Modelling component of the CLIWA-Net project: Workpackage 4000

Erik van Meijgaard, KNMI, De Bilt, The Netherlands

Combined EUROCS/CLIWA-Net Final Workshop, Madrid, 16 December 2002

Model Evaluation/Parameterisations

- Model evaluation of cloud parameters with focus on Liquid Water Path
 - Evaluation with time series of ground-based measurements
 - Comparison with satellite inferred LWP spatial distributions
- Aspects of Horizontal resolution (range 10 1 km)
- Parametric issues of cloud processes

• ...

- Cloud overlap assumptions
- Diurnal cycle of cloud parameters
- Effect of vertical resolution

Towards comparisons between model outputs and observations during the CNN campaigns of CLIWA-NET

✓ Models involved :

Specifications of Model Output (File Format is ASCII)_	 General Information Name participating institute, model and experiment Reference date [yyyymmdd] Reference time [hhmn] Name CLIWANET station Longitude grid point [decimal] Latitude grid point [decimal] Surface Geopotential grid point [m2/s2]
 Single-level parameters: (averaged/accumulate Verifying date [yyyymmdd] Verifying time [hhmn] Surface Pressure [Pa] (instantaneous) Sensible heat flux at surface [W/m2] (ave) Latent heat flux at surface [W/m2] (ave) Momentum flux at surface [Pa] (rho <u'w'>) (</u'w'> Downward SW-flux at surface [W/m2] (ave) Upward SW-flux at surface [W/m2] (ave) Upward LW-flux at surface [W/m2] (ave) Upward SW-flux at TOA [W/m2] (ave) Upward SW-flux at TOA [W/m2] (ave) Upward LW-flux at TOA [W/m2] (ave) Precipitation Convective [m/s] (acc) Precipitative Fraction in GridBox [01] (ave) 	d) Multi-level parameters: (instant./averaged) •Verifying date [yyyymmdd] •Verifying time [hhmn] •Model layer value •Pressure [Pa] (instant.) •Temperature [K] (instant.) •Zonal wind component [m/s] (instant.) •Meridional wind component [m/s] (instant.) •Vertical wind speed [Pa/s] (instant.) •Vertical wind speed [Pa/s] (instant.) •Vertical wind speed [Pa/s] (instant.) •Specific Humidity [kg/kg] (instant.) •Specific Liquid Water [kg/kg] (instant.) •Specific Ice Content [kg/kg] (instant.) •Specific Ice Content [kg/kg] (instant.) •Short Wave In-Cloud Optical Thickness [] •Long Wave In-Cloud Emissivity [01] •Liquid Precipitative Flux [W/m2] (ave) •Solid Precipitative Flux [W/m2] (ave)

Model evaluation

Cloud base height predictors •

NSUIN

Lidar ceilometer cloud base height series at Potsdam.

ECMWF series of

- cloud base height
- PBLH (dry)
- LCL

Model evaluation

 Frequency Distributions of Liquid Water Path

Time series of LWP and IWV at Lindenberg during CNN1

Model evaluation

 Short-wave transmissivity versus Liquid Water Path

BBC-Cabauw : Observed transmissivity versus LWP

BBC-Cabauw : Observed and Model predicted transmissivity versus LWP

Model evaluation

 Vertical distribution of Liquid Water Content

BBC-Cabauw: Microwave Radiometer inferred and Model predicted Vertical distribution of Liquid water Content

Satellite processing

- Retrieval of the horizontal distribution of LWP from AVHRR validated by ground-based measurements.
 - (KLAROS: KNMI's Local implementation of APOLLO Retrieval in an Operational System
- Comparison of model predicted LWP fields with AVHRR inferred distributions.

AVHRR inferred Liquid Water Path

Model Predicted Liquid Water Path

Horizontal domain Local Modell

 $\bullet \bullet \bullet \bullet$

Motivation

Detection of "convective" cells

Example:

Scheme of threshold algorithm:

BRADS: COLA/IGES

Cell size distributions

(averaged over domain and 6h forecast time)

Comparison of LWP time series

microwave radiometer - model output

PO 2000082500, LWP time series at station

 \Rightarrow no better match, <u>but</u> statistic is improved!

Parametric issues of cloud processes

• ...

- Diurnal cycle of cloud parameters
- 2D cloud fraction distribution
- Effect of vertical resolution
- ...

The effect of vertical resolution:

Cloud fraction at Cabauw (BBC) on 18/09/2001from cloud radar and model predictions.

(by Ulrika Willén, Rossby Center)

Conclusions

- Evaluation of model predicted LWP with ground-based measurements is only sensible if rainfall events (rain at the surface) can be discriminated. Ground-based retrieved LWP seems to provide a lower limit.
- Models put maximum in LWC (liquid water content) at different altitudes. When model events with precipitation are ignored, maximum values in LWC compare reasonably well with those inferred from measurements.
- A qualitative comparison between model predicted and satellite retrieved spatial LWP-distributions looks promising. More cases are needed to make quantitative statements.
- In refining the grid of the LM, the effective size of the resolved "convective cells" reduces in proportion, no convergence at scales larger than 1km; domain averaged quantities (LWP,rain,fluxes) are robust.
- Increased vertical resolution proves beneficial in representing vertical cloud structure.

