The operational ALADIN-Belgium model

1. Main features
 - Model version: AL381 + ALARO-0 + 3MT
 - 60 hour production forecasts; four times a day (0, 6, 12 and 18 UTC).
 - Latitudinal boundary conditions from Arpege global model.

2. The computer system
 - SGI Altix 4700.
 - 196 Itanium2 CPUs.
 - New HPC to be announced!

3. Model geometry
 - 7 km horizontal resolution (240*240 points), 4 km resolution (192*192).
 - 46 vertical levels.
 - Linear spectral truncation.
 - Lambert projection.
 - Vertical and horizontal resolution to be increased on new HPC.

4. Forecast settings
 - Digital filter initialization (DFI with LSSEP=FALSE).
 - Two time level semi-implicit semi-Lagrangian – SISL – advection scheme.
 - Time step: 300s (7 km), 180s (4 km).
 - Lateral boundary condition coupling at every 3 hours.
 - Hourly post-processing (latitude-longitude and Lambert).

5. Operational suite/technical aspects
 - Transfer of coupling file from Météo-France via Internet (primary channel) and the Regional Meteorological Data Communication Network (RMDCN, backup).
 - Model integration on 40 processors (7 km), 20 processors (4 km).
 - Post-processing on 8*1 processors.
 - Continuous monitoring supported by a home-made Kornshell/Web interface.
 - Monitoring with SMS (Supervisor Monitor Scheduler).

Unsaturated downdrafts, downbursts and the Pukkelpop storm case (Pieter De Meuter, Luc Gerard)

Downbursts are very strong downward air motions. They can occur in severe convective systems and are often accompanied by very strong surface wind gusts. On 18 August 2011, a bow echo formed over Belgium. The bow echo hit the popular music festival Pukkelpop, where a 100m wide downburst occurred during a few minutes. Festival tents and light towers were knocked down, causing five casualties. Unfortunately it is impossible to resolve downbursts with current operational numerical weather prediction models having kilometre resolutions, due to the small spatial and temporal scales of downbursts. We tested whether a new parameterisation scheme for unsaturated downdrafts could be used to better predict such very strong downdrafts or downbursts.

We used the Alaro model, operational at the Royal Meteorological Institute of Belgium, at 4 km horizontal grid spacings with the deep convective scheme 3MT (Gerard et al., 2009) and added the unsaturated downdraft parameterisation. The sub-grid scale downward mass flux is used as a proxy for downbursts. The results were validated with a 1 km horizontal grid spacing forecast without deep convection parametrisation, and with the documented case of 14 July 2010 (Hamid, 2012) where multiple downbursts occurred.

An example of the use of our downburst proxy for the Pukkelpop case is given in Fig. 1. The precipitation cells in the east show downburst potential, while the cells in the west, which were less convective, show no downburst potential.

References

CORDEX participation

The Coordinated Regional Climate Downscaling Experiment [1] is an international effort to gain insight in climate processes at the local scale. An evaluation of cy3611 with ALARO-0 using ERA-INTERIM as perfect boundary conditions has been performed on the high resolution (12.5km) EURO-CORDEX grid for the period 1979-2010. The figures show the mean 2-meter temperature and precipitation bias over the period 1989-2008 with respect to the E-OBS data set.

ALARO-0 shows some deficiencies for temperature, which are also found in the ARPEGE 5.1 simulations. However, for precipitation, ALARO-0 clearly differs from ARPEGE 5.1 and performs very well compared to the complete K14 ensemble used in [2].

More details can be found in the joint ALADIN/HIRLAM newsletter 4 (February 2015).

References

Study of the Jacobian of an Extended Kalman Filter for soil analysis in SURFEX

Experimental setup

- ALARO (4km resolution, 46 vertical levels, v3611) + SURFEX (two-layer version)
- surface assimilation (6h cycle) with an Extended Kalman Filter
- screenlevel observations (T2m and RHm)
- soil prognostic variables (vegetation, soil moisture)

The EKF

The equation for the Extended Kalman Filter (EKF):

\[x = \mathbf{H} \cdot \mathbf{x} + \mathbf{R} \cdot \mathbf{x} - \mathbf{R} \cdot \mathbf{y} \]

\[\mathbf{w}^T \mathbf{H} \cdot \mathbf{x} + \mathbf{R} \cdot \mathbf{x} \]

\[\mathbf{y} = \mathbf{H} \cdot \mathbf{x} + \mathbf{R} \cdot \mathbf{x} \]

\[H \cdot \mathbf{x} + \mathbf{R} \cdot \mathbf{x} \]

\[\mathbf{y} = \mathbf{H} \cdot \mathbf{x} + \mathbf{R} \cdot \mathbf{x} \]

\[\mathbf{y} = \mathbf{H} \cdot \mathbf{x} + \mathbf{R} \cdot \mathbf{x} \]

\[\mathbf{y} = \mathbf{H} \cdot \mathbf{x} + \mathbf{R} \cdot \mathbf{x} \]

The calculation of the Jacobian with finite differences assumes a linear response of the land-surface evaporation to a small soil moisture variation. In general this hypothesis is well satisfied, although some noise may still enter the Jacobian matrix under certain meteorological conditions. This leads to oscillatory model trajectories for the screen- level variables and introduces noise in the Jacobian matrix.

Figure 1 shows how an oscillation sets in in the T2m evolution. These are artificial 2At oscillations that dissipate again after a short time. We propose a temporal filter to remove the oscillations in T2m and RHm before calculating the Jacobians. Figure 2 shows that the filter improves the forecast scores, specifically for relative humidity.

References

Figure 1: Sub-grid scale downdraft mass flux (cable/kg/s) as forecasted by ALARO with the unsaturated downdraft scheme for 1700 UTC, 18 August 2011. Rain rate is shown by black contours (lines) for 5, 10, 20, 30, 40 and 50 mm/h. The location of the Pukkelpop festival is shown with a red dot. The downburst at the Pukkelpop festival occurred at 1615 UTC.