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1.      Introduction  
This  short  paper  aims  to  sum  up  results  obtained  during  a  PhD  supervised  by  Olivier

Talagrand  (CNRS/LMD)  and  closely  advised  by  Gérald  Desroziers  and  Florence  Rabier
(CNRM/GMAP) in Toulouse. Most of of the results were obtained in the French global ARPEGE
4D-Var system.

The ever growing amount of available observations (among others, satellite data) reinforces
the  necessity  of  efficient  tools  able  to  evaluate  the  impact  of  each  of  them on  the  analysis  ;
moreover, proper statistics must be specified in order to retrieve as much information as possible
from those observations.

Most data assimilation scheme rely on linear estimation theory : the analysis (further denoted
xa ) is fundamentally a linear combination of the background ( xb ) and of observations (y). From

this basis, it will be tried to answer to the following questions : 
How to evaluate the impact of observations, or of a certain subset of the observations?
How to use this impact in order to tune a data assimilation system?

2.      Theory  
A short theoretical part will be useful to introduce the notations and concepts required in order

to answer those questions.

Let us first define an information vector z, zT = xb
T yT , the vertical concatenation of the

background and the observation vectors. This vector is linked to the truth (x) by means of a linear

operator  , T =  I n
T H T  :  z =  x   ,  where  H is  the  observation  operator  and  is  the

information  error,  concatenating  background  and  observation  errors  T = b
T o

T    with

covariance  matrix  S = E T ,  where  E is  the  expectation  operator.  In  case  observation  and

background errors are not correlated,  S is equal to   B 0
0 R ,  where  B and R are the background

and observations error covariance matrices.

The analysis  xa  is equal to :  xa = xb K  y − H xb , where  K, the "gain matrix" can be

written  K = Pa H T R−1 ,  with  Pa = B−1 H T R−1 H −1 which,  in  case the  B and  R matrices
used in the system are the optimal matrices, is also the analysis error covariance matrix. 

In variational data  assimilation this  analysis is  obtained as the state vector minimizing an
objective function J (often called "cost function") :

J x  =  y −H xT R−1 y − H x   x − xb
T B−1x − xb , 

which, using the information vector can be rewritten : J x =  z −  x T S−1 z −  x .

If one supposes that this cost function can be split into several parts : J=∑ J i , with each Ji

written as :  J i x =  zi − i xT S i
−1 zi − i x  ,  z i  is the  ith subpart with dimension ni extracted

from the information vector  z, associated with the  i observation operator and the  Si covariance
matrix of its associated errors. 

 Then, if the specified covariances of the assimilation system really are the optimal matrices,
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an important result provided by Talagrand (1999) applies. The expectation of the ith subpart of the
objective function at the minimum is :

E J i  xa=ni−Trace i Pai
T S i

−1

Moreover,  Trace  i Pai
T S i

−1 is  a measurement  of  the  contribution  of  zi to  the  overall
precision of the assimilation system.

A  more  explicit  signification  of  these  values  can  be  obtained  when  focusing  on  the
background/observations splitting of the objective function :
- when z i=xb , Trace i Pa i

T S i
−1=n−Trace KH  ,  then E J b xa =Trace KH 

- when z i= y , , Trace  i Pa i
T S i

−1=Trace HK  , , then E  J o xa=Trace  I p−HK  . ( I p is
the identity with order p)

It must  be remarked that  the use of the Trace of  HK as quantification of the impact of
observations had already be introduced by Wahba (1995) in a meteorological context. This quantity
is  called DFS,  for  Degrees of Freedom for  Signal,  see also Cardinali  et  al.  (2004)  for  another
example of implementation of this diagnostic in a global data assimilation system.

Several points must be stated at this stage about DFS. DFS quantifies how the system uses the
observations  to  pull  the  signal  from the background;  in  the optimal  case  (i.e  K operationally
specified = true K ), this is also the relative reduction of variance. Used on its own, DFS says what
the system does, without any other criterion it cannot say what it should do in order to improve the
analysis.

A first clear problem appears : How do we compute DFS when K  generally does not even
explicitly exist in a variational scheme ?

3.      Practical Computation of   Trace (HK)  
Two methods have been implemented in order to compute estimates of this Trace.

3.1 Girard’s method
The first method was proposed Girard (1987), it was introduced in the field of meteorological

data assimilation by Wahba (1995), and by Desroziers and Ivanov (2001).

The method is based on the following mathematical identity : considering a random vector ε
with 0 mean and the identity covariance matrix, and an operator A, the expectation of the quadratic
form T A  is : 

E T A=Trace A
This mathematical property is used as following :

- make a first "normal" analysis xa  using the usual background and observations, 
-  make  a  perturbed  analysis  xa

∗ using  the  same  background  and  perturbed  observations,

y∗= yR0.5
It can easily be verified that the following scalar product approximates the wished quantity :

 y∗− yR−1H xa
∗−H xa˜ Trace HK 

3.2 The Simulated Optimal Innovations (SOI) method
This method is introduced in Chapnik et al. (2005). It is based on the properties of subparts of

the optimal objective function at the minimum described in section 2. 
The algorithm consists in generating a situation, the errors of which are consistent with the
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specified covariance matrices.

A state vector  x  (for example a background vector) is considered as the "truth". Adding
some noise, consistent with the specified statistics, a simulated background  xb

∗=xB0.5b  and

observations  y∗= yR0.5o  are generated. The variational analysis of this simulated situation

naturally leads to the computation of  J b xa
∗ and of  J oxa

∗ and of possible subparts of them.
One then has : 

J b xa
∗≃Trace KH  ;

J oxa
∗≃Trace  I p−HK  ;.

The following equality :  H xb
∗−xa

∗T R−1 yo
∗−H xa

∗≃Trace HK  can also be applied in
order to compute subparts of Trace HK  (this can only be applied if this subpart corresponds to a
diagonal block of R ).

3.3 Comparison of the two methods
Figure 1 compares the DFS computed for  several  upper  atmosphere observation types on

4/02/2004 at 00 UTC within ARPEGE 4D-Var system. One may see that the results of the two
methods compare quite well. The small discrepancies observed, at least those larger than what can
be expected from randomized estimation methods (see the AMSU observations DFS, for example)
may be explained by the non-linearities of the multi-incremental 4D-Var scheme used here. It can
be shown that even in this case, Girard’s method still evaluates a good estimate of the sensitivity of
the analysis to the observations while the SOI method may be less accurate.

4.      The tuning of variances  
A way to use DFS (or a very similar quantity) to tune the specified statistics was provided by

Desroziers and Ivanov (2001).
An hypothesis  is  made that  the true optimal  matrices can be obtained from the specified

matrices,  just  by  multiplying  them  by  multiplicative  coefficients,  the  tuning  coefficients;  for
example,  it  may  be  supposed  that  Bt  and  Rt (the  optimal  background  and  observation  error
covariances) may be deduced from the specified B and R as:

Bt=sb B
Rt=so R

Supposing  the  system  is  variational,  if  J o  and  J b  are  the  subparts  of  the  objective
function related to xb and y respectively then J opt=J o/ soJ b/ sb is the optimal objective function.
The criterion of the expectation of subparts of the objective function at the minimum must then
apply.  Let  xa be the minimizer  of  J opt ;  replacing the  expectation operator  by one realization
(which in case there are enough observations is justified) yields the following criterion to determine
so and sb:

J b xa so , sb/ sb=Trace K so , sbH  ;
J o xa so , sb¿/ so=Trace  I p−HK so , sb ..

The notations used here are to emphasize the fact that xa  and K  are functions of so and sb.
Those equalities are easily transformed into:

so=2 J oxa so , sb/Tr  I p – HK so , sb
sb=2 J b xa so , sb/Tr K so , sbH 

This set of equation is a fixed-point relation so , sb= f so , sb . A fixed-point algorithm is
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then applied to compute so , sb . The Trace term can be computed with Girard’s method, but with
the SOI method the previous relations become

so=J o xa so , sb/ J oxa
∗so , sb ;

sb=J b xa so , sb/ J bxa
∗so , sb.

xa∗  is the analysis made from the simulated situation defined in the presentation of the SOI
method. These expressions outline that the method compares "true" and "simulated" statistics. An
advantage of the SOI method is that the numerator and the denominator of these expressions can be
obtained in the same way.

A nice  property of  the  algorithm  is  that  the  first  iteration  of  the  fixed  point  used  here
converges very quickly. The first  iteration generally provides a good estimate of the result  and
convergence is generally reached after two or three iterations, except for cases that are going to be
defined in the next section. 

5.      Properties of the method  
5.1 Equivalence to Maximum Likelihood Tuning

It may be shown (Chapnik et al 2004) that the tuning performs a Maximum Likelihood tuning
of variances (see Dee and da Silva 1998 for meteorological use of Maximum Likelihood in data
assimilation), meaning that the tuning coefficients are the most probable coefficients, considering an
a priori  model  of covariance (the specified  B  and  R  matrix)  and the data (in our case the
innovation, obs-guess difference). This has important consequences for the tuning :

Since the method performs a statistic over he innovation, a large innovation vector, therefore a
large observation vector, is needed.

An a priori hypothesis about the structure of correlations, allowing to split the innovation into
observation and background errors is necessary (like in Hollingsworth and Lönnberg, 1986). This
hypothesis is in HBH T  and R  (the a priori specified matrices) which must be different (e.g. no
spatial correlation in R , spatial correlation in B ) to allow a useful tuning.

If this hypothesis is not (even roughly) respected by the true o  and b , a poor tuning may
be expected. In particular, performing the method on an observation type with spatially correlated
errors represented with a diagonal R  yields a very weak, possibly null so , which is the opposite
of what should be done in this case (inflate the optimal o ). Note that a non optimal correlation
length in B  does not have such bad consequences.

5.2 A first try with real data
A first try is made to check in a first time if the tuning coefficients have  a priori desirable

properties they should have. Desroziers and Ivanov (2001) had already shown the ability of the
method to retrieve the tuning coefficients for a simulated case in a comprehensive data assimilation
system. The consistency between the tuning coefficients and the known quality of the observations
is tested here.

Figure 2 shows the tuning coefficients computed for satellite borne instruments channels, in
1997  and  in  2001.  One  may  clearly  see  that  small  coefficients  remain  small  and  that  large
coefficients remain large over four years. Moreover, the variability between the two dates is of the
same order as the one encountered when comparing the tuning coefficients computed at different
dates of the same month (not shown). Such a behaviour is a positive point if we suppose that there
were no major evolution of the quality of the observation between the two dates; yet, evidence that
the  result  is  not  an artifact  is  still  needed,  evidence  that  the  same result  will  not  be  obtained
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independently of the o  of the observation errors. A known dysfunction of NOAA 15 instruments
was the occasion to document this point. Figure 3 shows the tuning coefficients obtained for three
channels on dates when there were no problems (dashed black and white bars), on the day before the
problem begins (green bars), and during the incident (the other bars). It is clearly seen for two of the
channels that the tuning coefficients are multiplied by two (and even more on the last date) during
the incident. The tuning coefficients are clearly related to the quality of the observations.

6.      Impact of the tuning of the variance  
The final point of this study is the assessment of the tuning of the specified observational error

variances on the analysis and on the forecasts.
In  a  first  time  the  tuning  was  performed  for  the  assimilated  observation  types.  For

observations  known to have very correlated observation  errors  (like SATOB observations),  the
tuned values were taken similar to the specified values (the true tuned values dropping to 0 along
the tuning as noticed in section 5). A single coefficient was applied to tune  B , and was found
equal to 1, meaning that, as a whole, B  was approximately correct.

An experiment was carried out, performing an analysis cycle for 20 days with the "tuned"
analysis system. Figures 4a-c compare the  rms differences between geopotential observations and
forecast, for "tuned" forecasts and operational forecasts. The green lines denote improvements of
the rms, the red ones show a deterioration. It can be seen that for this parameter, the impact is
positive for all  forecast ranges.  For other parameters,  the impact, though positive,  may be less
spectacular.

7.      Conclusion  
Techniques to evaluate the quantification of the impact of the observations, known as DFS,

have been implemented for the French ARPEGE data assimilation system. These techniques can
also be used for Desroziers and Ivanov’s tuning of the variances. This tuning has been shown to
have some positive impact on the analysis and on the forecasts.

The first future direction which might be taken is the tuning of the B matrix. As stated before,
only one  global  coefficient  was  applied  to  this  matrix,  which  is  certainly not  enough.  Several
strategies for a finer tuning may be considered.

Another difficulty to be considered in the future is the tuning of observations with correlated
errors (like SATOB). This case is more difficult since no known objective criterion allowing to tune
it can apply.
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Figure 1 : DFS computed for different observation types. The bars in blue were computed with Girard's method, bars in
red with the SOI method. Each bar is divided into three parts: the upper part is the contribution of observations from the
northern hemisphere; the middle part is the contribution from subtropical observations ; the lower part, the contribution
from the southern hemisphere.
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Figure  2  :  Comparison  between  tuning  coefficients
computed on a 1997 date (in red) and a date in 2001 (in
blue), for different satellite channels (along the x axis).

Figure 3 : Detection of an incident. Tuning coefficients
computed  for  dates  before  the  incident  (dashed  grey
bars),the day before the incident (green bars), and during
the incident (orange, purple and red bars).

        

a                                                          b                                                          c
Figure 4 : Difference between the  rms (geopotential TEMP observations minus forecast) for operational forecasts and
"tuned" forecasts. The unit is the meter. Green lines show an improvement, red lines a deterioration. The x axis is the
range of the forecast, the y axis is  the pressure level. Panel 4a  is for inter tropical areas, panel 4b for the southern
hemisphere and panel 4c for the northern hemisphere.
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