Impact of recent physics changes on IFS forecast performance – CY25R3

- The recent physics changes concerne:
 - Change in convective trigger (see former presentations) Big impact everywhere (mostly positive – but some negative not to avoid)
 - Rewrite of cloud scheme (changes time evolution of T error growth)
- In the following show examples on
 - "Consequences of Grid point storm problem" –"American problem"
 - Analysis Increments
 - Tropical cyclone Forecast
 - Forecast scores comparison to Synop

Mass (Z) and wind increments N.America

Analysis – First Guess

F. Grazzini

NO. OF USED OBS: 2184 (70 %)

NO. OF OBS: 3128 BIAS: .9 STD: 4.1 NO. OF USED OBS: 2164 (70 %)

60

66 éD. 66 30

46

Usage

Mass (Z) and wind increments S.America

Analysis – First Guess

Convective and stratiforme Precipitation – Cyclone Lilly

First Guess and Analysis – Cyclone Maysak

Cyclone Statistics

Mean Error Tropical Cyclone Core Pressure Oct. 2002

Gerald v.d. Grijn

SYNOP verification Mai 2002 : Cloud Cover

esuite BIAS Total Cloud Cover [octa] eb7n FC PERIOD: 20020504 - 20020518 STEP: 48 VALID AT: 12 UTC N= 3025 BIAS=-0.54 STDEV= 3.10 MAE= 2.25 100-10 11.12 1115 a 18 10.15 10.15 28.15 39.15 44.45 at 15. disc. M-10 14.50 10.10 100-10 44-10

SYNOP: Mai 2002 : Precip

Verification against own Analysis: Aug-Nov 2002

FORECAST VERIFICATION 12UTC		
850bPa VECTOR WIND	ECMWF T+ 24	
	•••• ECMWF T+ 72	—▲— 25r3_18 T+72
ROOT MEAN SQUARE ERROR FORECAST	ECMWF T+120	25r3_18 T+120
TROPICS LAT -20.000 TO 20.000 LON -180.000 TO 180.000	•••• ECMWF T+168	

Verification against own Analysis: Aug-Nov. 2002

FORECAST VERIFICATION 12UTC		
200hPa VECTOB WIND	ECMWF T+ 24	
	••• •• ECMWF T+ 72	—▲— 25r3_18 T+72
ROOT MEAN SQUARE ERROR FORECAST	ECMWF T+120	
TROPICS LAT -20.000 TO 20.000 LON -180.000 TO 180.000	•••• ECMWF T+168	—▼— 25r3_18 T+168

Verification against own Analysis: Aug-Nov. 2002

Anomaly Correlation 1000 hPa: Aug-Nov. 2002

Case studies, starting with same Analysis

new

OBS

oper

Case studies, starting with same Analysis

new

OBS

oper

Analysis statistics with Temps

Standard: blue Incr. Entrainm: black

Analysis statistics with Satellite: SSMI

Standard: blue Incr. Entrainm: black

T verification against ERA40, august 2002 Test suite incr.entr Oper

Zonal Mean Error: Average T (n=5) D+2 Oper. Forecast - Analysis

U verification against ERA40, august 2002 Test suite incr.entr Oper

Brief Summary – CY25R3

Model changes had mostly positive impact

- Improvement in Rainfall over Land, tropical winds, cyclone development, Analysis Increments –Grid point storms (American problem)
- Tropical variability and MJO has still to be evaluated better use of TRMM DATA
- But probaly convection still overactive over West Pacific –
- 100 hPa Z and T increments -> slope of 100 hPa T error is determined by cloud-radiation interaction (cloud scheme)
- Nota: any change in convection/cloud must be carefully evaluated as
 - Something will always degrade +/- error evolution
 - Any change in model physics becomes particularly effective through analysis Cycle – Forecats only is quite conservative

