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1. Introduction  
A great effort is made in order to construct a well-posed transparent LBC scheme in the 

view of regional NWP systems. For the HIRLAM semi-implicit grid-point model, the study of 
a  new  coupling  approach  based  upon  the  "characteristics"  approach,  has  been  recently 
performed by McDonald (2000) for finite-difference (FD) discretization and by Hostald and 
Lie (2001) for finite-element (FE) method, with promising results.

The challenge question is :  Can such a strategy be applied in a full Fourier spectral 
discretization ? Indeed, how can a well-posed transparent boundary treatment be incorporated 
into the semi-implicit spectral discretization of ALADIN ?
2. Model equation and time discretization  

For well-posedness only a certain subset of variables has to be imposed at boundaries. 
The number of allowable conditions to be applied at a point on the boundary depends on 
whether there is inflow or outflow at this point. Oliger and Sundstrom (1978) have shown that 
because  of  their  hyperbolic  character,  it  is  theoretically  possible  to  obtain  a  well-posed 
continuous problem for both Euler equations and shallow-water equations. But knowing that a 
continuous  problem  is  well-posed  does  not  necessarily  mean  that  it  is  obvious  how  to 
implement boundary conditions for the associated discrete problem in a satisfactory manner.

To test some alternatives of boundary treatment in Fourier spectral discretization, a one-
dimensional linearized shallow-water model is used and numerically solved by a two-time-
level semi-Lagrangian semi-implicit time-marching which writes symbolically : 
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that quantities are interpolated to the departure point. These fields are first computed at each 
grid point by :
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Exponents + and 0 denote respectively the variable state at t+t and t. The resolution of 
this implicit  problem implies to invert the so-called Helmholtz equation. This inversion is 
trivially performed in  spectral  space provided that  RHS fields fulfil  periodicity condition. 
Therefore, E-zone extrapolation seems to be unavoidable. 

The main difficulty comes from the global character of spectral computations, which 
introduces a loss of flexibility compared to finite-difference discretization. As a consequence, 
well-posed boundary treatment in spectral space at t+t is not obvious at all, the more natural 
way is to perform the coupling explicitly at t, i.e. at the beginning of the time step. The basic 
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idea  consists  in  constructing  the  well-posed  boundary  strategy in  the  RHS fields  in  the 
integration  area  and  using  the  E-zone  extrapolation  as  an  alternative  to  direct  Fourier 
transform.
3. Explicit boundary treatment  

At each grid-point  on the lateral  boundaries,  for  each inward pointing characteristic 
velocity, a field must be externally supplied. Let us assume a subsonic flow pattern, i.e. such 
that the wind speed is less than the typical gravity waves phase speed (C > U > 0), which is 
usual in atmospheric context. In that case, well-posedness is achieved by imposing only two 
fields at the western boundary (x=0) boundary and only one at the eastern one (x=L),  see 
Oliger and Sundstrom (1978).  The imposed fields are incorporated in the boundary  RHS, 
using a classical one-sided finite-difference scheme to evaluate the derivative at the edges. 
Afterwards, semi-Lagrangian cubic interpolation is performed, then the E-zone extrapolation 
is applied for periodicity. Three options have tested, following the various boundary strategies 
proposed by McDonald : 

Option (i) : Imposing u-field
One imposes u at both boundaries and v at the western boundary.

Option (ii) : Characteristics boundary condition 
The fields corresponding to the ingoing characteristics u+C and u-C are imposed and the 
outgoing characteristics are extrapolated from the interior. In subsonic case, u+C and v must 
be externally supplied at western boundary, while  u-C is extrapolated from inside. At the 
eastern boundary, only  u-C is supplied, one extrapolates the other fields, see Elvius and 
Sundstrom (1979).

Option (iii) : Semi-transparent boundary condition 
Semi-transparent  boundary  conditions  are  derived  from  the  Engquist  and  Madja  (1977) 
theory,  see  also  McDonald  (2002,  2003)  for  more  details.  These  non-reflecting  boundary 
conditions are more accurate than the characteristic one. Interestingly, they are non-local in 
space, and so rather well-matched with spectral computation. It can be expressed as following 
: 
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B
1  is imposed at western boundary and  B−

1  at eastern boundary. Finite-difference 
evaluation of the derivative at boundaries is no longer necessary.  v is subject to the same 
treatment as in (i) and (ii). It can be noticed that in a geostrophic pattern B±

1 =0 . 

4. Numerical tests  
We start with a geostrophically balanced bell-shape placed at the centre of the domain 

and moving in the positive direction at mean velocity U without changing shape. The settings 
for this experiment are :  x=10 km ,U=100 ms−1 ,C=300 ms−1 , f =10−4 s−1 .

This test has given some encouraging results for small time-steps, t=50 s, with option 
(i) :  the  bell-shape  leaves  the  integration  domain  with  some spurious  unbalanced gravity 
waves, but a priori not large enough to be troublesome. Better results from the standpoint of 
transparency are obtained when imposing the characteristics fields  (ii) and semi-transparent 
boundary  (iii) conditions,  see  the  figure  below.  But  characteristics  boundary  conditions 
remains the best strategy. Unfortunately all these boundary explicit treatments are strongly 
unstable with larger time-steps, e.g. t=400 s. 
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The associated unstable mode corresponds to a large unbalanced disturbance with a 2t 
time-frequency. It first appears at the eastern boundary then it extends to the other boundary 
through the E-zone, affecting the whole domain. It has been noticed that, the wider the E-zone 
is, the larger its influence over the integration area becomes. 

 It seems that the use of the E-zone extrapolation as an alternative to direct Fourier 
transform causes unbalanced waves (such as typical gravity waves) which spread out to the 
whole physical domain through the boundaries. This E-zone effect was previously pointed out 
by Haugen  and  Machenhauer  (1993)  for  initialization  issue.  The  Radnoti  scheme (1995) 
avoids this difficulty by setting the E-zone perturbation values to zero. We must be careful, 
because what we do in the E-zone reveals of crucial importance. 

An absorbing boundary zone has been added in the E-zone, to damp spurious waves. It 
works effectively well in reducing, but doesn't restore stability for large time-steps. Another 
technique was proposed by J-F Geleyn (during Bratislava's meeting), but is not implemented 
yet. It consists in applying an appropriate mapping factor in the E-zone in such a way that the 
spurious waves supported there are significantly vanished when arriving at boundaries. 
5. Concluding remarks and futur work  

The proposed boundary scheme is unfortunately not able to control the growth of gravity 
wave disturbances at boundaries, Experiments show that the E-zone extrapolation is guilty. 
Therefore, the extension procedure has to be rebuilt in order to fulfil simultaneously stability 
and periodicity condition. Moreover, since efficient and robust boundary schemes are highly 
required  in  NWP  system,  some  implicit  boundary  treatment  should  be  investigated. 
Eventually, other coupling methods should be explored, provided that we succeed to solve the 
periodicity issue.
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