

Progress and plans of E-suites at Météo-France

ACCORD General Assembly, 04/12/2023

• ARPEGE: T850hPa RMSE against RS in the Tropics (20° S-20° N) at 72h lead time

A new NWP instance: AROME-Overseas EPS

Généralities

5 domains, same as deterministic ones

- 15+1 members at 2.5 km, simple precision, hydrostatic
- Initial conditions (unperturbed) : same as deterministic (IFS)
- Boundary conditions + initial perturbations : ARPEGE-EPS

Perturbation of surface + ocean layers

2 runs a day

ACCORD GA UTC on 01/04, respectively. Panel c) shows the corresponding estimation from radar observations.

48t1 ARPEGE e-suite

- Implement of assimilation schemes (ARPEGE, EDA) under **OOPS** (Object-oriented layer)
- Hybrid 4DVAR : 3D anisotropic covariances from ARPEGE-EDA
- ARPEGE-EDA : addition of a control unperturbed member
- Direct assimilation of microwave radiances in « all-sky » conditions
- Assimilation of GNSS-RO data from SPIRE, GRACE-C, Sentinel-6
- Variational debiasing of aircraft data
- Update of the « Tiedtke Bechtold » deep convection scheme
- WENO interpolations in the stratosphere (T and q)
- Radiation : EcRad with McIca solver
- Include the effect of solar eclipses on radiation
- SST from Mercator (PSY4 1/12° product, now moving to GLO12)
- ARPEGE-EPS : Removal of some singular vectors (over NH and SH domains)

48t1 ARPEGE e-suite – Scores

Score cards

- 48t1 experiment against 46t1 o-suite
- 05/08/2022 \rightarrow 15/01/2023,
- domain Europe,
- Verification against radiosondes and IFS analyses :

	Réf.	Radiosondes	IFS analyses
	Grille	GLOB025	GLOB025
	Éch.	0H à 96H pas de 12H	0H à 102H pas de 6H
Géopotentiel	100hPa	▼ = = ::: = ::: ▲ = =	* * * * = *;;;*= * * * * * ;;;*=;;;
	500hPa	▼ ::: = ▲ ▲ ▲ = = =	:::
	850hPa		A = A A A = A A A A A A A [[[]]= = =
	1000hPa	= 🔺 ;;; 🔺 ;;; ;;; = ;;; =	= * * *;;;* * * * * * * * * * * * * *
Pression	Mer		
	100hPa		*****
Température	500hPa	* * * * * * * * !!! !!!	*****
	850hPa	▲ = = = = : :: = = =	▲ ▲= ▼ ;;;= = = = = ;;;= = ;;;= = = =
	1000hPa	;;; = = ;;; ;;; ▲ = = =	=
Température corrigée	2m		
	250hPa	* * * * * * = ::: *	*****
Vent	500hPa	A A A A A 	*****
	850hPa		* * * * * <u>;;;</u> * *=;;; * * * * * *;;;=
FF	10m		
Humidité	400hPa		*****
	700hPa		▼;;;;;:
	850hPa	- •	
	2m		

48t1 AROME e-suite

- Implementation of assimilation schemes (3DEnVar, AROME-EDA 3DVAR, AROME-NWC) under **OOPS**
- 3D Ensemble variational scheme « **3DEnVar** », replacing 3DVAR
- Use of Incremental Analysis Update
- AROME-EDA (used for 3DEnVar): 50 members, longer forecast term
- Direct assimilation of microwave radiances in « all-sky » conditions
- Assimilation of GNSS-RO data from SPIRE, GRACE-C, Sentinel-6
- Assimilation of wind and temperature data derived from Mode-S
- Assimilation of wind scatterometer HY-2B and HY-2C
- AROME-NWC : assimilation of MeteoSat/RapidScan radiances
- SST from Mercator (PSY4 1/12° product, now moving to GLO12)
- Radiation : **EcRad** with McIca solver
- Include the effect of solar eclipses on radiation

48t1 AROME e-suite – Scores

	Paris 250km x 250km	MeditAlpes 480km x 576km
Short range forecast	1P36 (00 UTC) Hourly outputs	1P24 (00 UTC) Hourly outputs
Nowcasting	24P6 Outputs 1/4h	12P6 Outputs 1/4h

- CY48T1
- Dynamical adaptation of AROME-FR and AROME-PI
- Single precision
- Some spécificities compared with

AROME-FR à 1.3km :

120 vertical levels, Dt=30s, LBC 15min, 2 itérations of PC scheme, SRTM-30m, TEB with gardens, Soilgrid (300 m), Ecoclimap-SG (250m), Open Street Map (OSM), etc.

T2m RMSE for February 2023 « AROME 500m » vs « AROME oper »

- Single precision in ARPEGE and ARPEGE-EPS forecast
- AROME 4DEnVar
- Include hydrometeors in the AROME control variable (in order to enable direct assimilation of radar reflectivity, assimilation of MTG-I/LI)
- Improved ARPEGE covariances though random perturbed parameters (RPP) in ARPEGE-EDA
- Model perturbations in AROME-EPS
- Assimilation of Mode-S in ARPEGE
- Include Ocean mixed layer coupling in ARPEGE and AROME-FR
- Other technical and scientific evolutions to be confirmed

Preparation from end of 2023 - Beginning of e-suite end of 2024 – In operation end of 2025

What's about code adaptation

04/12/2023

1

RÉPUBLIQUE FRANÇAISE

Û

1

RÉPUBLIQUE FRANÇAISE

Û

1

Liberté

RÉPUBLIQUE

FRANCAISE

Û

ARPEGE forecast GPU adaptation progress

Component	Me	thod	Status (NVIDIA only)
ARPEGE physics	Field API -	+ transform	Good enough EcRad work in progress at ECMWF
SURFEX	Кеер с	on CPU	
1D dynamics	Field API -	+ transform	Good enough
Semi-Lagrangian calculations	Field API -	+ transform	Refactored, port beginning of 2024
Semi-Lagrangian communications	Refactor	+ manual	
Semi-Implicit calculations	Refactor -	transform	Preliminary study, refactoring
Semi-Implicit communications	Refactor	+ manual	Refactored
Spectral transforms	Use e	ectrans	Done by ECMWF, integrating
Done	Not feasible	In progress	s Not started

Most of the work done on ARPEGE for GPU code adaptation done is useful for the LAM GPU code adaptation (sometimes identical code):

- Refactoring the whole grid-point computations below "cpg.F90 »
- Improving the flexibility of the code with respect to the granularity of the parallelism
- Refactoring the Semi-Lagrangian scheme
- Developing an improved version on "Field_API" library
- Defining new coding norms for GPU

PHYEX

- All the AROME physics has been refactored and an external library PHYEX has been developed for Arome and Harmonie-Arome physics.
- The demonstrator is complete and will be introduced into CY49T1.

On-going work on refactoring the AROME and HARMONIE-AROME physics interface "APL_AROME" by ACCORD colleagues from Norway and Netherlands. Some of the refactoring will be provided in an official code cycle (CY49T1).

The spectral transform code for the limited area was ported to an AMD-GPU processor (LUMI machine) by colleagues at the IRM in Belgium.

But several other parts of the code need to be analyzed and if necessary prototyped and refactored: semi-implicit, NH, LBC coupling, I/O, SPP, post-processing, DDH, etc.

=> Need for people with knowledge of the code for code analysis and code refactoring

Adaptation on NEC SX-AURORA

(thanks to our Czech partner for access to their hpc)

- To maintain the CPU/GPU/vector versatility
- CY49T0 does not support Open-MP on Aurora but à pre-version of CY49T1 does
- So CY49T1 sounds promising
- Simple precision under-performing (compared to x86 CPU)

Plans for 2024 regarding Artificial Intelligence for NWP

Ensemble augmentation

(Cheap, numerous) perturbed forecasts at kilometer-scale

ML based emulator

- Daily real time Pangu-weather forecast with ARPEGE initial conditions
- Develop & evaluate an AROME emulator (from AROME analysis)
- Downscaling at hectometric scales
- => **Objective :** 1st experimental version of regional ML model ready end of 2024

ML for Data Asimilation

• Test ML-based adjoint models

THANKS

ANNEXES

Global operational NWP systems based on ARPEGE (since June 2022)

32

28

24

20

16

12

8.

kr

Systems	Characteristics
ARPEGE Deterministic	Tl1798c2.2 L105 (5km on W Europe) 4DVar (6h cycle): Tl224c1L105 & Tl499c1L105 5 forecasts per day up to 114h
ARPEGE-EDA (AEARP)	Tl499c1 L105 ; 50 members 4D-Var (6h cycle): Tl224c1 L105 Background covariances averaged on 12h and updated every 6h
ARPEGE-EPS (PEARP)	Tl1798c2.2 L90 (5km on W Europe) ; 34+1 members ; 4x102h 35 EDA members and singular vectors Perturbed parameters, 2 convection schemes

• Horizontal resolution ARPEGE/PEARP 5km < Dx < 24km

Regional operational NWP systems based on AROME (since June 2022)

Systems	Characteristics	
AROME-France Deterministic	1.3km L90 (from 5m to 10hPa) 3DVar (1h cycle) 8 forecasts per day up to 51h	
AROME-France Nowcasting	1.3km L90 3DVar (no cycling – 10' cut-off) 24 forecasts per day up to 6h	
AROME-IFS	1.3km L90– Dynamical adaptation of IFS (altitude) and Arome-Fr (surface) 4 forecasts per day up to 51h	
AROME-EPS (PEARO)	 1.3km L90 - 16+1 members Four times per day up to 51h Initial perturbations from AROME-EDA and boundary conditions from PEARP 	
AROME-EDA (AEARO)	3.25km L90 25 members 3DVar (3h cycle)	
AROME Overseas (5 domains)	1.3km L90 – Dynamical adaptation of IFS (altitude) and Arpege (surface) 4 forecasts per day up to 51h	
AROME-EPS Overseas (5 domains)	2.5km L90 – 15 members Same initial conditions AROME Overseas Lateral conditions from PEARP 2 forecasts per day up to 51h	
AROME 04/\$\$\$2/2023	2.5km L90 – several domains Dynamical adaptation Arpege	A

Evolution of code cycles

CY48T3

- GPU-readiness refactoring, round #1

СҮ49Т0

- GPU-readiness refactoring, round #2

CY49T1

- GPU-readiness refactoring, round #3
- ACCORD developments and catch-ups (incl. SURFEX version common to all LAM)
- Catch-up with 48T1_op1 e-suite branch
- PHYEX (Meso-NH/Arome physics, pre-externalised)

Various bugfixes (incl. porting on NEC)
 Unique portal for contributions : https ://github.com/ACCORD-NWP/IAL
 Declaration expected by the end of 2023
 Meteorological validation ongoing

Evolution of code cycles

CY49T0 (declaration 24/04/2023)

- GPU-readiness refactoring, round #2

CY49T1

- GPU-readiness refactoring, round #3 (extern. field_api)
- ACCORD developments and catch-ups (incl. SURFEX version common to all LAM)
- Catch-up with 48T1_op1 e-suite branch
- PHYEX (Meso-NH/Arome physics, pre-externalised)

Various bugfixes (incl. porting on NEC)
 Unique portal for contributions : https ://github.com/ACCORD-NWP/IAL
 Declaration expected by the end of 2023
 Meteorological validation ongoing

CY50

Common release to serve as basis for subsequent CY50T1 and CY50R1 Start of merge : January 2024