Perturbation experiments with MetCoOp EPS (MEPS)

Andrew Singleton, Inger-Lise Frogner, Ole Vignes, Ulf Andrae
MEPS

- HarmonEPS on the MetCoOp domain
- 2.5 km grid spacing, 64 levels
- 750 x 960 grid points
- 10 members
 - 1 Arome control, 1 Alaro control
 - 8 perturbed Arome members
- Pre-operational daily runs imminent
- Aim to be operational by autumn 2016
- See Ulf Andrae et al’s poster for more
Available perturbation strategies

- ICs and LBCs from IFS-ENS
 - First N_{MEPS} members
 - Selection of N_{MEPS} members from $N_{IFS-ENS}$ members
- ICs and LBCs from IFS-HIRES using SLAF
 - Scaled Lagged Average Forecast
 - $Y_{T+0} = X_{T+0} \pm k(X_{T+0} - (X-HH_i)_{T+HH_i}), \ (HH_i = 6,12,18,24...)$
- EDA
- Surface perturbations (currently being tested)
- Multiphysics (poster by Björn Stensen, SMHI)
- SPPT
Common HarmonEPS setup

- MetCoOp domain
- Harmonie-h1.1.beta.5
- 00:00 20 July 2015 - 06:00 10 August 2015
- 1 control + 8 perturbed members (all Arome)
- 3DVAR for control - conventional observations only
- Surface assimilation for all members
- 3-hour cycling for control
- 6-hour cycling for perturbed members
- 1 long-run to 36 hours each day for 06 cycle
First Experiments

- **SLAF_MetCoOp**
 - ICs + LBCs from weighted time lagged IFS HiRes taken from MARS.

<table>
<thead>
<tr>
<th>LAG:</th>
<th>0</th>
<th>6</th>
<th>12</th>
<th>18</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>K:</td>
<td>0</td>
<td>±1.75</td>
<td>±1.5</td>
<td>±1.25</td>
<td>±1.0</td>
</tr>
</tbody>
</table>

- **ECLBC_MetCoOp**
 - ICs + LBCs from control + members 1-8 of IFS-ENS.
BUT….

- SLAF perturbations do not appear to be consistent between members
- Rescale SLAFK: SLAF_rescale

<table>
<thead>
<tr>
<th>LAG</th>
<th>0</th>
<th>6</th>
<th>12</th>
<th>18</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>0</td>
<td>±1.75</td>
<td>±1.35</td>
<td>±1.0</td>
<td>±0.8</td>
</tr>
</tbody>
</table>

- IFS-ENS perturbations smaller than those from SLAF
- Inflate ECLBC_SLAF perturbations by a factor of 1.4: ECLBC_K14_MetCoOp
<table>
<thead>
<tr>
<th>LAG</th>
<th>0</th>
<th>6</th>
<th>12</th>
<th>18</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>0</td>
<td>±1.75</td>
<td>±1.5</td>
<td>±1.25</td>
<td>±1.0</td>
</tr>
<tr>
<td>K</td>
<td>0</td>
<td>±1.75</td>
<td>±1.35</td>
<td>±1.0</td>
<td>±0.8</td>
</tr>
</tbody>
</table>
Individual members cluster together depending on the sign of the perturbation…

This is undesireable…
- leads to “gaps” in the ensemble forecast between clusters of members,
- in a stochastic system, individual members should have similar statistical properties.
6h SLAF perturbations

• Instead of computing perturbations relative to current analysis time, compute from differences relative to consecutive forecasts:

\[Y_{T+0} = x_{T+0} \pm k((X-HH)_i^{T+HH(i)} - (X-HH_{(i+1)})^{T+HH(i+1)}) \]

SLAF_6hpert
Summary

• SLAF gives superior verification scores
 - Requires both rescaling and using consecutive forecasts to compute perturbations

• Inflation of IFS-ENS LBCs improves spread with no adverse effects on skill.

• Open questions
 - Will member selection improve IFS-ENS IC + LBC perturbation scores?
 - How do SLAF and EPS boundary perturbation methods compare for individual forecasts, especially for extreme events?
 - Is better performance of SLAF simply due to resolution of boundary data?