Quasi-Lagrangian measurements of polar stratospheric cloud particle development from long-duration balloon platforms OPP proposal Terry Deshler, Jennifer Mercer, University of Wyoming submitted June 2006, funded December 2007

- Goals
 - Capture the processes of particle growth during formation and dissolution of polar stratospheric clouds (PSCs) as instruments pass into and out of temperature regimes favorable for PSC development.

- Particle and Temperature measurements provide observations of threshold temperatures for PSC particle condensation forming:
 - liquid cloud particles, including some estimates of their growth rate
 - solid nitric acid trihydrate (NAT) particles, including estimates of their nucleation threshold.
- The question of solid PSC (NAT) nucleation is one of the major unanswered questions concerning PSC particle development.

Importance

• Nucleation thresholds for solid PSC hydrates are necessary for incorporation of more realistic PSC models into current ozone loss models. At what temperature should models form PSCs?

- T (PSC_{solid}) ~ T (PSC_{liquid}) + 3 K ~ T (PSC_{ice}) + 7 K

- Laboratory nucleation thresholds ($\sim T_{ice}$ -2K) appear too cold based on limited field observations.
- New (2006) JPL laboratory measurements of the photolysis cross section of ClOOCl are a factor 6 below previous values
 - Previous agreement of models and ozone loss measurements will be called into question
 - Resolution will require among other things better estimates of ClOx, BrOx concentrations
 - These concentrations depend on the surface area and persistence of PSCs.
 - Denitrification is also controlled by the nucleation of solid PSCs

DESHLER ET AL.: LARGE PARTICLES IN ARCTIC STRATOSPHERIC CLOUDS AAC 5 - 7 J. Geophys. Res., 2003

Conclusions

- Profile PSC measurements coupled with back trajectory models suggest that nucleation temperatures for NAT are warmer than laboratory estimates.
- Field estimates, however, are not definitive. There are:
 - uncertainties in the back trajectory temperature histories
 - in the accuracy of model temperatures
 - no estimates of particle growth rate along air parcel tracks.
- Lagrangian in situ microphysical and profile measurements would help resolve this question by reducing uncertainties in:
 - air parcel history
 - temperature accuracy
 - particle type and growth

Frost grows on particles In sample line. Multiple Radii tested

Single radius tested Frost grows on particles

Post cold tests indicated Significant calibration Drift.

Conclusions on UWOPC

- Some success with one instrument, but three failures.
- The points of potential (and actual) failure due to temperature dependence are many:
 - Photomultiplier tubes
 - Pulse height analyzer board
 - Power supply
 - Microprocessor
- Parts and replacements electronics extremely limited and not available.
- The mechanical integration would be difficult.
- Not confidant that 4 working instruments could be built with existing parts.
- Engineering resources unavailable to develop more than one instrument for deployment.

LOPC = Laser Optical Particle Counter (Jupiter)

Results of cold temperature tests on Jupiter

- Problems
 - Extensive potting required to prevent arcing at low pressures.
 - From a warm start unit operates to -40 C.
 - Cold starts are limited to temperatures > -25C
 - Laser
 - The metal used for the glass to metal weld on the laser tube was selected for expansion properties similar to glass during warming
 - The metal has different characteristics during cooling.
 - This is possibly the source of the laser failure of the instrument used for cold testing

Conclusions on Jupiter

- Advantages
 - Commercially available
 - Simpler design mechanically and electronically
 - Chance of sampling lower density, larger PSC particles
- Issues
 - Mounting cannot be vertical due to possibility of debris from laser settling onto one of the lenses. Thus the angled mounting
 - Only preliminary cold testing completed
 - Focused on testing of temperature limits for operability
 - No systematic particle testing done
 - Tests of the survivability of the laser to a cold soak have yet to be completed
- Future
 - Four new instruments have been ordered from PMI. Delivery in January
 - PMI has supplied several lasers for cold soak tests as part of this order
 - Processors have been ordered to manage the communication between Jupiter and ISBA. The software for these will be in development soon.
 - Plan for manual operation of the instrument in flight to avoid building complicated software to manage instrument turn on. This requires:
 - Position
 - Temperature exterior and interior
 - Battery capacity
 - Plan to initially be quite stringent on temperature limits for operation

