– **TRAJ_SURFACE_MOD** (manages surface trajectory).
– **YOMTRAJ** (buffer for trajectory array at time t-dt).
– **YOMVWRK** and **NAMVWRK**: NTRSLTYP.

Modules for geometry:

– **YOMGSGEOM** (geographic space grid-point geometry): all variables.
– **YOMCSGEO** (computational space grid-point geometry): all variables.
– **YOMOROG** (orography): YROROG.
– **YOMGEM** (horizontal geometry): all variables. Some of these variables are in namelist NAMGEM.
– **YOMGEOMAD**.
– **SPGEO_MOD** (spectral geometry).
– **YOMVERT** (vertical geometry and VFE operators): all variables.
– **YOMV1** (namelist variables for vertical geometry). Variables are in namelist NAMV1.
– **YEMGEO** (LAM model geometry): all variables. Some of these variables are in namelist NEMGEO.
– **YEMGEO_LBC** (LAM model geometry for LBC): all variables.
• Modules for GMV dataflow:
 – YOMGMV and YOMGMV5 (grid-point arrays for GMV fields).
 – TYPE_GMVS (derived types for GMV).
 – GMV_SUBS_MOD (contains encapsulated routines for GMV management).
• Modules for GFL dataflow:
 – YOMGFL and YOMGFL5 (grid-point arrays for GFL fields).
 – YOM_YGFL (descriptors of GFL arrays). Some of these variables are in namelist NAMGFL.
 – GFL_SUBS_MOD (contains encapsulated routines for GFL management).
• Modules for surface dataflow:
 – SURFACE_FIELDS_MIX (surface dataflow).
• YOMSP and YOMSP5 (spectral arrays).
19 An example of operational SL2TL namelist for ARPEGE.

* Introduction: In order to avoid to have to recompile all the code when changing the value of a variable (for example a dimension), as it was the case in the old PERIDOT/EMERAUDE system, some variables are provided in different namelists, so it is possible to change the value in the namelist without recompiling the code. All variables which have to be modified compared to the default value can be specified in the namelist, but there is also an option where the model retrieves some data (date and geometry) by reading the frame of some ARPEGE files.

* Example of namelist for the ARPEGE operational forecast: The example provided below is the forecast namelist “namelistfc” which has been used in the ARPEGE (TL1198L105c2.2 stretched version) operational suite on 01/07/2015, with minor modifications (adapt the namelist for cycle 42, remove activation of FULL-POS diagnostics, reduce the number of processors, no IO server). This suite used the cycle 40t1_op1. The namelist is:

```plaintext
&NACIETEO
&NACOBS
&NACTAN
&NACTEX
&NACVEG
&NADOCK
&NAAEM7
&NAAER
&NACDAPPHY
&NAEPHIL1
&NAEPHY
&NAERAD
LRATH=.TRUE.,
LSRTH=.FALSE.,
NMCICA=0,
NRADFR=-1,
NSW=6,
RLWINHF=0.9,
&NAERCLI
&NAEVL0
&NAIMPO
&NALORI
&NAMAFN
FP_I%LLGP=.TRUE.,
FP_L%LLGP=.TRUE.,
&NAMARG
CNMEXP='ARPE',
KCONF=-1,
LELAK=.FALSE.,
LECMUF=.FALSE.,
CUSTIP='b102',
USTEP=360.,
LSLAG=.TRUE.,
NSUPERSEDE=1,
&NAMARPHY
&NAMCA
&NAMCAPE
&NAMCFU
LCUMFU=.TRUE.,
LFOUTP=.TRUE.,
LFPLD=.TRUE.,
LFPLS=.TRUE.,
LPR=.TRUE.,
LPSF=.TRUE.,
LPSUL=.TRUE.,
LNSDUM=.TRUE.,
LNEEPAR=.TRUE.,
LSTRD=.TRUE.,
LSTRY=.TRUE.,
LPRSC=.TRUE.,
```
LRAYD=.TRUE.,
&NAMCHEM
&NAMCET
&NAMCHK
&NAMCLA
&NAMCLDP
&NAMCLI
&NAMCLOP15
&NAMCLTC
&NAMCOK
&NAMCDM
&NAMCDSD
&NAMCTO
LFBRAP=.TRUE., LFBDBP=.FALSE., LIWDTL=.TRUE., LSPRT=.TRUE., NDHFZTS(0)=-9, NDHFZTS(1:9)=-6,-12,-18,-24,-36,-48,-60,-72,-96, NFRDFHZ=1, NFRHIS=1, NFRPOS=1, NFRSDI=1, NNSHTS(0)=28, NNSHTS(1:10)=0,-3,-6,-9,-12,-15,-18,-21,-24,-27, NNSHTS(11:20)=-30,-33,-36,-39,-42,-45,-48,-51,-54,-60, NNSHTS(21:28)=-66,-72,-78,-81,-84,-90,-96,-102, NSDITS(0)=-1, NSDITS(1)=0, NSDITS(1)=0, NMAPF=1, LRAEGR=.FALSE., LVRE_REGTA=.FALSE., NFRGD=1, NGDITS(0)=-1, NGDITS(1)=0, NUNDEFLD=-99999999,
&NAMCT1
LRFILAF=.FALSE., NPOS=0, NRES=0,
&NAMCUMF
&NAMCUMFS
&NAMCVER
LIVERFE=.TRUE., NVSCH=3,
&NAMCVMNH
OTADJS=10800., XDDEPN=1., ZDEP=4000., XDEPN=0.3, ZDEPN=0.013,
&NAMDCH
LDDFZ=.TRUE., LDHJRS=.TRUE., LDHJRN=.TRUE., NDHJRN=30,
&NAMDFI
&NAMDIM
&NAMDFMA=-3582,
&NAMDIM
&NAMDIM_TRAJ
&NAMDPTHY
&NAMDYN
LAEVF=.TRUE., NTLA=3, NLVLAG=3, NWLAG=3,
YI_NL%GPINGP=.TRUE.,
YI_NL%LGP=.TRUE.,
YI_NL%LTI1=.TRUE.,
YI_NL%LPHY=.FALSE.,
YI_NL%NREQIN=1,
YI_NL%REQOUT=.TRUE.,
YI_NL%LADV=.TRUE.,
YI_NL%LQM=.TRUE.,
YI_NL%LGPINGP=.TRUE.,
YI_NL%LGP=.TRUE.,
YI_NL%LTI1=.TRUE.,
YI_NL%LPHY=.FALSE.,
YI_NL%NREQIN=1,
YI_NL%REQOUT=.TRUE.,
YI_NL%LADV=.TRUE.,
YI_NL%LQM=.TRUE.,
YL_NL%GPINGP=.TRUE.,
YL_NL%LGP=.TRUE.,
YL_NL%LTI1=.TRUE.,
YL_NL%LPHY=.FALSE.,
YL_NL%NREQIN=1,
YL_NL%REQOUT=.TRUE.,
YL_NL%LADV=.TRUE.,
YL_NL%LQM=.TRUE.,
YR_NL%GPINGP=.TRUE.,
YR_NL%LGP=.TRUE.,
YR_NL%LTI1=.TRUE.,
YR_NL%LPHY=.FALSE.,
YR_NL%NREQIN=1,
YR_NL%REQOUT=.TRUE.,
YR_NL%LADV=.TRUE.,
YR_NL%LQM=.TRUE.,
YS_NL%GPINGP=.TRUE.,
YS_NL%LGP=.TRUE.,
YS_NL%LTI1=.TRUE.,
YS_NL%LPHY=.FALSE.,
YS_NL%NREQIN=1,
YS_NL%REQOUT=.TRUE.,
YS_NL%LADV=.TRUE.,
YS_NL%LQM=.TRUE.,
YTKE_NL%GPINGP=.TRUE.,
YTKE_NL%LGP=.TRUE.,
YTKE_NL%LTI1=.TRUE.,
YTKE_NL%NREQIN=1,
YTKE_NL%REQOUT=.TRUE.,
YTKE_NL%LADV=.FALSE.,
YTKE_NL%LQM=.TRUE.,
YIRAD_NL%GP=.TRUE.,
YIRAD_NL%NREQIN=0,
YIRAD_NL%REQOUT=.TRUE.,
YIRAD_NL%LQM=.TRUE.,
YLRAD_NL%GP=.TRUE.,
YLRAD_NL%NREQIN=0,
YLRAD_NL%REQOUT=.TRUE.,
YLRAD_NL%LQM=.TRUE.,
YA_NL%GP=.TRUE.,
YA_NL%NREQIN=0,
YA_NL%REQOUT=.TRUE.,

&NAMGRI
&NAMGWD
&NAMGWDIAG
&NAMGWWMS
&NAMIAU
&NAMICE
&NAMINI
LDFI=.FALSE.,
&NAMINTFLEX
&NAMIOMI
&NAMIODS
&NAMIO_SERV
&NAMJCODES
&NAMJFH
&NAMLJG
&NAMLCZ
&NAMLFORC
&NAMMARS
&NAMMCC
&NAMMCUF
&NAMMKODS
&NAMMODERR
/ &NAMMTS
/ &NAMMAVE
/ &NAMNPROF
/ &NAMNUD
/ &NAMOBS
/ &NAMNEDVAR
/ &NAMDDS
/ &NAMPH
CFHWF='ECHIS',
LINC=.TRUE.,
/ &NAMOPTCHEM
/ &NAMPAR0
NOUTPUT=1,
NPROC=2,
NPRGNS=2,
NPRGPEW=1,
NPRTRW=2,
NPRTRV=1,
MP_TYPE=2,
MBX_SIZE=128000000,
LQPT_SCALAR=.FALSE.,
/ &NAMPAR1
LSPLIT=.TRUE.,
NSTRIN=2,
NSTROUT=2,
MCOMFILE='1638400',
LEQ_REGIONS=.FALSE.,
/ &NAMPARAR
/ &NAMPHINE
/ &NAMPHY
CGMIXLEN='AY',
LAERODE=TRUE.,
LAEROLA=.TRUE.,
LAEROSO=.TRUE.,
LCONDW=.TRUE.,
LDIFCONS=.TRUE.,
LFCO=TRUE.,
LN+D=.TRUE.,
LLEQ=.TRUE.,
LYRM=.TRUE.,
LANYU=.TRUE.,
LRM=.TRUE.,
LSSD=TRUE.,
LS+RA=.FALSE.,
LVSGN=.TRUE.,
LCVPPK=.TRUE.,
LECDEEP=.TRUE.,
LECSHAL=.TRUE.,
LECT=.TRUE.,
LFLSU=.TRUE.,
LREBE=.FALSE.,
LSD=.TRUE.,
LLEQ=.TRUE.,
LLEQ=.TRUE.,
LZ0HSREL=.TRUE.,
LADEJ=.TRUE.,
LSMITH_CDEV=.TRUE.,
NCALLRAD=2,
LGLACIERS=.TRUE.,
NDPSFI=0,
/ &NAMPHYO
EDD=1.
EDK=.1.
GCYN=6.E-05,
GCVP=1.
GCVPSI=1.,
GWDC=5.4,
GW=0.005,
GWV=0.5,
QU=0.5,
QU=0.5,
81
RCVEVAP=0.25,
REVASX=2.E-07,
RICRLM=0.5,
TDDGP=0.6,
TUDGP=0.6,
USURIC=0.175,
USURICL=1.,
USURID=0.1,
VZ0CH=1.0E-4,
XBLM=8.5,
XMAXLM=5000.,
XMINLM=10.,
ALMAXX=1000.,
GCVHMIN=30000.,
RFACHSN=1.2,
RPLCHCE=0.25,
RFSTAU=7200.,
RFTH=1.,
RGICRT2=0.,
RGICYMIN=1.E-5,
SXNECO=1.,
ALMVAX=0.,
RGCRMS=0.,
RGICRSM=1.,
TFY=0.08,
TFVL=0.02,
TFVS=1.5,
GCVONQ=1.0,
ECTMAX=35.,
ABCLS=4.3,
GCVQMN=0.2,
GCVQMQ=-1.0,
REFLX=5000.,

&NAMPHY1
ALBMIN=0.65,
ALCRIN=0.81,
EMMGLA=0.98,
EMMMER=0.99,
ALRCN1=0.01,

&NAMPHY2
FACRAF=4.5,
XMULAF=0.,
LRAFTKE=.TRUE.,
HTKERAF=20.0,

&NAMPHY3

&NAMPHYS

&NAMPONG

&NAMPPC

&NAMPRE

&NAMRAD15

&NAMRADCMEM

&NAMRCF

&NAMRQCMEM

&NAMRES

&NAMRGR1

&NAMRINHC

&NAMRIP

&NAMRIPO

&NAMRLX

&NAMSAT5

&NAMSCC

&NAMSCEN

&NAMSCM

&NAMESKEF

&NAMESNS

&NAMSINPHL

82
&NAMSPNG
&NAMSPSDT
&NAMSTA
&NAMSTOPH
&NAMESE
&NAMTESTVAR
&NAMTHLIM
&NAMTOPH
ETCVIM=5000.,
ETBEM=5000.,
ETPLUI=5000.,
XDMTK=2.E-08,
XDMTP=900.,
XDMTX=4.E-07,
XDMUK=1.E-07,
XDMUP=800.,
XDMUX=2.E-06,
&NAMTRAJP
&NAMTRANS
LUSEFLT=.FALSE.,
LUSERPNM=.TRUE.,
LKEEPRPNM=.TRUE.,
&NAMTRANSO
&NAMTS
&NAMVAR
&NAMVARBC
&NAMVARBC_AIREP
&NAMVARBC_ALLSKY
&NAMVARBC_GERAD
&NAMVARBC_RAD
&NAMVARBC_SFCOBS
&NAMVARBC_TCWV
&NAMVARBC_TO3
&NAMVAREPS
&NAMVDF
&NAMVDOZ
&NAMVOLCANO
&NAMVRTL
&NAMVVO
&NAMVV1
&NAMVWRK
&NAMWAVELETJB
&NAMXFU
LXCLP=.TRUE.,
LXCLS=.TRUE.,
LXPU=.TRUE.,
LXHBCLS=.TRUE.,
LXICY=.TRUE.,
LXNEBPA=.TRUE.,
LXNEBTT=.TRUE.,
LXQCLS=.TRUE.,
LXSDIL=.TRUE.,
LXTQST=.TRUE.,
LXTTCLS=.TRUE.,
LXTXGST=.TRUE.,
&NAM_CANAPE
&NAM_DISTRIBUTED_VECTORS
&NAPHLHC
Explanation of some elements of this namelist:

- **NAMARG:**
 - **CNMEXP=ARPE:** four letters code of the job, which appears in the local name of some files; for example the local name of the initial conditions file in this case has the name ICMSHARPEINIT.
 - **NCONF=1:** means that the job runs in configuration 1.
 - **LELAM=.FALSE.:** means that the model is the global one.
 - **LECMWF=.FALSE.:** means that the job runs with the default METEO-FRANCE options and not the ECMWF options.
 - **CUSTOP='h102':** means that the forecasts has a range of 102 h.
 - **UTSTEP=360.:** means that the timestep is 360 s.
 - **LSLAG=.TRUE.:** means that the advection scheme is a semi-Lagrangian one.
 - **NSUPERSEDE=1:** means that geometry and date are read from initial file frame.

- **NAMCFU:** LCUMFU=.TRUE. means that the CFU diagnostics are activated.

- **NAMCT0:** in this namelist one finds some information about the temporal advance scheme and the frequency of some outputs. For example **LTWOTL=.TRUE.** means that the two-time level semi-Lagrangian scheme is used; **NFRHIS=1, NHISTS(0)=-28, NHISTS(1)=-0, NHISTS(2)=-3, ... NHISTS(28)=-102,** means that the output of historical files is asked for 28 times during this 102h range model integration, and that the occurrence number 1 (resp. 2, ..., 28) is at range 0h (resp. 3h, ..., 102h).

- **NAMDYN:** in this namelist one finds information about Asselin temporal filter, and some options of the semi-Lagrangian scheme.

- **NAMINI:** in this namelist one finds information relative to the initialization; **LDFI=.FALSE.** means that there is no initialization.

- **NAMPAR0** and **NAMPAR1:** in this namelist one finds information relative to the distributed memory architecture. In our case there are 2 processors in the first level of distribution and one processor in the second one.

- **NAMPHY, NAMPHY0, NAMPHY1, NAMPHY2, NAMPHY3, NAMTOPH** give information about the set of physical parameterizations and the coefficients used in the physics; **NAERAD** is designed for the “ECMWF” FMR-radiation scheme.

- **NAMXFU:** LXFU=.TRUE. means that the XFU diagnostics are activated.

The reader will remark that some information does not appear in the above namelist: the truncation, the geometry (stretching, high resolution pole, type (reduced or not) of Gaussian grid), the number of latitudes of the Gaussian grid, the maximum number (and also the number for each latitude) of longitudes of the Gaussian grid, the number of layers and the definition of these layers. In our example where **NSUPERSEDE** is set to 1, all this information is read in the frame of the initial conditions file.

* **ALADIN and AROME:** The namelist looks like the one used in ARPEGE, with some additional elements, the name of them generally starting by **NEM.** For example in the forecast namelist “namel previ” of AROME which was operational on 01/07/2015, the reader will find additional elements starting by **NEM...** and some additional information about the lateral coupling (for example the information **TEFRCL=3600.** present in **NEMELBC0B** means that the coupling frequency is 1h).

In **NAMARG, LELAM=.TRUE.** means that the model is now a LAM model.
20 Bibliography.

The following list is far to be complete. More detailed references are available in some of the following papers (in particular Staniforth and Côté, 1991), especially for papers published before 1991. Most of the recent papers have been published in Mon. Wea. Rev.

20.1 Publications.

• Hortal, M., 1994: Recent studies of semi-Lagrangian advection at ECMWF. ECMWF Research Department Technical Memorandum No 204, 37pp.

20.2 Some internal notes and other ARPEGE notes.

- (TDECDYN) 2014: IFS technical documentation (CY40R1). Part III: dynamics and numerical procedures. Available at “http://old.ecmwf.int/research/ifsdocs/”.

- (TDECTEC) 2014: IFS technical documentation (CY40R1). Part VI: technical and computational procedures. Available at “http://old.ecmwf.int/research/ifsdocs/”.

• Mc Donald, A., 1996: Controlling noise in two time level semi-Lagrangian semi-implicit integrations; comments on some new developments. *HIRLAM technical report nr 24*, 4-10.

• Smolíková, P., and Josef Vivoda, 2013: Finite elements used in the vertical discretization of the fully compressible forecast model ALADIN-NH. *ALADIN - HIRLAM Newsletter no 1*, 31-47.

• (IDBAS) Yessad, K., 2015: Basics about ARPEGE/IFS, ALADIN and AROME in the cycle 42 of ARPEGE/IFS (internal note).

• (IDS) Yessad, K., 2015: Semi-implicit spectral computations in the cycle 42 of ARPEGE/IFS (internal note).

• (IDDH) Yessad, K., 2015: Horizontal diffusion in the cycle 42 of ARPEGE/IFS (internal note).

• (IDTS) Yessad, K., 2015: Spectral transforms in the cycle 42 of ARPEGE/IFS (internal note).

• (IDDM) Yessad, K., 2015: Distributed memory features in the cycle 42 of ARPEGE/IFS (internal note).

• (IDEUL) Yessad, K., 2015: Integration of the model equations, and Eulerian dynamics, in the cycle 42 of ARPEGE/IFS (internal note).

20.3 Workshop proceedings.

• Workshop proceedings on semi-Lagrangian methods, 6-8 November 1995, 264pp. Available at ECMWF.