Met Office GCM results Adrian Lock, Met Office, UK

- Boundary layer and convection scheme descriptions
- Results from GCM simulation:
 - shallow clouds
 - deep clouds

Unstable boundary layer scheme Lock(2001)

- 1st order specified K-profile closure (HB 1993)
- Mix conserved variables θ_1 and q_t
- Additional K profile for cloud-top driven turbulence
- Explicit diagnosis of cumulus based on comparison of q_t gradients in cloud and subcloud layer. If cumulus:
 Cap K profile at LCL
 - Trigger massflux scheme from LCL

Boundary layer scheme (continued)

- Explicit entrainment parametrization (Lock, 1998)
- Diagnose vertical extent of K-profiles by imposing a limit on the buoyancy consumption of TKE, using a subgrid diagnosis of cloud-base height:

$$\int_{0}^{z_{i}} \left[\overline{w'b'} < 0\right] dz < D \int_{0}^{z_{i}} \left[\overline{w'b'} > 0\right] dz$$

With D=0.1 taken from LES

Convection scheme

- Gregory and Rowntree (1990) mass-flux scheme (with RH-dependent CAPE closure for deep convection) plus:
 - Trigger at the LCL using cumulus diagnosis
 - Shallow convection parametrized with:
 - Grant and Brown (1999) entrainment/detrainment rates
 - m_{LCL} = 0.03 w_{*}
 - parcel just saturated with $w\theta_v |_{LCL} = -0.2 w\theta_v |_{S}$

Met Office GCM results

'Climate' model simulation

- AMIP-style, prescribed SST
- Resolution 2.5^o latitude by 3.75^o longitude (~300km in tropics)
- 38 levels (~250m at 1km)

Californian stratocumulus – 1998 JJA mean

Cloud fractions, section 2 – 1998 JJA mean

Total cloud cover and LWP

Cloud cover too high where Sc overlies Cu
LWP too low close to coast

SW forcing climatology: 5 year JJA mean (Met O - ERBE)

Negative implies 'too much' cloud so:

- Do need less cloud towards trade Cu regions
- No more cloud 'needed' close to coast

Diurnal cycle of stratocumulus

- Time lag in LWP relative to solar cycle well represented away from coast
- But FIRE observations were at San Nicolas Island!

Stratocumulus cloud top height time series

Stratocumulus equilibrium

The Met Office surface heat flux increases towards the coast, as the SST decreases. Is that because of its cloud-top entrainment rate?

 Balance between radiative cooling and entrainment warming leaves a 'residual' surface heating

Sensitivity to doubled entrainment rate

 So, a more active entrainment parametrization gives an equilibrium state with smaller surface heat fluxes and less cloud (Stevens 2002)

Summary - shallow clouds

The Met Office GCM produces a reasonably realistic stratocumulus sheet over the NE Pacific:

- Good cloud cover and LWP diurnal cycle
- Close to coast LWP is too small and diurnal cycle does not lag the solar cycle
 - Lack of resolution?
 - Horizontal: noise from the coastline
 - Vertical: cloud-top at 500m gives ~4 levels in the boundary layer so decoupling is hard

Summary - shallow clouds

- Stratocumulus is too reflective, particularly when over shallow cumulus
 - Possible problem with Sc/Cu interaction (also with Cu/inversion interaction in general)
 - Radiative impact of cloud inhomogeneity?
- The entrainment parametrization is behaving as predicted by Stevens (2002) good or bad?

Deep convection

It rains in the ITCZ - sometimes too much:

Deep convection

 Much improved by recent change to diagnosis of when convection is shallow (require w_{750hPa} < 0)

Future work

- Extend the K-profile scheme, now operational for convective momentum transport, to the thermodynamic variables (shallow and deep)
- Explore the interaction between cumulus, inversions and stratocumulus in LES (and thence improve its parametrization!)

