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Introduction

Fully data-driven NWP

Numerical weather prediction based only on data, without any physical model.
With the availability of large datasets (e.g. ERAD), specialized computing re-
sources (e.g. GPUs) and new algorithms (e.g. transformers), such methods
made great progress

» Over the last year, several papers presented fully data-driven NWP with Al

» Although they are limited to the resolution of ERA5 (0.252), they show impressive
performances, especially in saving computational costs

» In terms of forecast precision, they compare with the ECMWF model at
medium-range, according to a limited set of metrics and variables

» These papers are not from meteorologists but from major tech companies

» The pace of publication is very high
@



Methodology and limitations for this review

Methodology: Compare and explain what has been done in each paper in terms of
> Al technique
> Hardware
» Computing power
» Forecast skill
Limitations
» Pre-prints: these papers have not been peer-reviewed

> My expertise is limited: meteorologist background with math specialization
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Big-Tech papers

» Pathak and 12 co-authors (22 Feb. 2022), Nvidia. FourCastNet: A Global
Data-driven High-resolution Weather Model using Adaptive Fourier Neural
Operators.

» Bi and 5 co-authors (3 Nov. 2022), Huawei. Pangu-Weather: A 3D
High-Resolution Model for Fast and Accurate Global Weather Forecast.

» Lam and 17 co-authors (24 Dec. 2022), DeepMind. GraphCast: Learning
skillful medium-range global weather forecasting

Not included in the review but worth mentioning:
> Keisler (15 Feb. 2022), personal work. Forecasting Global Weather with Graph
Neural Networks

» Ngyuen and 4 co-authors (24 Jan. 2023), Microsoft. ClimaX: A foundation
model for weather and climate
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https://arxiv.org/abs/2202.11214
https://arxiv.org/abs/2211.02556
https://arxiv.org/abs/2212.12794
https://arxiv.org/pdf/2202.07575.pdf
https://arxiv.org/pdf/2202.07575.pdf
https://arxiv.org/abs/2301.10343

FourCastNet

Pathak et al. (22 Feb. 2022), Nvidia. FourCastNet: A Global Data-driven
High-resolution Weather Model using Adaptive Fourier Neural Operators.

(b) Lead Time: 96 hours

» First to produce forecast at NWP
resolution 0.252 (previous were >
19), quantitatively evaluate extreme,
use transformers.

» Adaptative Fourier Neural Operator
(AFNO)

» "The FourCastNet model can
compute a 100-member 24-hour

forecast in 7 seconds” using four
A100 GPUs

Example of forecast: 10m wind at 96h lead

time

FourCastNet
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(@NelIe


https://arxiv.org/abs/2202.11214

Pangu-Weather

Bi et al. (3 Nov. 2022), Huawei. Pangu-Weather: A 3D High-Resolution Model

for Fast and Accurate Global Weather Forecast.
Track Forecast for Typhoon Kong-rey from 2018-09-30 00UTC

» First to outperform IFS (RMSE and
ACC at 0.259)

» 3D Earth-specific transformer
(3DEST)

» Hierarchical temporal aggregation:
train models for 1h, 3h, 6h, 24h time
steps. 120°E 130°E 140°E

Example of cyclone forecast: track of ty-
phoon Kong-rey
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https://arxiv.org/abs/2211.02556

GraphCast
Lam et al. (24 Dec. 2022), DeepMind. GraphCast: Learning skillful medium-range

global weather forecasting

» First to produce a score card,
outperform Pangu-Weather

HRES against
HRES-fcO

» Main technical innovation: graph
neural network (GNN)

» Auto-regression from the two last
state )A<t+1 = (X¢, Xt—1)

» Predict much variables than the
previous model, thus enable more Y
comprehensive assessment P —

Forecast error at 48h lead time for uqg. IFS
(HRES) evaluated against its own analysis

Absolute error

GraphCast
against ERAS


https://arxiv.org/abs/2212.12794

Comparative presentation

FourCastNet Pangu-Weather | GraphCast
Al technique AFNO (trans- | 3DEST (trans- | Graph neural net-
former) former) work
Hardware — train | 64 A100 192 V100 32 TPU v4
(inference) (1 A100) (1 V100) (1 TPU v4)
Speed — train 16 hours 16 days 3 weeks
(inference!) (2.8 s) (14 s) (60 s)
Forecast scores®> | Comparable to IFS | Better than IFS Better than IFS
# of variables 20 69 227
Open-source Yes & Yes & No

Common points:

» Much faster than conventional NWP

» Do not provide ensemble scores

for a deterministic 10-day forecast with the hardware for inference

2only RMSE and ACC

» Trained on ERA5 (0.252 resolution)



https://github.com/NVlabs/FourCastNet
https://github.com/198808xc/Pangu-Weather

Al technique

FourCastNet Pangu-Weather GraphCast
Al technique AFNO (trans- | 3DEST (trans- | Graph neural net-
former) former) work
Transformers Graph network

» Initially designed for natural language

processing. Now widely used (DallE,
ChatGPT...)

» Solution to connect words regardless
of distance between them

» The core of transformers is the
attention layer:

-K
Attention(Q, K, V') = softmax (Q) %
Vd

» Invented by Peter Battaglia in 2018

» Neurons connections are represented
by a graph (much more flexible than
convolution or recurrent networks)

» Can be seen a generalization of

transformers

(GNOIS)


https://arxiv.org/abs/1806.01261

Focus on transformers

IR Ceel|



Focus on transformers

Illustration of a self-attention layer: » Learnable parameters: Wi,
Y o
:’ \\ Attent?on WQ and WV'
: : e » In Pangu-Weather, the
i , — — Q I patches A ) .
, :rf'i | v attention layer is modified to
g;-;.-.!: AEN :S:E account for position-related
[ ; 1 & .
One patch 1 Clogy i bias B (learnable):
1
1 : Importance Q K
1 .
| K—— 1 softmax (— + B) %4
I e : Vd
1 1
: | » In FourCastNet, the
1 1 . . .
T —~BQ : attention Is re-written as a
1 . .
i :DUW“t convolution, that is then
1 . .
[ 1 computed in Fourier space:
Another patch : L . V—>®—:>
p y ]-'_1(.7-"(5)]-'(X))
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Focus on graph networks

e) Processor

d) Encoder

-

M° M’

Screenshot of Fig. 1 in the GraphCast paper




Hardware

FourCastNet Pangu-Weather | GraphCast
Hardware — train | 64 A100 192 V100 32 TPU v4
(inference) (1 A100) (1 V100) (1 TPU v4)

Different types of GPUs:

» Google TPU v4: 275 TFLOPS, 32GB
» Nvidia A100: 312 TFLOPS, 40/80GB
» Nvidia V100: 112 TFLOPS, 16/32GB
» Nvidia 1080Ti: 10 TFLOPS?, 11GB

“not an official spec, figure from my own

calculations

Example of existing infra:
> Met Eireann: 1 A100 80GB

» Meteo-France: 13 V100 32GB, 2

1080Ti

> ECMWE: 72 A100 40GB

» European Weather Cloud (soon): 36

A100 80GB

(GNOIS)



Computing time

FourCastNet Pangu-Weather | GraphCast
Speed — train 16 hours 16 days 3 weeks
(inference) (2.8 5) (14 s) (60 s)
Speedup from | 44727 24919 2368
IFS3

Inference figures for a deterministic 10-day forecast
Note that these figures are only for GPUs. Expect ~100 times slower on CPUs

Warning: tricky comparison

» Heterogeneous hardware. Not the same number of variables. Not the same
output frequency. Lower resolution than IFS.

» Although, figures are several orders of magnitude above conventional NWP,
which is significant

3obtained from FourCastNet figures proportioned by inference time and hardware speed. Ex:
4472728312 = 24919. &,



Forecast scores

FourCastNet

Pangu-Weather

GraphCast

Forecast scores

Comparable to IFS

Better than IFS

Better than IFS

Only evaluated with RMSE and ACC. No probabilistic score.

< Pangu-Weather, FourCastNet and IFS
scores with ERA5 as reference
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Conclusions

» Results are very impressive, beyond what was thought as realistic 3 years from now

v

Weather and climate appear to be the new competition field of big tech companies

» Resolution of Al-generated forecast is not yet at the level of operational models.
Evaluation still has some flaws (set of variables, probabilistic scores, real-life

feedback...)
Threats Opportunities
» Obsolescence of current NWP » Improve performance where the
» Devaluation of physics knowledge physics is poorly known
» Unreachable levels of hardware and » Improve computing and energy

Al skills (except for European scale) efficiency
» Take advantage of hardware
heterogeneity

(GNOIS)



Closing thoughts

» How would this change the way we work in national met services?

> If physics knowledge were no longer required to run NWP, what would it be
useful for?

> Auditing Al forecast (to ensure security of people and goods)?
» Creating training set for the next Al updates?

» What changes does it imply in producing forecast and meteorological information?

» Get the hardware and the knowledge to run these Al?
» Stronger focus on post-processing and impact-based forecast?

P Regional scale: no competing Al at the moment.

» Provide open regional reanalysis?
P Investigate ourselves more data-driven NWP?
» Additional challenges at higher resolution?

Thank you for your attention!
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Appendix: multiple levels of Al integration

Current NWP workflow Hybrid NWP-ML/DL End-to-end DL workflow

(Operational) workflow (Suggested) 3

(Work in progress) S

-3
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input meteorological observations (weather stations, radiosondes, satellites, ... ) i)

g

" i selection of observations i =
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pre-processed data : g
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Juati comparison with independent observations, ]
evaluation

calculation of skill scores, ...

The weather prediction workflow as described in Schultz et al. (2021) & X
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