Cloud Layer Overlap and the Influence of Vertical and Temporal Resolution of Radar Data

Oliver Sievers Markus Quante

GKSS Research Center Institute for Coastal Research D-21502 Geesthacht

- Cloud Layer Overlap
- Influence of Data Resolution
- Radar / Ceilometer Comparison
- Conclusions & Outlook

Cloud Layer Overlap: Introduction

Current Models:

- Random Overlap
- Maximum Overlap

$$C_{rand} = c_a + c_b - c_a c_b$$

$$C_{\max} = \max(c_a, c_b)$$

-> True Overlap?

Combined Cloud Cover as function of level separation for all overlap models (mean values over 30mins / 60mins) Vert. cont. / non-cont. clouds

Combined Cloud Cover not useable to describe cloud overlap

Needed: Parametrisation of true overlap as function of overlap models

 \Rightarrow Overlap Parameter α $C_{true} = \alpha C_{max} + (1 - \alpha) C_{rand}$

Earlier Publication

From: Hogan and Illingworth, 2000, QJR Meteorol. Soc., 126, 2903-2909 Used resolution: rough cloudmask about 2 mins / 360 m / 60 mins average

BBC: no convergence at random overlap for large level separation, exponentiell fitting is ,,dared" - but full resolution!

Radar and Ceilometer Disagreement

		Ceilometer		
		n/a	Cloud-Free	Cloudy
Radar	Cloud-Free	0.8 %	18.9 %	5.4 %
	Cloudy	1.3 %	25.2 %	43.4 %
Values relative to Radar profiles (259.370)				
			• T • V	hin clouds? Yery low clouds?

GKSS

Example for thin layer

Ceilometer cloud base distribution w/o radar cloud

Difficult cloud for ceilometer

GKSS

Radar cloud base vs. thickness (w/o ceilometer)

loud Layer Overlap

Conclusions

- Cloud overlap depends on used resolution
- For vert. cont. clouds:
 - Overlap parameter decreases with level separation
 - Using full resolution, decrease is appr. linear
 - Reducing data to mean 2-minutes-value increases α
 - Reducing vert. res. to 330 m gives a exponentiell decrease for increasing level sparation & converging at random overlap
- Vertical non-cont. clouds are appr. random overlapped

Conclusions (cont.) & Outlook

• Radar fails to see thin clouds

• In boundary layer many radar signals remain (in 20% of all cases w/o ceilometer cloud, isolated pixels in lowest range gate exist)

Outlook:

- Modify Cloudmask
- Check Ceilometer Accuracy vs. Temperature
- Cloud Classification

