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Introduction

this talk will be rather theoretical, showing some problems which
must be faced when one attempts to solve set of PDEs numerically

the only practical consequence will be that in NH integration
(LNHDYN=.T.) proper vertical discretization must be used:
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anyway, setup will complain if you forget

so if you are tired ...



Equations to be discretized (1)

e basically these are Euler equations for perfect gas (multi-phasic case
is not considered here), formulated in terrain following mass based
n-coordinate:
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e for simplicity, following NH prognostic variables will be used:
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— scaled NH pressure departure
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— true vertical divergence



Equations to be discretized (2)

e with this choice of NH prognostic variables, system of Euler
equations reads:
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Equations to be discretized (3)

e system is closed with following diagnostic relations:

D3=V-v+ X +d

_ﬂ'(l-l-P).@V.
X = RT o Ve
_7T(1—|-7D).(9V.
4= RT o Vigw)
. I mRT ,
gw—gws—l-/?7 w(1—|-77)ddn
1 RT
¢ =g+ i ’

d
p T(1+P)
. n /
7T=V-V7T—/OV-(mV)dn

1 n
m7’7=B/O V'(mv)dn—/o V - (mv)dn/



Basic principles of discretization

at first glance it might seem that discretization is an easy task, just
with many arbitrary choices to be done

this is not true, such careless approach would most probably lead
to unstable, in better case imprecise model

in reality, discretization should be done in such way that it preserves
as many continuous properties as possible

this task is not trivial, since:

1. no discretization scheme can preserve all continuous properties

2. often it is not obvious which continuous properties are the
important ones



Choice of vertical grid (1)

in current ALADIN-NH, vertical discretization is done using finite
difference approach

vertically staggered grid of Lorenz type is used
atmosphere is divided into L layers, numbered from top to bottom

3D prognostic variables are defined inside layers on so called full
levels 1,..., L

fluxes and vertical velocities are defined on layer interfaces or half
levels O,..., L

half level O is the top boundary, half level L is the earth surface



Choice of vertical grid (2)

e schematically, vertical grid looks like this:
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Introduction of continuous vertical operators

e following vertical operators can be identified in continuous system
(W is arbitrary function of n):
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e their semi-implicit (SI) counterparts play a key role in derivation of
structure equation and in elimination of variables used by Helmholtz
solver



Two important properties of continuous
vertical operators

e SI scheme is based on linear model which uses resting background
state with flat orography, constant temperature T* and constant
surface pressure 7T§

e for formulation of SI scheme, following two relations between
continuous vertical operators are crucial:

Cu Cu Cu

7 - identity operator (ZW = W)

e these relations should hold also in discretized case
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Discretized form of vertical operators (1)

e vertical functions A, B and hydrostatic pressures w are primarily
defined on half levels [:

T = Ar+ By

e pressure difference across the layer [ is given by formula:

57Tl — 7'("[— 7TZ"_1

e integral operators G, S, N applied on full level quantity W are
discretized as:
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Discretized form of vertical operators (2)

e symbols ¢;, o; and 3; denote logarithmic pressure thickness of layer [,
resp. its lower and upper part:

e it is not supposed that §; = a; + 5

e vertical laplacian L is discretized in most compact form possible,
I.e. as 3-diagonal matrix:

(LV), =aqV;_1 + bV + W4
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Fulfilling the constraints (1)

the task is to find such expressions for quantities ozzk, Bl*, 5;‘, 7rl*, a?‘,
by, ¢, which will respect constraints (1) and (2) in discretized case

requirement that vertically discretized system respects both con-
straints (1) and (2) turned to be too strong, in fact it cannot be
respected by any reasonable choice

however, it is possible to satisfy weaker requirement:

Cu Cu Cu
T* — 3-diagonal smoothing operator (sum of each row is 1)

appearance of smoothing operator T* means that constraint (2) is
fulfilled only approximately in discretized system

anyway, T*W — W as vertical mesh size tends to zero
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Fulfilling the constraints (2)

in order to maintain stability, solution found for SI quantities must
be extended also to non-linear model

the procedure is straightforward (it is enough to remove stars),
bottom boundary treatment for vertical laplacian L being the only
exception

desired results for full levels 2,..., L are:

oy -1
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full level 1 is a special case:

51=2+% T = —— a;=p1=1
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Fulfilling the constraints (3)

vertically discretized |laplacian applied on scaled NH pressure depar-
ture P reads I =2,...,L —1):
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treatment of full level 1 must be consistent with elastic top boundary
condition pp = 0 and mass coordinate specification 7 = O:
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treatment of full level L will be explained in separate talk devoted
to bottom boundary condition
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Discretization of term ov/0n - VW

e quantity dv/0r - VW appears in X and Z terms, where W is either
geopotential or gw

e discretization on full levels is done using per partes rule:
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e half level velocity vy is determined by interpolation (I=1,...L —1):
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Discretization of term V(gw)

e quantity V(gw) appears in Z term

e discretization on half level [ is straightforward:

L

gwp= gwy + Y (RT)ydydy
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Discretization of term 9(«P)/on

e except from vertical laplacian L, quantity 9(«P)/0m appears in
pressure gradient term, where it is needed at full levels

e discretization is done in natural way:

o(xP)\ _ mPr—m 1P
on ),

O]

e Scaled NH pressure departure P'L at half levels is determined by
simple averaging (I=1,...,L —1):

1
Pr=5Pi+ Pit1) Pg="P1
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Discretization of term 7now /on

when eulerian advection is used, quantity noW /0n must be evaluated
on full levels, W being any prognostic variable

discretization of vertical advection term is dictated by requirement
of total energy conservation, which follows from per partes rules:
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in discretized case, they can be satisfied by choice:

owY  (mn) (Wi — V) + (mn)r_ (W — W q)
] - 20

this formula is applicable also for l =1 and [ = L, since 776 = hi =0
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Discretization of term Vr«/n (1)

conservation of net angular momentum in global atmosphere is a
consequence of continuous identity:

1mRT
/O TVpdn—/ (¢ — ¢S)V—d77

its discrete counterpart can be satisfied by following choice:

Vp 1 1 -1
— | = - V(d o) V(6
( . )l 147, om {al (0p7) + zkgl (dpi)

application of this formula in pressure gradient term led to unstable
behaviour due to incompatible VP discretization in linear SI system
and non-linear model
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Discretization of term Vr«/n (1)

conservation of net angular momentum in global atmosphere is a
consequence of continuous identity:

1mRT
/O TdeU—/ (¢ — ¢S)V—d77

its discrete counterpart can be satisfied by following choice:

Vp) 1 1 (-1
— | = ' a;V(6p;) + 9§ V(op)
application of this formula in pressure gradient term led to unstable
behaviour due to incompatible VP discretization in linear SI system
and non-linear model = requirement of net angular momentum
conservation is in conflict with model stability
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Discretization of term Vr/n (2)

e situation can be solved by splitting term Vp/p into hydrostatic and
non-hydrostatic parts:

Vp_V[W(l—I—P)]_VW_I_ VP
p w(14+P) = 14+P

e angular momentum conservation is imposed only on hydrostatic

part:
Vi 1 -1 ]
(F7) = v Gm) 46 3 Vm)| =
7w /1 O Uy —1
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e term VP/(1 + P) is discretized in natural way
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Discretization of term Vo

e quantity V¢ occurs in pressure gradient term and in X term

e it is needed on both half and full levels:
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Discretization of terms Vq;, VY

e discretization of quantities Vq;, V¢; follows directly from their
definitions (I =2,...,L):
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Conclusions

design of reliable vertical discretization is a difficult task

only restricted set of continuous properties can be preserved by
discretized scheme

this set must be selected very carefully, since the wrong choices
easily lead to model instability

another source of problems can be inconsistency between linear SI
system and non-linear model

sometimes conservation constraints must be relaxed in favour of
model stability
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