Optimizing the use of microwave observations over Polar regions
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- Surface emissivity over sea-ice and snow => low-peaking channels were blacklisted over 55°N (section 1) 600 | e

- Hydrometeors processes are highly nonlinear => cloud screening (section 2) 700 | i

- Mixed signal from sea and land (or sea-ice) surfaces => land/sea mask to reject heterogeneous scene (section 3) 800 | VST

- Observation errors & horizontal error correlation => Thinning distance to 80 km 900 | :

limb contaminations at large scan angles => observations produced at the edge of the scan are blacklisted (section 4) 1000 : £

Section 5 shows some preliminary results on the potential use of ML to improve the assimilation of MW over sea-ice. = : 2 o = w 2

1. Low-peaking channels over show & sea-ice 2. Assimilation In All-sky conditions

Low-peaking channels are blacklisted due to uncertainties in the surface Preliminary studies were run to enhance the assimilation of MHS radiances in all-sky Fig lg;g":tsuodsfg'zr'}%"‘;%gf;&gg

modelisation for radiances over snow-covered land & sea-ice (Fig 4). conditions over AA. Following GeerEA2014, the method is based on: 2) Synopic sifuation
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4. Obs errors, thinning distance and additional
Scan pOSitions Observations produced at large angles (i.e scan

positions 1-10 & 80-90 for MHS, Fig 15) are still
blacklisted due to instrumental bias, limb contamination
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Conclusion: Assumed observations errors are slightly under-estimated
for WV channels. The applied thinning distance of about 80 km seems
optimal to avoid correlated observation errors.
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Ongoing & Future work

- Extend Lambertian/specular evaluation and implement a switch related to surface properties (snow/sea-ice etc...)
- Extend the use of MHS all-sky with the dynamic emissivity method (or TELSEM) + extend to MW other instruments
- Optimize the footprint operator for operational implementation in AA
- Data denial experiments are planned for observation/background error tuning in AA

+ Diagnose B in observation space using an ensemble (B. Ménétrier)
- Implement & test the new methodology developed by Alan Geer (will be part of cycle 49r1)

projects: AA, MetCoOp, H20, ESA/AWS, CERISE, Fellowship EUMETSAT and Horizon? & NSC?
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