Testing HIRLAM surface and orography parametrizations

Laura Rontu, FMI
laura rontu@fmi.fi

April 3, 2008
Contents

Introduction
Schemes and definitions
HIRLAM experiments
Comparisons
Concluding remarks
Introduction
Introduction

Contribution to evaluation of surface-related parametrizations

• Build a new snow + orography framework for comparisons
• Try HARMONIE verification tools
• Detect problems and suggest improvements
Introduction

Contribution to evaluation of surface-related parametrizations

- Build a newsnow + orography framework for comparisons
- Try HARMONIE verification tools
- Detect problems and suggest improvements

Schemes touched in the study

- “Newsnow” surface parametrizations
- Subgrid orography parametrizations
- QNSE stability functions
Introduction

Contribution to evaluation of surface-related parametrizations
• Build a newsnow + orography framework for comparisons
• Try HARMONIE verification tools
• Detect problems and suggest improvements

Schemes touched in the study
• “Newsnow” surface parametrizations
• Subgrid orography parametrizations
• QNSE stability functions

Behaviour of the schemes in
• Mountains
• Sodankylä
• (Eastern Africa)
Introduction

Contribution to evaluation of surface-related parametrizations
- Build a newsnow + orography framework for comparisons
- Try HARMONIE verification tools
- Detect problems and suggest improvements

Schemes touched in the study
- “Newsnow” surface parametrizations
- Subgrid orography parametrizations
- QNSE stability functions

Behaviour of the schemes in
- Mountains
- Sodankylä
- (Eastern Africa)

Related material in Newsletter 53 (Kabelwa et al, Rontu)

“Newsnow” maybe influenced by developments of HIRLAM code
also outside the surface parametrizations
Schemes and definitions
Schemes and definitions

Newsnow

- Advanced treatment of soil and surface processes especially over snow/ice and in forest
- Based on ISBA, tiled and with heat diffusion in soil
- Samuelsson et al, 2006. The land-surface scheme of the Rossby Centre regional atmospheric climate model (RCA3).

SMHI, Meteorologi 122
Schemes and definitions

Newsnow

- Advanced treatment of soil and surface processes
e specially over snow/ice and in forest
- Based on ISBA, tiled and with heat diffusion in soil
- Samuelsson et al, 2006. The land-surface scheme of
 the Rossby Centre regional atmospheric climate model (RCA3).
 SMHI, Meteorologi 122

MSO/SSO - Meso-scale and small-scale orography effects

- Wave and form drag due to hills and mountains
- (Enhanced) orographic roughness removed everywhere
- MSO based on Meteo France GWD parametrizations
- Rontu, 2006. A study on parametrization of
 orography-related momentum fluxes in a
 synoptic-scale NWP model. Tellus, 58A
Orographic effects on radiation

- Radiation on sloping surfaces
Orographic effects on radiation

- Radiation on sloping surfaces

QNSE - Quasi-normal scale elimination

- Advanced theory leading to new stability functions for ISBA and CBR

- (HIRLAM implementation is fragmentary)

Orographic effects on radiation

- Radiation on sloping surfaces

QNSE - Quasi-normal scale elimination

- Advanced theory leading to new stability functions for ISBA and CBR
- (HIRLAM implementation is fragmentary)

Alternative for turbulence

- Tuning of coefficients related to surface exchange
- Removal of surface turbulent stress turning
- De Bruijn and Tijm, 2008. Overall tuning of the turbulence scheme of HIRLAM with the focus on the stable boundary layer. Newsletter 53
HIRLAM experiments

Table 1: HIRLAM experiment properties

<table>
<thead>
<tr>
<th></th>
<th>Northern domain</th>
<th>East Africa</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIRLAM versions</td>
<td>“newsnow” before Easter</td>
<td></td>
</tr>
<tr>
<td>resolution</td>
<td>17km/60L</td>
<td>11km/60L</td>
</tr>
<tr>
<td>period</td>
<td>January 1-15, 2007</td>
<td>April 1-10, 2006</td>
</tr>
<tr>
<td>domain</td>
<td>North Atlantic-European</td>
<td>Tanzanian</td>
</tr>
<tr>
<td>initial analysis</td>
<td>3DVAR</td>
<td>interpolated ECMWF (climate mode)</td>
</tr>
<tr>
<td>parametrizations</td>
<td>STRACO for condensation</td>
<td>STRACO for condensation</td>
</tr>
<tr>
<td>boundaries</td>
<td>ECMWF analysis</td>
<td>ECMWF analysis</td>
</tr>
<tr>
<td>validation</td>
<td>HARMONIE tools + Sodankylä</td>
<td>HARMONIE tools</td>
</tr>
</tbody>
</table>

Table 2: Experiment names

<table>
<thead>
<tr>
<th>Experiment</th>
<th>MSO/SSO/Radoro</th>
<th>QNSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>72aos3</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>72aosv</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>72aosv0</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>72T11r</td>
<td>ON</td>
<td>ON</td>
</tr>
</tbody>
</table>
January 2007 Sodankylä: HIRLAM reference a year ago

Temperature AWS 2m/Hirlam 2m

Temperature mast 31m/Hirlam 32m

Temperature gradient Ts-Tnlev mast/Hirlam

Screen level temperature Exp 71b1SR Station Soda

T (31m) 71b1SR - Station Soda (32m)

Temperature gradient Exp 71b1SR sfc-nlev - Station Soda T(skin)-T(32m)
January 2007 Sodankylä: HIRLAM “newsnnow” a year ago

Temperature AWS 2m/Hirlam 2m

Temperature mast 31m/Hirlam 32m

Temperature gradient Ts-Tnlev mast/Hirlam
Temperature AWS 2m/Hirlam 2m

Temperature mast 31m/Hirlam 32m

Temperature gradient T2m-Tnlev mast/Hirlam
January 2007 Sodankylä: HIRLAM “newsnow” no oro no qnse

Temperature AWS 2m/Hirlam 2m

Temperature mast 31m/Hirlam 32m

Temperature gradient T2m-Tnlev mast/Hirlam
January 1-15, 2007 72aos3, ALL stations

10-metre wind speed, bias = 0.72
January 1-15, 2007 72aosv, ALL stations

10-metre wind speed, bias = 0.60

Scatterplot for 2248 stations
Wind speed
At {00,12} + 06 18
Period: 20070101-20070115

Obs = 120885

y mean = 4.8 y stdv = 3.3
x mean = 4.2 x stdv = 3.7
BIAS (y-x) = 0.60
RMS = 2.98
corr. coeff = 0.750
January 1-15, 2007 72aosv0, ALL stations

10-metre wind speed, bias = 0.33

Scatterplot for 2248 stations
Wind speed
At \{00,12\} + 06 18
Period: 20070101-20070115

Obs = 120891

y mean = 4.6 y stdev = 3.2
x mean = 4.2 x stdev = 3.7
BIAS (y-x) = 0.33
RMS = 2.48
corr. coef = 0.756
January 1-15, 2007 72aos3, European mountains

10-metre wind speed, bias = 0.12

Scatterplot for 346 stations
Wind speed
At {00,12} + 06 18
Period: 20070101-20070115

Obs = 18621

y mean = 4.3 y sdev = 2.9
x mean = 4.2 x sdev = 4.3
BIAS (y-x) = 0.12
RMS = 3.80
corr. coef = 0.507
January 1-15, 2007 72aosv, European mountains

10-metre wind speed, bias = 0.02

Scatterplot for 346 stations
Wind speed
At {00,12} + 06 18
Period: 20070101-20070115

Obs = 18617

y mean = 4.2 y stdev = 2.9
x mean = 4.2 x stdev = 4.3
BIAS (y-x) = 0.02
RMS = 3.79
corr. coeff = 0.510
January 1-15, 2007 72aosv0, European mountains

10-metre wind speed, bias = -0.83

Scatterplot for 346 stations
Wind speed
At {00,12} + 06 18
Period: 20070101-20070115

Obs = 18621

y mean = 3.3 y stdev = 2.3
x mean = 4.2 x stdev = 4.3
BIAS (y-x) = -0.83
RMS = 3.73
corr. coeff = 0.544
January 1-15, 2007 72aos3, European mountains

2-metre temperature, bias = 0.11

Obs = 19210

y mean = 1.3 y stdev = 5.2
x mean = 1.2 x stdev = 5.4
BIAS (y-x) = 0.11
RMS = 3.56
corr. coef = 0.776
January 1-15, 2007 72aosv, European mountains

2-metre temperature, bias = -0.67

Scatterplot for 354 stations
Temperature
At {00,12} + 06 18
Period: 20070101-20070115

Obs = 19100

y mean = 0.5 y stdev = 5.7
x mean = 1.2 x stdev = 5.4
BIAS (y-x) = -0.67
RMS = 3.92
corr. coef = 0.759
January 1-15, 2007 72aosv0, European mountains

2-metre temperature, bias = -0.83

Scatterplot for 354 stations
Temperature
At {00,12} + 06 18
Period: 20070101-20070115

Obs = 19210

y mean = 0.3 y stddev = 5.9
x mean = 1.2 x stddev = 5.4
BIAS (y-x) = -0.83
RMS = 4.23
corr. coef = 0.737
January 1-15, 2007 surface pressure (1)

72aosv0 v.s. 72aos3 \approx \text{ref newsnow} \text{ v.s. all modifications}

Graph 1: Statistics for 1689 stations
Period: 20070101-20070115
Surface pressure Hours: [00,12]
Solid RMS; Dashed BIAS; Dashed grey is number of cases

Graph 2: Statistics for 133 stations
Period: 20070101-20070115
Surface pressure Hours: [00,12]
Solid RMS; Dashed BIAS; Dashed grey is number of cases

MOU:
January 1-15, 2007 surface pressure (2)

$72\text{ao}_v \text{ v.s. } 72\text{ao}_3 \approx \text{oro + no qnse} \text{ v.s. } \text{oro + qnse}$
January 1-15, 2007 surface pressure (3)

72aosv0 v.s. 72aosv ≈ ref newsnow -v.s. oro no qnse
Summary of the forecast-observation bias
Summary of the forecast-observation bias

Quick conclusions

- oroparametrizations + QNSE are good for temperatures everywhere
- oroparametrizations + tuned turbulence are good for mountain winds
- tuned turbulence without oroparametrizations are good for winds over the whole domain and for pressure everywhere
- (not shown) no significant differences from 925 hPa upwards

Table 3:

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Wind ALL</th>
<th>Mountain</th>
<th>Temperature ALL</th>
<th>Mountain</th>
<th>Pressure ALL</th>
<th>Mountain</th>
</tr>
</thead>
<tbody>
<tr>
<td>72aos3</td>
<td>0.72</td>
<td>0.12</td>
<td>-0.40</td>
<td>0.11</td>
<td>-0.36</td>
<td>-0.65</td>
</tr>
<tr>
<td>72aosv</td>
<td>0.60</td>
<td>0.02</td>
<td>-1.00</td>
<td>-0.67</td>
<td>-0.25</td>
<td>-0.40</td>
</tr>
<tr>
<td>72aosv0</td>
<td>0.33</td>
<td>-0.83</td>
<td>-1.05</td>
<td>-0.83</td>
<td>-0.22</td>
<td>-0.33</td>
</tr>
</tbody>
</table>
The problem of calm cases

Frequency distribution for 346 stations
Wind speed Period: 20070101-20070115
Number of cases 18621 Number of classes 25
At (00,12) + 06 18

Frequency distribution for 346 stations
Wind direction Period: 20070101-20070115
Number of cases 18788 Number of classes 25
At (00,12) + 06 18
The problem of representativeness

Wind velocity Exp 72aos_72ans 10m Station Strb

Wind velocity Exp 72aos_72ans 10m Station Schw
Newsnow in Tanzania

Temperature
At {00} + 06 18
Period: 20060401-20060409

Specific humidity
At {00} + 06 18
Period: 20060401-20060409
Newsnow in Tanzania
Concluding remarks
Concluding remarks

Did we learn something from this study?

- Schemes are better for some parameters and domains, worse for others
 - no clear winners
- There is a need to improve, tune, combine different aspects
 of all these schemes and their implementation
Concluding remarks

Did we learn something from this study?

- Schemes are better for some parameters and domains, worse for others
 - no clear winners
- There is a need to improve, tune, combine different aspects
 of all these schemes and their implementation

Things to study and develop further

- Removal of the effective roughness - main influence out of mountains?
- Consistent implementation of QNSE functions
 (switchable on/off) and a sensitivity study
- Connections between the surface layer and the whole boundary layer
- Behaviour and parametrization of the breaking (orographic) buoyancy
 waves in the boundary layer
Concluding remarks

Did we learn something from this study?

- Schemes are better for some parameters and domains, worse for others
 - no clear winners
- There is a need to improve, tune, combine different aspects
 of all these schemes and their implementation

Things to study and develop further

- Removal of the effective roughness - main influence out of mountains?
- Consistent implementation of QNSE functions
 (switchable on/off) and a sensitivity study
- Connections between the surface layer and the whole boundary layer
- Behaviour and parametrization of the breaking (orographic) buoyancy
 waves in the boundary layer

It is not easy to improve model by physical parametrizations

- Significant positive-only signals are not so common nowadays
- Validation and comparison methods need developments, too
- The amount of possible code combinations is increasing - supermarket?
- The best schemes and combinations are those with the least amount of coding errors?
- Methods of code development and implementation require attention
 in the HIRLAM-HARMONIE framework
Thanks to
Stefan Gollvik, SMHI (newsnow)
Jevgeni Atlaskin, RSHU (QNSE)
Hamza Kabelwa, RSHU and TMA (Tanzania)
Ulf Andrae, SMHI (verification tools)

Thank YOU for attention!