GCM Physics Developments at Met Office

Adrian Lock, Met Office, UK

- Boundary layer scheme development
 - arising from EUROCS stratocumulus simulation
- Convection scheme development
 - spawned by shallow cumulus simulation

Boundary layer scheme plus development

- 1st order specified K-profile closure
- Diagnose vertical extent of K-profiles by imposing a limit on the buoyancy consumption of TKE, using subgrid cloud-base height diagnosis:

$$\int_{0}^{z_{i}} \left[\overline{w'b'} < 0\right] dz < D \int_{0}^{z_{i}} \left[\overline{w'b'} > 0\right] dz$$

With D=0.1 taken from the LES of the diurnal cycle of marine stratocumulus

SCM stratocumulus: decoupled phase (11Z local time)

Impact of the new subgrid cloud-base diagnosis

JJA means

0.15 0.3 0.45 -0.45-0.3-0.15 0

Climate model cloud fraction – 5 year JJA mean

ISCCP

Old model (HADAM3) – ISCCP

New model

Convection scheme plus developments

- Gregory and Rowntree (1990) mass-flux scheme (with RH-dependent CAPE closure for deep convection) plus:
 - Trigger at the LCL using explicit cumulus diagnosis
 - Cap K-profile at LCL
 - Shallow convection parametrized with:
 - Grant and Brown (1999) entrainment/detrainment rates
 - m_{LCL} = 0.03 w_{*}
 - parcel just saturated with $\overline{w\theta_v} |_{LCL} = -0.2 \overline{w\theta_v} |_{S}$

Impact in SCM – shallow Cu diurnal cycle

- Parcel perturbation gives warmer/drier sub-cloud layer
- Larger entrainment/detrainment rates give
 - Colder and moister cloud layer
 - Lower cloud top

Impact in GCM on trade Cu

 Same warmer/drier sub-cloud layer
Same colder and moister cloud layer
Same lower cloud top Cross-section 1, July mean, New - Old

Impact in GCM on water vapour

Impact in GCM on low cloud

 Cloud-top lower but little impact on cloud cover except towards the ITCZ

Reduced intermittency of convection

Massflux time-height sections from a point near Hawaii

Partly a more robust trigger, partly more balanced increments...

NWP representation of stratocumulus (T+12)

Old NWP model (Ri bl scheme)

Radiosonde ascent

New NWP model (non-local bl scheme)

Summary and future work (low cloud)

- Both K-profile boundary layer and revised convection schemes are now operational for NWP
- Further work required on the interaction between cumulus and stratocumulus
- Extend the principle of K-profile mixing between layer interfaces to:
 - cumulus convection (both shallow and deep)
 - stable boundary layers

