Noriinklijk Nederlands Meteorologis

••••Diurnal Cycle of Shallow Cumulus over Land

Geert Lenderink, A. Pier Siebesma (siebesma@knmi.nl)

Questions:

- Do models reproduce correct timing?
- Do scaling laws still apply?
- How is subcloud layer affected by cu?

www.knmi.nl/samenw/eurocs

woriinklijk Nederlands Meteorologisch **NSUIN**

Model	Scientist	Diffusion	Conv	Cloud
Met office	Irons	PRO	MF (GR)	Statistical
ECHAM5	Chlond/ Mueller	TKE m	MF (T)	Prognostic ql, RH-based cc
RACMO	Lenderink	TKE m	MF (T)	Prognostic ql, RH-based cc
ARPEGE	Marquet/ Cheinet	TKE d	No (KF)	Statistical
ECMWF	Siebesma	PRO	MF (T)	Prognostic ql,cc
MESO- NH	Soares	TKE m	KF	Statistical
HIRLAM	Olmeda/ Sanchez/ Jones	TKE d	KUO	

Resolution and Updates

Model	Scientist	Stnd Res	High Res	Updates
Met office	Irons	yes	yes	no
ECHAM5	Chlond/ Mueller	yes	yes	no
RACMO	Lenderink	yes	yes	yes
ARPEGE	Marquet/ Cheinet	yes	yes	yes
ECMWF	Siebesma	yes	no	yes
MESO- NH	Soares	yes	yes	no
HIRLAM	Olmeda/ Sanchez/ Jones	yes	no	yes

 $\bullet \bullet \bullet \bullet$

Moninklijk Nederlands Meteorologisch Insurum

Results (1) : Cloud Cover

cloud cover

20~50%: MESO-NH, RACMO, MetOffice,

cc_tot/cc_max = 1 (except Arpege)

NOTINKI

Too active mixing ECMWF, ARPEGE, Met Office Too little mixing: HIRLAM

Ill-defined: ECHAM !!

Results (4) Wind Profiles

Morinklijk Nederlands

Meteorologisch Insurun

RACMO and ECHAM have unrealistic wind profiles (due to mass flux)

ARPEGE and ECHAM profiles are noisy

n 2

n

0.4

0.6

0.8

1

unklijk Nederlands Meteorologis NSULL

Three Schemes:

1. Turbulence Scheme

2. Convection Scheme

3. Cloud Scheme

- K-profiles (ECMWF, Met Office)
- TKE closure: $K = l\sqrt{E}$

$$c_{p}\overline{w'\theta_{v}'} = \alpha c_{p}\overline{w'\theta_{l}'} + \beta L\overline{w'q_{t}'}$$

 $\overline{w'\phi'} = M(\phi_u - \overline{\phi})$

 $\partial \ln M$ $=(\mathcal{E}-\delta)$ ∂z .

Mass Flux

Too active!!!

- 1. (too much) drying and warming near cloud base (shuts off convection)
- 2. (too much) Moistening and Cooling near the inversion
- 3. (too) Extreme detrainment in the inversion

Interaction Turbulence/Convection and **Numerics**

Subcloud equilibrium closure: $M_{base} = \frac{\overline{w'q'}_{t,srf} - \overline{w'q'}_{t,base}}{q_{u,base} - \overline{q}_{base}}$

Tiedtke Mass flux extremely Diffusive

NSULAR

- 1. Statistical Schemes Meso-NH, Arpege, Met Office
- 2. RH-based+prognostic ql: HIRLAM, ECHAM, RACMO
- 3. Prognostic ql and cc ECMWF

Collective Overestimation Cloud Cover

Howcome?

- 1. Models drift away from the realistic temp and humidity profiles
- (SEE NEXt PAGE)
- 2. Prognostic schemes are tied too strongly to convective activity

$$\left(\frac{\partial q_l}{\partial t}\right)_{\det r} = q_l \max(0, -\frac{\partial M}{\partial z})$$

ECHAM, ECMWF, RACMO

Summary (1)

Summary (2)

Turbulence Schemes:

Numerical Noise and instabilities (especially moist physics)

Convection Schemes:

Too much drying and warming above cloud base Too much uncontrolled numerical diffusion

Updates(1)

ECMWF, RACMO closure: Mb = aw* RACMO:

switch of momentum transfer in convection

instead: ARPEGE:

$$K_{mf} = l_{mf} M$$

prognostic TKE-I scheme (Bougeault-Lacarrere) mixing in moist conserved variables Kain-Fritsch convection

HIRLAM:

Kain-Fritsch convection Rasch/Kristjansson cloud scheme

woriinklijk Nederland S eteorologis 0 NSULAN

e

Results (2) Liquid Water Path.

Conclusions

- 1. Collective Overestimation of Cloud Cover and LWP
- 2. Clouds do not disappear at the end of the day.
- 3. Unwanted interactions between the various schemes leading to numerical noise.
- 4. This afternoon more specific analysis why!!

