AN ALTERNATE WAY TO TREAT HELMHOLTZ EQUATION IN THE NHEE MODEL.

K. YESSAD and F. VOITUS
METEO-FRANCE/CNRM/GMAP/ALGO
We present an alternate way to eliminate equations in the NHEE linear system.

Elimination will be done in order to have horizontal divergence $D'_{t+\Delta t}$ as unknown in the Helmholtz equation, instead of $d_{t+\Delta t}$.
We present an alternate way to eliminate equations in the NHEE linear system.

Elimination will be done in order to have horizontal divergence $D'_{t+\Delta t}$ as unknown in the Helmholtz equation, instead of $d_{t+\Delta t}$.
SOME DENOTATIONS.

- M is the mapping factor.
- \bar{M} is a reference mapping factor for semi-implicit computations.
- a is the Earth mean radius.
- \mathbf{V} is the horizontal geographical wind. Components are U and V.
- D' is the reduced divergence of horizontal wind.
- T is the temperature.
- T^* is a vertically-constant reference temperature for the semi-implicit scheme.
- T_a^* is a cold vertically-variable reference temperature for the semi-implicit scheme (hidden in linear operators L^{**}, T^{**}).
- Π is the hydrostatic pressure, Π_s is the hydrostatic surface pressure.
- Π^* is a reference pressure and Π_s^* is a reference surface pressure for the semi-implicit scheme.
SOME DENOTATIONS (CONT’D).

- g is the gravity acceleration constant, assumed to be vertically constant in the current documentation.
- R_d the gas constant for dry air.
- c_{pd} is the specific heat at constant pressure for dry air.
- c_{vd} is the specific heat at constant volume for dry air.
- $\kappa_d = R_d / c_{pd}$.
- ∇' is the reduced first order horizontal gradient.
- p is the total pressure, p_s is the surface total pressure.
- \hat{Q} is the pressure departure variable. Expression of \hat{Q} is $\hat{Q} = \log \frac{p}{\Pi}$.
- d is the vertical divergence.
- β : tunable coefficient for the semi-implicit scheme (between 0 and 1).
- $\gamma, \tau, \nu, \mu, G^*, S^*, N^*, L^{**}$ (modified Laplacian operator), T^{**} are generic denotations for linear operators H, C, N are intermediate constants used in the semi-implicit scheme of the NHEE and NHQE models.
DEFINITION OF COR.

- When eliminating equations, quantity COR appears (COR = 0 in the continuous equations).
- Expression of COR is:
 \[
 COR = \frac{c_{vd}}{R_d^2 T^*} \gamma \tau - \frac{c_{vd}}{R_d c_p d} \gamma - \frac{c_{vd}}{R_d T^*} \tau + \frac{c_{vd}}{c_p d} \nu = \frac{c_{vd}}{c_p d} [G^* S^* - S^* - G^* + N^*] \quad (1)
 \]
- COR = 0 when constraint C1 is ensured.
DEFINITION OF COR.

- When eliminating equations, quantity COR appears ($COR = 0$ in the continuous equations).

- Expression of COR is:

 \[
 COR = \frac{c_{vd}}{R_d T^*} \gamma \tau - \frac{c_{vd}}{R_d c_p d} \gamma - \frac{c_{vd}}{R_d T^*} \tau + \frac{c_{vd}}{c_p d} \nu = \frac{c_{vd}}{c_p d} \left[G^* S^* - S^* - G^* + N^* \right] \quad (1)
 \]

- $COR = 0$ when constraint C1 is ensured.
NHEE LINEAR SYSTEM TO BE SOLVED.

\[
\log(\Pi_s)_{t+\Delta t} + \beta \Delta t \nu (\bar{M}^2 D'_t) = \mathcal{P}^*
\]

\[
D'_t + \beta \Delta t \nabla^2 [\gamma T_{t+\Delta t} - T^*(\gamma \hat{Q}_{t+\Delta t}) + \mu \log(\Pi_s)_{t+\Delta t} + R_d T^* \hat{Q}_{t+\Delta t}] = D'^*
\]

\[
\hat{Q}_{t+\Delta t} + \beta \Delta t \left[\frac{c_{pd}}{c_{vd}} (\bar{M}^2 D'_t + d_{t+\Delta t}) - \frac{c_{pd}}{R_d T^*} \tau (\bar{M}^2 D'_t) \right] = \hat{Q}^*
\]

\[
d_{t+\Delta t} + \beta \Delta t \frac{g^2}{R_d T^*} (L^{**} \hat{Q}_{t+\Delta t}) = \hat{D}^*
\]

\[
T_{t+\Delta t} + \beta \Delta t \frac{R_d T^*}{c_{vd}} [\bar{M}^2 D'_t + d_{t+\Delta t}] = T^*
\]
Elimination of T, \hat{Q} and $\log(\Pi_s)$ between equations (2), (3), (4) and (6) leads to equation (7):

$$D'_{t+\Delta t} - (\beta \Delta t)^2 \nabla'^2 \left\{ R_d T^* \left(\frac{\gamma}{R_d} - 1 \right) \left(\frac{c_{pd}}{R_d T^*} \tau - \frac{c_{pd}}{c_{vd}} \right) + \frac{R_d T^*}{c_{vd}} \gamma + R_d T^* \nu \right\} \tilde{M}^2 D'_{t+\Delta t} + \{ -R_d T^* \frac{c_{pd}}{c_{vd}} \left(\frac{\gamma}{R_d} - 1 \right) + \frac{R_d T^*}{c_{vd}} \gamma \} d_{t+\Delta t}$$

$$= D'^* + \beta \Delta t \nabla'^2 \left[R_d T^* \left(\frac{\gamma}{R_d} - 1 \right) \hat{Q}^* - \gamma T^* - R_d T^* P^* \right]$$

(7)

D'^* is defined by equation (8):

$$D'^* = D' + \beta \Delta t \nabla'^2 \left[R_d T^* \left(\frac{\gamma}{R_d} - 1 \right) \hat{Q}^* - \gamma T^* - R_d T^* P^* \right]$$

(8)

We use the relationship $c_{pd} - c_{vd} = R_d$, the definition of C and we isolate the term COR (see equation (1)) : this equation can be rewritten:

$$\left[-(\beta \Delta t)^2 \nabla'^2 (C^2 - T^* \gamma) \right] d_{t+\Delta t} + \left[I - (\beta \Delta t)^2 \nabla'^2 (C^2 (1 + COR)) \tilde{M}^2 \right] D'_{t+\Delta t} = D'^*$$

(9)
Elimination of \(\hat{Q} \) between equations (4) and (5) leads to equation (10):

\[
d_{t+\Delta t} - (\beta \Delta t)^2 \left[\frac{L^{**}}{H^2} (-c_p \tau + C^2) M^2 D_{t+\Delta t} + \frac{C^2}{H^2} L^{**} d_{t+\Delta t} \right] = \hat{D}^{**} \tag{10}
\]

where \(\hat{D}^{**} \) is defined by:

\[
\hat{D}^{**} = \hat{D}^* + \beta \Delta t \left[-\frac{g}{H} L^{**} \hat{Q}^* \right] \tag{11}
\]
OLD WAY : HELMHOLTZ EQUATION WITH \(d\) AS UNKNOWN.

When \(\text{COR} = 0\) (constraint C1), elimination of \(D'\) between equations (9) and (10) leads to Helmholtz equation (12):

\[
(I - \beta^2 \Delta t^2 B \bar{M}^2 \nabla'^2) d_{t+\Delta t} = \mathcal{R}
\]

where:

\[
B = C^2 \left(I - \beta^2 \Delta t^2 \frac{L^{**}}{H^2} \right)^{-1} \left(I + \beta^2 \Delta t^2 N^2 T^{**} \right)
\]

and:

\[
\mathcal{R} = \left(I - \beta^2 \Delta t^2 C^2 \frac{L^{**}}{H^2} \right)^{-1} \left[(I - \beta^2 \Delta t^2 C^2 \bar{M}^2 \nabla'^2) \hat{D}^{**} + \beta^2 \Delta t^2 \frac{L^{**}}{H^2} (-c_p d^* + C^2) \bar{M}^2 D'^{**} \right]
\]
OLD WAY: HELMHOLTZ EQUATION WITH \(d \) AS UNKNOWN.

If we compare with the LHS of the Helmholtz equation in the hydrostatic case:

- The unknown is \(d_{t+\Delta t} \).
- The order of \(\overrightarrow{M}^2 \) and \(\nabla'\nabla' \) is inverted.
- \(B \) now depends on \(\Delta t \), it must be recomputed each time the timestep is changed.

Additional remarks:

- Operator \(T^{**} \) appears, which is simple when constraint C2 is matched (ex: VFD with NDLNPR=1) and more tricky otherwise (ex: VFE-NH).
OLD WAY : HELMHOLTZ EQUATION WITH \(d \) AS UNKNOWN.

If we compare with the LHS of the Helmholtz equation in the hydrostatic case:

- The unknown is \(d_{t+\Delta t} \).
- The order of \(\bar{M}^2 \) and \(\nabla'{}^2 \) is inverted.
- \(B \) now depends on \(\Delta t \), it must be recomputed each time the timestep is changed.

Additional remarks:

- Operator \(T^{**} \) appears, which is simple when constraint C2 is matched (ex: VFD with NDLNPR=1) and more tricky otherwise (ex: VFE-NH).
OLD WAY : HELMHOLTZ EQUATION WITH \(d \) AS UNKNOWN.

If we compare with the LHS of the Helmholtz equation in the hydrostatic case:

- The unknown is \(d_{t+\Delta t} \).
- The order of \(\bar{M}^2 \) and \(\nabla' \) is inverted.
- \(B \) now depends on \(\Delta t \), it must be recomputed each time the timestep is changed.

Additional remarks:

- Operator \(T^{**} \) appears, which is simple when constraint C2 is matched (ex: VFD with NDLNPR=1) and more tricky otherwise (ex: VFE-NH).
OLD WAY : HELMHOLTZ EQUATION WITH d AS UNKNOWN.

If we compare with the LHS of the Helmholtz equation in the hydrostatic case:

- The unknown is $d_{t+\Delta t}$.
- The order of M^2 and ∇'^2 is inverted.
- B now depends on Δt, it must be recomputed each time the timestep is changed.

Additional remarks:

- Operator T^{**} appears, which is simple when constraint C2 is matched (ex : VFD with NDLNPR=1) and more tricky otherwise (ex : VFE-NH).
If constraint C1 is not matched (non zero COR).

- This is the case for example for VFE-NH.
- An iterative algorithm has been implemented, with NITERHELM iterations.
- Predictor step: replace COR by 0 and proceed as above.
- Corrector steps: the term containing COR is put in the RHS, it is multiplied by $D'_{t+\Delta t}$ at the previous iteration. The LHS is unchanged, so the elimination and the Helmholtz solving can be done like in the predictor step.
- We rather take as unknowns the increments between the current iteration and the predictor step, that allows to simplify the calculation of the RHS for the corrector step.
If constraint C_1 is not matched (non zero COR).

- This is the case for example for VFE-NH.
- An iterative algorithm has been implemented, with NITERHELM iterations.
- Predictor step: replace COR by 0 and proceed as above.
- Corrector steps: the term containing COR is put in the RHS, it is multiplied by $D'_{t+\Delta t}$ at the previous iteration. The LHS is unchanged, so the elimination and the Helmholtz solving can be done like in the predictor step.
- We rather take as unknowns the increments between the current iteration and the predictor step, that allows to simplify the calculation of the RHS for the corrector step.
If constraint C1 is not matched (non zero COR).

- This is the case for example for VFE-NH.
- An iterative algorithm has been implemented, with NITERHELM iterations.
 - Predictor step: replace COR by 0 and proceed as above.
 - Corrector steps: the term containing COR is put in the RHS, it is multiplied by $D_{t+\Delta t}'$ at the previous iteration. The LHS is unchanged, so the elimination and the Helmholtz solving can be done like in the predictor step.
 - We rather take as unknowns the increments between the current iteration and the predictor step, that allows to simplify the calculation of the RHS for the corrector step.
If constraint C1 is not matched (non zero \textit{COR}).

- This is the case for example for VFE-NH.
- An iterative algorithm has been implemented, with \textbf{NITERHELM} iterations.
- Predictor step : replace COR by 0 and proceed as above.
- Corrector steps : the term containing COR is put in the RHS, it is multiplied by $D'_{t+\Delta t}$ at the previous iteration. The LHS is unchanged, so the elimination and the Helmholtz solving can be done like in the predictor step.
- We rather take as unknowns the increments between the current iteration and the predictor step, that allows to simplify the calculation of the RHS for the corrector step.
NEW WAY: HELMHOLTZ EQUATION WITH D' AS UNKNOWN.

General formalism for D' and d equations:

- **Equation (9)** has the following shape:
 \[
 [I + (\beta \Delta t)^2 \nabla'^2 B_1 M^2] D'_{t+\Delta t} + [(\beta \Delta t)^2 \nabla'^2 B_2] d_{t+\Delta t} = D'^{**} \tag{15}
 \]

- **Equation (10)** has the following shape:
 \[
 [(\beta \Delta t)^2 B_3 M^2] D'_{t+\Delta t} + [I + (\beta \Delta t)^2 B_4] d_{t+\Delta t} = \hat{D'^{**}} \tag{16}
 \]

- where:

 \[
 \begin{align*}
 B_1 &= -C^2 (1 + COR) \\
 B_2 &= -(C^2 - T^* \gamma) \\
 B_3 &= -(1/H^2) L^{**} (C^2 - c_{pd} \tau) \\
 B_4 &= -(C^2/H^2) L^{**}
 \end{align*}
 \]
NEW WAY (CONT’D).

Elimination:

- The following combination is used:

\[
\text{(EQ 15)} - \left[(\beta \Delta t)^2 \nabla' B_2 \right] \left[I + (\beta \Delta t)^2 B_4 \right]^{-1} \text{(EQ 16)}
\]

- And additionally we use the fact that \(\nabla' \) commute with \(B_1, B_2, B_3 \) and \(B_4 \).

- One obtains the following Helmholtz equation:

\[
\left(I - \beta^2 \Delta t^2 B \nabla' \nabla'' \right) D'_t + \Delta t = R \tag{17}
\]

where:

\[
B = -B_1 + (\beta \Delta t)^2 B_2 \left[I + (\beta \Delta t)^2 B_4 \right]^{-1} B_3 \tag{18}
\]

and:

\[
R = D'''' - (\beta \Delta t)^2 \nabla' B_2 \left[I + (\beta \Delta t)^2 B_4 \right]^{-1} \hat{D}'''' \tag{19}
\]
Elimination:

- The following combination is used:

\[(\text{EQ 15}) - [((\beta \Delta t)^2 \nabla'^2 B_2)[I + (\beta \Delta t)^2 B_4]^{-1}(\text{EQ 16})]\]

- And additionally we use the fact that \(\nabla'^2\) commute with \(B_1, B_2, B_3\) and \(B_4\).

- One obtains the following Helmholtz equation:

\[
(I - \beta^2 \Delta t^2 B \nabla'^2 M^2)D'_t = \mathcal{R}
\]

\[(17)\]

where:

\[
B = -B_1 + (\beta \Delta t)^2 B_2[I + (\beta \Delta t)^2 B_4]^{-1}B_3
\]

\[(18)\]

and:

\[
\mathcal{R} = D'^{**} - (\beta \Delta t)^2 \nabla'^2 B_2[I + (\beta \Delta t)^2 B_4]^{-1}\hat{D}^{**}
\]

\[(19)\]
Properties of \(B \):

- After calculations (not detailed) using expression of \(COR \) and the relationship \(c_{Pd} - c_{vd} = R_d \), \(B \) can be rewritten:

\[
B = B_{\text{hyd}} + B_2\left((\beta \Delta t)^2[I + (\beta \Delta t)^2 B_4]^{-1} - B_4^{-1}\right) B_3
\]

(20)

where:

\[
B_{\text{hyd}} = \gamma \tau + R_d T^* \nu
\]

- An alternate way to write \(B \) is:

\[
B = B_{\text{hyd}} + \frac{1}{C^2} \left[C^2 - T^* \gamma \right]\left((\beta \Delta t)^2 \frac{C^2}{H^2} [I + (\beta \Delta t)^2 B_4]^{-1} L^{**} + I \right][C^2 - c_{Pd} \tau]
\]

(21)

Term \(COR \) and constraint C1 have disappeared.

- For large timesteps, \(B \) converges towards \(B_{\text{hyd}} \).
- For very small timesteps, \(B \) converges towards \(C^2(1 + COR) \).
NEW WAY (CONT’D).

Properties of B:

- After calculations (not detailed) using expression of COR and the relationship $c_{pd} - c_{vd} = R_d$, B can be rewritten:

$$B = B_{hyd} + B_2[(\beta \Delta t)^2[I + (\beta \Delta t)^2 B_4]^{-1} - B_4^{-1}]B_3$$

where:

$$B_{hyd} = \gamma \tau + R_d T^* \nu$$

- An alternate way to write B is:

$$B = B_{hyd} + \frac{1}{C^2}[C^2 - T^* \gamma][(\beta \Delta t)^2 \frac{C^2}{H^2}[I + (\beta \Delta t)^2 B_4]^{-1} L^{**} + I][C^2 - c_{pd} \tau]$$

Term COR and constraint $C1$ have disappeared.

- For large timesteps, B converges towards B_{hyd}.
- For very small timesteps, B converges towards $C^2(1 + COR)$.
Properties of B:

- After calculations (not detailed) using expression of COR and the relationship $c_{pd} - c_{vd} = R_d$, B can be rewritten:

$$B = B_{\text{hyd}} + B_2[(\beta \Delta t)^2[I + (\beta \Delta t)^2 B_4]^{-1} - B_4^{-1}]B_3$$ \hspace{1cm} (20)

where:

$$B_{\text{hyd}} = \gamma \tau + R_d T^* \nu$$

- An alternate way to write B is:

$$B = B_{\text{hyd}} + \frac{1}{C^2}[C^2 - T^* \gamma][(\beta \Delta t)^2 \frac{C^2}{H^2}[I + (\beta \Delta t)^2 B_4]^{-1} L^{**} + I][C^2 - c_{pd} \tau]$$ \hspace{1cm} (21)

Term COR and constraint C1 have disappeared.

- For large timesteps, B converges towards B_{hyd}.

- For very small timesteps, B converges towards $C^2(1 + COR)$.
Remarks and advantages:

- Easier to code than initially expected.
- The code is significantly simpler than with the old method.
- Closer to hydrostatic model design.
- Options LSIDG and LIMPF are simpler to implement (easier to re-use hydrostatic model pieces of code).
- No C1 constraint, quantity COR does not appear any longer.
- No iterative algorithm for VFE-NH.
- Operator T^{**} does not appear any longer.
- B easily writes as a sum of hydrostatic and anhydrostatic contributions.
- Calculations use quantity $[I + (\beta \Delta t)^2 B_4]^{-1}$ which is already computed with the old method (array SIFACI).
- It is actually surprising that this solution has not been thought and coded before year 2007 !!!
Remarks and advantages:

- Easier to code than initially expected.
- The code is significantly simpler than with the old method.
- Closer to hydrostatic model design.
- Options LSIDG and LIMPF are simpler to implement (easier to re-use hydrostatic model pieces of code).
- No C1 constraint, quantity COR does not appear any longer.
- No iterative algorithm for VFE-NH.
- Operator T^{**} does not appear any longer.
- B easily writes as a sum of hydrostatic and anhydrostatic contributions.
- Calculations use quantity $[I + (\beta \Delta t)^2 B_4]^{-1}$ which is already computed with the old method (array SIFACI).
- It is actually surprising that this solution has not been thought and coded before year 2007 !!!
Remarks and advantages:

- Easier to code than initially expected.
- The code is significantly simpler than with the old method.
- Closer to hydrostatic model design.
- Options **LSIDG** and **LIMPF** are simpler to implement (easier to re-use hydrostatic model pieces of code).
- No C1 constraint, quantity **COR** does not appear any longer.
- No iterative algorithm for VFE-NH.
- Operator T^{**} does not appear any longer.
- B easily writes as a sum of hydrostatic and anhydrostatic contributions.
- Calculations use quantity $[I + (\beta \Delta t)^2 B_4]^{-1}$ which is already computed with the old method (array **SIFACI**).

It is actually surprising that this solution has not been thought and coded before year 2007 !!!

K. YESSAD and F. VOITUS (METEO-FRANCE/CNRM/GMAP/ALGO)
Remarks and advantages:

- Easier to code than initially expected.
- The code is significantly simpler than with the old method.
- Closer to hydrostatic model design.
- Options **LSIDG** and **LIMPF** are simpler to implement (easier to re-use hydrostatic model pieces of code).
- No C1 constraint, quantity **COR** does not appear any longer.
- No iterative algorithm for VFE-NH.
- Operator **T** does not appear any longer.
- B easily writes as a sum of hydrostatic and anhydrostatic contributions.
- Calculations use quantity \([I + (\beta \Delta t)^2B_4]^{-1}\) which is already computed with the old method (array **SIFACI**).
- It is actually surprising that this solution has not been thought and coded before year 2007!!!
REPRODUCIBILITY BETWEEN NEW WAY RESULTS AND OLD WAY RESULTS:

Some results:

- Constraint C1 matched (VFD): small numerical differences.
- Constraint C1 not matched (VFE-NH): the old algorithm with \(\text{NITERHELM} > 10 \) converges towards the solution given by the new one.
Figure – OC0500 : HU850 range 6h ; REF (init 31/03/2015 00TU).
Figure – OC0500 : HU850 range 6h ; SINHEE (init 31/03/2015 00TU).
NEW WAY : CALENDAR OF IMPLEMENTATION.

Calendar:
- It is coded on the top of CY45T1 for both global and LAM models.
- Expected to enter the code in CY46T1 and CY47.