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Introduction
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Why do IASI 1DVAR with PC 
radiative transfer?

• Currently Met Office assimilates a small subset 
of the 8400 channels IASI provides.

• Computational efficiency reasons.

• Positive impact on NWP scores

•  Data being thrown out may contain additional useful 
independent information

• PC RT provides a way to include this extra 
information at much lower computational cost.

• This talk discusses attempts to retrieve humidity 
and temperature.
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PC Radiative Transfer
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SVD also 
generates 
a matrix 

containing
the Principal
Component 
scores (PC)
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HT-FRT – offline calculations

= SV× ×

EOF: Empirical Orthogonal Function
SV: Singular Value
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Couple HT-FRTC to 1d-Var

1d-Var
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1d-Var – minimization of the 
cost function

 x = atmospheric state
T(z), q(z), O3(z), T*, E(PCs)

 B = Error covariance 
of Background profile 

– extended to include a block
matrix with the error covariances

of the surface emissivity
PC scores

  y = observations
Represented as PCs of the

Radiance spectra

 R = Error covariance 
of measurements  

– extended to include
the error covariances of the sum
of the observational and model
errors in Principal Component

Space
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Case study: B345
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Constraints on 1DVAR

• ECMWF model fields taken as background.

• 0.5° X 0.5° resolution

• AVHRR Channel 4 used as an estimate of the 
background surface temperature.

• B matrix for ECMWF model

• Spatially invariant

• Independent of flow conditions

• Sondes a local measurement

• Provide a best estimate of the “truth”
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B345 Coincidence between 
Dropsondes and IASI footprints
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Dropsonde data

• Sonde humidity 
quite variable 

• STD q= 5.7e-5 kg/kg

• STD rh= 7.9 %

• STD temp= 0.73 K
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Dropsonde data

• Sonde humidity 
quite variable 

• STD q= 5.7e-5 kg/kg

• STD rh= 7.9 %

• STD temp= 0.73 K

• Height and temp of 
trop inversion 
uncertain/variable

• Not reflected in B 
matrix but expected 
in nature.
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Retrieved surface emissivities
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Retrieved temperatures
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Retrieved relative humidities
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Retrieved specific humidities
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Sonde 6, Footprint 7:
Good humidity retrieval
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Sonde 6, Footprint 7:
Thermal coupling
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Conclusions



© Crown copyright   Met Office

Results

577.90.73Sonde

STD

2.5

(best)

88.1

(80.0)

qX10

Retr

97.7

192

Bgrnd

SH (kg/kg)*106

1.22

(best)

14.5 

(12.5)

qX10

Retr

9.86

17.2

Bgrnd

RH (%)Temp (K)

-0.33 

(best)

-0.83BIAS

1.2 

(best)

1.8RMSE

RetrBgrnd



© Crown copyright   Met Office

Conclusions

• 1DVAR using HT-FRTC retrievals better at matching 
sonde profiles than background

• However, there is room for even more improvement.

• B matrix is general global quantity 

• Need flow-dependent, local B matrix

• Sub-grid variability in temperature and humidity profiles 
as well as surface emissivity may be reducing quality of 
retrievals 

• Thermal coupling induced in boundary layer by B matrix

• Unrealistic in arctic winter conditions.

• Reduces quality of profile and surface temperatures.

• Retrieval performed over flat, low-lying terrain

• Expect greater difficulties over complex,elevated terrain.
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