Modification of EDKF parametrization in the grey zone

Joint 25th ALADIN Workshop & HIRLAM All Staff Meeting 2015,
13-17/04/2015, Helsingor, Denmark

Dávid Lancz - Hungarian Meteorological Service 13/04/2015
Contents

- Shallow convection parametrization in AROME and grey zone problem
- Modifications:
 1) New initialization of Mass-Flux
 1bis) Randomization of the initialization by Honnert
 2) Using of coefficient by Boutle
 3) New set of Mass-Flux equations by Honnert
- Future plans
Shallow convection

- Resolved advection – treated by the dynamics
- Subgrid advection – treated by the parametrization
Grey zone problem

- The shallow convection:
 - at low resolution (dx>~2km) is parametrized
 - at high resolution (~125m>dx) is not parametrized – it is treated by the dynamics

- What happens between?

- The model’s dynamics partly resolves the shallow convection eddies, while the parametrization is still needed → GREY ZONE

- Solution: we have to find a parametrization, which is scale-adaptive → depends on the resolution
Parametrization of turbulent flux

In AROME:

• K-theory + Mass-Flux

\[
\overline{w'\phi'} = -K \frac{\partial \phi}{\partial z} + M (\phi_u - \bar{\phi})
\]

\[
M = a_u (w_u - \bar{w})
\]

Eddy Diffusion Mass-Flux
EDMF → EDKF (Kain - Fritsch parametrization)

Note: according to an other definition:

\[
\overline{w'\phi'} = -K \frac{\partial \phi}{\partial z} + \frac{M}{\rho} (\phi_u - \bar{\phi})
\]

\[
M = a_u \rho (w_u - \bar{w})
\]

- vertical velocity
- arbitrary variable
- vertical turbulent flux
- vertical gradient of \(\phi \)
- turbulent diffusion coefficient
- mean of \(w \) and \(\phi \)
- mean of \(w \) and \(\phi \) in the updraft area
- updraft area
- density
The Mass-Flux algorithm (just sketch)

- grav. acceleration
- virt. pot. temperature
- buoyancy flux at the ground [Km/s]
- Bougeault-Lacarrère upward mixing length

INITIALIZATION

\[
\begin{align*}
M(z_{grd}) &= XCMF^*(\frac{g}{\theta_v} \frac{w' \theta_{v grd}^l}{L_{BL89}^{1/3}}) \\
\frac{a_u(z_{grd})}{M} &= \min\left(\frac{M}{\sqrt{w_u^2}}; 0,33\right) \\
w_u^2(z_{grd}) &= \left(\frac{M}{a_u}\right)^2
\end{align*}
\]

Note: the original equations contain density

\[
\begin{align*}
1. & \quad \frac{\partial M}{M \partial z} = (\varepsilon - \delta) \\
2. & \quad \frac{\partial \phi_u}{\partial z} = -\varepsilon(\phi_u - \bar{\phi}) \\
w_u \frac{\partial w_u}{\partial z} &= aB - b\varepsilon w_u^2
\end{align*}
\]

Upward integration:

1. Checks if we reached the LCL (lifting condensation level)
 a) No - \(\varepsilon, \delta\) are computed by Pergaud
 b) Yes - \(\varepsilon, \delta\) are computed by Kain and Fritsch

2. Computes: \(M, w_u, \phi_u, a_u\)
Regional Cooperation for Limited Area Modeling in Central Europe

Modification (1)

\[M(z_{grd}) = XCMF^* \left(\frac{g}{\theta_v} w' \theta'_{v \text{ grd}} L_{BL89} \right)^{\frac{1}{3}} \]

vertical velocity scale:

\[w_* = \left(\frac{g}{\theta_v} w' \theta'_{v \text{ grd}} z_i \right)^\frac{1}{3}, \text{ if } w' \theta'_{v \text{ grd}} \geq 0 \]

Mass-Flux values in the function of \(w_* \) according to LES data

\(M = XCMF^* w_* \)

Current value in AROME

\(XCMF = 0.065 \)

Modification (1)

We used horizontal spatial means of LES ($dx = 62.5$ m, IHOP, ARM) to get the theoretical values of the tracer concentration and vert. velocity (Honnert et al. 2011).

Structure of the surface tracer conc. \rightarrow estimations of Mass-Flux values (black) by the conditional sampling method:

$$P \in CS \text{ if } w > 0; \quad w > w_{\text{mean}}; \quad c - c_{\text{mean}} > c_{\text{mean}},$$

where c – tracer conc., w – vert. velocity.

Modification (1)

We suppose:
\[M_{\text{resolved}}(62.5m) = M_{\text{total}} \]
\[M_{\text{subgrid}}(dx) = M_{\text{total}} - M_{\text{resolved}}(dx) \]

Fitted function:
\[f(x) = 0.065 \times \tanh(x \times b) \]
(idea of \tanh() \rightarrow Boutle at al. 2014)

\[\downarrow \]
We implemented it into the code:

\[M(z_{\text{grd}}) = 0.065 \times \tanh\left(\frac{\sqrt{dx \times dy}}{h} \times 1.86 \times \left(\frac{g}{\theta_v' \theta'_{\text{grd}} L_{BL89}}\right)^{\frac{1}{3}}\right) \]

\(M_{\text{subgrid}}/w* \) ratio at the surface as a function of \(dx/PBL \) height

To study the effect of the modification we used idealized AROME simulations - case IHOP

- Examined parameters:
 - **TKE** – turbulent kinetic energy \([m^2/s^2]\)
 - subgrid TKE \(\rightarrow\) from the history files
 - resolved TKE \(\rightarrow\) computed with:
 \[
 TKE_{res} = \frac{1}{2} [(u−<u>)^2 + (v−<v>)^2 + (w−<w>)^2]
 \]
 - total TKE = subgrid TKE + resolved TKE

 - **WTHV** – subgrid buoyancy flux \([Km/s]\) (vertical turbulent flux of virtual potential temperature) \(\rightarrow\) from the history files

- (model levels heights: level 60 \(\rightarrow\) ~ 10 m
 level 45 \(\rightarrow\) ~ 1116 m
 level 30 \(\rightarrow\) ~ 4004 m)
Modification (1)

Reference idealized AROME simulations:

The mean total, subgrid and resolved TKE [m²/s²]
Regional Cooperation for Limited Area Modeling in Central Europe

Reference idealized AROME simulations:

The mean subgrid buoyancy flux [Km/s]

- with EDKF
- without EDKF

- $dx = 2000m$
- $dx = 1500m$
- $dx = 1000m$
- $dx = 500m$
Modification (1)

Differences from the reference:

\[h = \text{PBL height} \]

\[h = L_{BL89} \]

Delta mean subgrid and resolved TKE \([\text{m}^2/\text{s}^2]\)
Modification (1)

Differences from the reference:

\[h = \text{PBL height} \]

\[h = L_{BL89} \]

Delta mean subgrid buoyancy flux [Km/s]
Modification (1bis)

Randomization of the initialization of Mass-Flux:
idea by Rachel Honnret

- The goal is to get more realistic structure of thermal-spacing
 - The dispersion of mass-fluxes in the grey zone are not independent on the resolution
 - We used Mass-Flux values in the middle of the boundary layer, when they are well developed, to estimate this relationship
 - We fitted a log-normal function on these dispersions
 - The initialized mass-fluxes are randomly perturbated in the range of this fitted function → factor RAND

\[
M(z_{\text{grad}}) = 0.065 \times \tanh\left(\frac{\sqrt{dx \times dy}}{h} \times 1.86 \times \left(\frac{g}{\theta_v} \frac{w' \theta'}{v_{\text{grad}} L_{\text{BIL89}}^3} \right)^{\frac{1}{3}} \times \text{RAND}\left(\frac{\sqrt{dx \times dy}}{h}\right)\right)
\]
Modification (1bis)

Regional Cooperation for Limited Area Modeling in Central Europe

Randomization of the initialization of Mass-Flux:

Here M_u values were computed for every single point in the averaged LES fields with theoretically ideal values

Middle of the BL

M_{subgrid}/w^* as a function of the $dx/(h+hc)$ – 5%, 95% quantiles, Dispersion of the M_{subgrid}/w^* as a function of the $dx/(h+hc)$, The green line is the fitted log-normal function.

median, boxplot – where h is the PBL height, h_c is the cloud layer height, when the thermals are well developed.
Modification (1bis)

Differences from the modification (1):

\[h = \text{PBL height} \]

\[h = L_{BL89} \]

Delta mean subgrid and resolved TKE \([\text{m}^2/\text{s}^2]\)

note: the scale Delta TKE of modification (1) was from \(-0.2\) to \(0.2\) \([\text{m}^2/\text{s}^2]\)
Modification (1bis)

Differences from the modification (1):

$h = \text{PBL height}$

Delta mean subgrid buoyancy flux [Km/s]

Note: the scale Delta wthv of modification (1) was from -0.02 to 0.02 [m2/s2]
Structure of the vertical velocity (blue - downdraft, orange - updraft) fields at the 47. model level of the simulations with EDKF-modification (1), $dx=500 \text{ m}$ and $h = L_{BL89}$.
Modification (2)

Decrease subgrid turbulent fluxes by Boutle at al. (2014)

- In Boutle at al. (2014) a simple solution was suggested to decrease the subgrid turbulent fluxes - based on the work of Honnert at al. (2011)
- The subgrid turbulent fluxes are multiplied by the coefficient Z_{PLAV} which depends on the normalized resolution:

$$Z_{PLAV} = \frac{X^2 + 0.19 \times X^{2/3}}{X^2 + 0.15 \times X^{2/3} + 0.33}$$

$$X = \frac{\sqrt{dx \times dy}}{L_{BL89}}$$
Modification (2)

Differences from the reference:

- subgrid TKE
- resolved TKE
- $dx = 2000m$
- $dx = 1500m$
- $dx = 1000m$
- $dx = 500m$

$\Delta TKE \, [m^2/s^2]$

$\Delta \text{wthv} \, [K*m/s]$
Modification (3)

New set of equations for the Mass-Flux paramertization by Rachel Honnert

\[w' \theta'_{MF} = M(\theta_{lu} - \bar{\theta}) \frac{1}{1-\alpha} \]

\[w' r'_{MF} = M(r_{lu} - \bar{r}) \frac{1}{1-\alpha} \]

\[\alpha = \frac{M}{w_u - w} \]

\[\frac{1}{M} \frac{\partial M}{\partial z} = \varepsilon - \delta \]

\[\frac{1}{2} \frac{\partial (w_u - \bar{w})^2}{\partial z} = -\varepsilon (w_u - \bar{w})^2 \frac{1}{1-\alpha} - (w_u - \bar{w}) \frac{\partial \bar{w}}{\partial z} + B_u - B - (P_u - P) - \frac{1}{\alpha} \frac{\partial \alpha w'^2 \bar{u}}{\partial z} \]

\[B = g \times \frac{\theta_{vu} - \bar{\theta}_v}{\bar{\theta}_v} \]

\[\theta_{vu} = f(\theta_{lu}, r_{lu}) \]

\[\frac{\partial \theta_{lu}}{\partial z} = -\varepsilon (\theta_{lu} - \bar{\theta}_l) \frac{1}{1-\alpha} \]

\[\frac{\partial r_{lu}}{\partial z} = -\varepsilon (r_{lu} - \bar{r}_l) \frac{1}{1-\alpha} \]

- The new mass-flux equations do not neglect the resolved vertical velocity and the subgrid thermal fraction

\(\bar{\theta}_l \) is the liquid potential temperature, \(r_t \) is the total water content, \(\theta_v \) is the virtual potential temperature, \(\alpha \) is the thermal area, the overline means the spatial average (with \(u \) it means over the thermal area), \(\varepsilon \) is the entrainment, \(\delta \) is the detrainment, \(B_u \) is the buoyancy and \(P_u \) is the pressure
Modification (3)

Differences from the reference:

- subgrid TKE
- resolved TKE
- $dx = 2000\text{m}$
- $dx = 1500\text{m}$
- $dx = 1000\text{m}$
- $dx = 500\text{m}$

Delta TKE [m2/s2]

Delta wthv [K*m/s]
Modification (3)

Differences from the reference WITHOUT EDKF:

- subgrid TKE
- resolved TKE

EDKF-noEDKF

Delta TKE [m²/s²]

Delta wthv [K*m/s]

dx = 2000m
dx = 1500m
dx = 1000m
dx = 500m
Future plans

- Make idealized AROME simulations with ARM case too

- Try modification (1) with an other coefficient value and examine the effect

- Validate modification (1) via LES MesoNH simulations – case IHOP and ARM

- Validate modification (1) via real cases
Thank you for your attention!

References:

The travel of Dávid Lancz to the ALADIN/HIRLAM Workshop in Helsingor was supported by LACE.