-••Diurnal Cycle of Shallow Cumulus over Land

(siehesma@knmi.nl)

Questions:

- Do models reproduce correct timing?
- Do scaling laws still apply?
- How is subcloud layer affected by cu?

Set up of the case.

For details see: A.R. Brown et al. Q.J.Met.Soc. 128, 1075-1094 (2001) or:
www.knmi.nl/samenw/eurocs

Participants

Model	Scientist	Diffusion	Conv	Cloud
Met office	Irons	PRO	MF (GR)	Statistical
ECHAM5	Chlond/ Mueller	TKE m	MF (T)	Prognostic ql, RH-based cc
RACMO	Lenderink	TKE m	MF (T)	Prognostic ql, RH-based cc
ARPEGE	Marquet/ Cheinet	TKE d	No (KF)	Statistical
ECMWF	Siebesma	PRO	MF (T)	Prognostic ql,cc
MESO- NH	Soares	TKE m	KF	Statistical
HIRLAM	Olmeda/ Sanchez/ Jones	TKE d	KUO	

Resolution and Updates

Model	Scientist	Stnd Res	High Res	Updates
Met office	Irons	yes	yes	no
ECHAM5	Chlond/ Mueller	yes	yes	no
RACMO	Lenderink	yes	yes	yes
ARPEGE	Marquet/ Cheinet	yes	yes	yes
ECMWF	Siebesma	yes	no	yes
MESO- NH	Soares	yes	yes	no
HIRLAM	Olmeda/ Sanchez/ Jones	yes	no	yes

Results (1) : Cloud Cover
cloud cover

100\%: HIRLAM
50~80\%: ECMWF,ECHAM, ARPEGE 20~50\%: MESO-NH, RACMO, Metioffice,

All models: Maximum Random Overlap:
cc_tot/cc_max = 1 (except Arpege)
… Results (2): Cloud Liquid Water Pak inimi
liquid water path

Results (3) Thermodynamic Profiles ${ }^{\text {KNMI }}$

Too active mixing ECMWF, ARPEGE, Met Office
Too little mixing: HIRLAM

III-defined: ECHAM !!

Results (4) Wind Profiles

u at time $=21.30 \mathrm{UTC}$

RACMO and ECHAM have unrealistic wind profiles (due to mass flux)

ARPEGE and ECHAM profiles are noisy

Results (4) Cloud Profiles

d at time $=21.30$ UTC

ql at time -21.30 UTC

Analysis (1)

Three Schemes:

1. Turbulence Scheme
2. Convection Scheme
3. Cloud Scheme

Turbulence Schemes

- K-profiles (ECMWF, Met Office)
- TKE closure: $K=l \sqrt{E}$

$$
c_{p} \overline{w^{\prime} \theta_{v}^{\prime}}=\alpha c_{p} \overline{w^{\prime} \theta_{l}^{\prime}}+\beta L \overline{w^{\prime} q_{t}^{\prime}}
$$

Convection

KNMI

$$
\overline{w^{\prime} \phi^{\prime}}=M\left(\phi_{u}-\bar{\phi}\right) \quad \frac{\partial \phi_{u}}{\partial z}=-\varepsilon\left(\phi_{u}-\bar{\phi}\right) \quad \frac{\partial \ln M}{\partial z}=(\varepsilon-\delta)
$$

Mass Flux

Too active!!!

Convective Fluxes

1. (too much) drying and warming near cloud base (shuts off convection)
2. (too much) Moistening and Cooling near the inversion
...8. (too) Extreme detrainment in the inversion

\$qqeraction Turbulence/Convection and Numerics

Subcloud equilibrium closure: $\quad M_{\text {base }}=\frac{\overline{w^{\prime} q^{\prime}} t, \overline{w^{\prime}}=\overline{{w^{\prime}}^{\prime}}}{q_{u, \text { base }}-\bar{q}_{\text {base }}}$

Tiedtke Mass flux extremely Diffusive

Cloud Schemes

1. Statistical Schemes Meso-NH, Arpege, Met Office
2. RH-based+prognostic ql: RACMO
3. Prognostic ql and cc

HIRLAM, ECHAM, ECMWF

Collective Overestimation Cloud Cover

Howcome?

1. Models drift away from the realistic temp and humidity profiles
(SEE NEXt PAGE)
2. Prognostic schemes are tied too strongly to convective

$$
=q_{l} \max \left(0,-\frac{\partial M}{\partial z}\right)
$$

Summary (1)

Summary (2)

Turbulence Schemes:
Numerical Noise and instabilities (especially moist physics)

Convection Schemes:

Too much drying and warming above cloud base
Too much uncontrolled numerical diffusion

Updates(1)

ECMWF, RACMO
closure: $\mathrm{Mb}=\mathrm{aw}^{*}$
RACMO:
switch of momentum transfer in convection instead:
ARPEGE:

$$
K_{m f}=l_{m f} M
$$

prognostic TKE-I scheme (Bougeault-Lacarrere) mixing in moist conserved variables
Kain-Fritsch convection
HIRLAM:
Kain-Fritsch convection
Rasch/Kristjansson cloud scheme

upd_mf at time = 21.30 UTC

Results (2) Liquid Water Path.
liquid water path

Conclusions

1. Collective Overestimation of Cloud Cover and LWP
2. Clouds do not disappear at the end of the day.
3. Unwanted interactions between the various schemes leading to numerical noise.
4. This afternoon more specific analysis why!!
