Calibrated probabilistic forecasts from GLAMEPS

Thomas Nipen (MET-Norway)
John Bjørnar Bremnes (MET-Norway) • Maurice Schmeits (KNMI)
Juha Kilpinen (FMI) • Karoliina Hamaleinen (FMI)
• GLAMEPS
 – 54 members
 – 8 km grid spacing
 – Multimodel/multiphysics
 – European domain
 – 3h forecasts up to 54h

• Probabilities unreliable
Calibration approach

- Calibrate whole grid
- Obs from 3100 stations
Calibration approach

- Calibrate whole grid
- Obs from 3100 stations
- Pick a distribution
- Fit parameters

<table>
<thead>
<tr>
<th>GLAMEPS predictors</th>
<th>Spatial variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Ens mean</td>
<td>• Elevation</td>
</tr>
<tr>
<td>• Ens variance</td>
<td>• Latitude</td>
</tr>
<tr>
<td></td>
<td>• Longitude</td>
</tr>
<tr>
<td></td>
<td>• Land/sea</td>
</tr>
<tr>
<td></td>
<td>• Surface type</td>
</tr>
</tbody>
</table>
Calibration approach

- Calibrate whole grid
- Obs from 3100 stations
- Pick a distribution
- Fit parameters

- Update every 2 weeks
- 6 week training period
- Separate for each leadtime and initialization
- 2m temp and 10m windspeed

<table>
<thead>
<tr>
<th>GLAMAPPS predictors</th>
<th>Spatial variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ens mean</td>
<td>Elevation</td>
</tr>
<tr>
<td>Ens variance</td>
<td>Latitude</td>
</tr>
</tbody>
</table>

	Longitude
	Land/sea
	Surface type
2m temperature calibration

• Raw GLAMEPS is underdispersed
2m temperature calibration

- Gaussian distribution

<table>
<thead>
<tr>
<th>Mean</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Ens mean</td>
<td>• Ens variance</td>
</tr>
<tr>
<td>• Elevation</td>
<td>• Elevation</td>
</tr>
</tbody>
</table>
2m temperature calibration

- Improvement in spread-skill ratio (+36h)
2m temperature calibration

- Improvement in spread-skill ratio (+48h)
2m temperature calibration

- Improvements in Brier Skill Score

Daytime: +36h

Nighttime: +48h
2m temperature calibration

- Improvements in reliability
2m temperature calibration

- Improvement in CRPS (+36h)

Better (73% of stations)

Worse (27% of stations)
2m temperature calibration

- Improvement in RMSE

Daytime: +36h

Nighttime: +48h
10m wind speed calibration

- Box-Cox t-distribution

<table>
<thead>
<tr>
<th>Mean</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Ens mean</td>
<td>• Ens variance</td>
</tr>
<tr>
<td>• Elevation</td>
<td>• Elevation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Skewness</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Ens mean</td>
<td>• Fixed</td>
</tr>
</tbody>
</table>
10m wind speed calibration

- Improvements in Brier Skill Score

Daytime: +36h

Nighttime: +48h

![Graph showing improvements in Brier Skill Score for daytime and nighttime predictions.](image)
10m wind speed calibration

- Improvements in CRPS (+36h)
• Improvements in CRPS (+48h)
Conclusions

• Gridded calibration of 2m-temperature and 10m-wind speed
• Improvements to Brier skill scores and reliability

• Future work:
 – Use further spatial parameters
 • Land/sea mask
 • Coast proximity
 • Model climatology
 • Regional biases
 – More advanced models for skewness & kurtosis